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Abstract. Given the square matrices A, B, D, E and the matrix C' of conforming dimensions,
we consider the linear matrix equation AXE 4+ DXB = C in the unknown matrix X. Our aim is
to provide an overview of the major algorithmic developments that have taken place in the past
few decades in the numerical solution of this and of related problems, which are becoming a reliable
numerical tool in the formulation and solution of advanced mathematical models in engineering and
scientific computing.
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2 V. Simoncini

1. Introduction. Given the real or complex square matrices A, D, E, B and the
matrix C' of conforming dimensions, we consider the linear matrix equation

AXE + DXB =C (1.1)

in the unknown matriz{} X, and its various generalizations. If £ and D are identity
matrices, then ([LT) is called the Sylvester equation, as its first appearance is usually
associated with the work of J.J. Sylvester [238]; if in addition B = A*, where A*
is the conjugate transpose of A, then the equation is called the Lyapunov equation
in honor of A. M. Lyapunov and his early contributions to the stability problem of
motion; see [14] and the whole issue of the same journal. We shall mainly consider
the generic case, thus assuming that all the involved matrices are nonzero.

Under certain conditions on the coefficient matrices, (II]) has a unique solution,
with available elegant and explicit closed forms. These are usually inappropriate
as computational devices, either because they involve estimations of integrals, or
because their computation can be polluted with numerical instabilities of various sorts.
Nonetheless, closed forms and other properties of the solution matrix have strongly
influenced the computational strategies that have led to most algorithms used today
for numerically solving (), in the case of small or large dimensions of the coefficient
matrices. Due to the availability of robust and reliable core algorithms, (I now
arises in an increasingly larger number of scientific computations, from statistics to
dynamical systems analysis - with a major role in control applications, and also as
a workhorse of more computationally intensive methods. In section Bl we will briefly
review this broad range of numerical and application problems.

Our aim is to provide an overview of the major algorithmic developments that
have taken place in the past few decades in the numerical solution of (II) and of
related problems, both in the small and large scale cases. A distinctive feature in
the large scale setting is that although the coeflicient matrices may be sparse, the
solution matrix is usually dense and thus impossible to store in memory. Therefore,
ad-hoc strategies need to be devised to approximate the exact solution in an affordable
manner.

Functions related to the solution matrix X such as the spectrum, the trace and
the determinant, also have an important role in stability analysis and other applica-
tions. Although we shall not discuss in detail the computational aspects associated
with these functions, we shall occasionally point to relevant results and appropriate
references.

Linear matrix equations have received considerable attention since the early
1900’s, and have been the topic of many elegant and thorough studies in the 1950’s
and 1960’s, which use deep tools of matrix theory and functional analysis. The field
continues to prosper with the analysis of new challenging extensions of the main
equation (I.IJ), very often stimulated by application problems. Our contribution is
intended to focus on the computational methods for solving these equations. For this
reason, in our presentation we will mostly sacrifice the theoretical results, for which
we refer the interested reader to, e.g., [88], [166], [I30], [16].

The literature on the Lyapunov equation is particularly rich, due to the prominent
role of this matrix equation in control. In particular, many authors have focused
on numerical strategies associated specifically to this equation. As a consequence,
the Sylvester and Lyapunov equations have somehow evolved differently. For these

1Here and in the following we shall use bold face letters to denote the unknown solution matrices.
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reasons, and to account for the literature in a homogeneous way, we shall first discuss
numerical strategies for the Sylvester equation, and then treat in detail the Lyapunov
problem. For A and B of size up to a few hundreds, the Schur-decomposition based
algorithm by Bartels and Stewart ([I5]) has since its appearance become the main
numerical solution tool. In the large scale case, various directions have been taken,
and a selection of effective algorithms is available, from projection methods to sparse
format iterations. Despite a lot of intense work in the past 15-20 years, the community
has not entirely agreed upon the best approaches for all settings; hence the need for
an overview that aims at analyzing where the field stands at this point.

For A and B of the order of 10* or larger, the solution X cannot be store explicitly;
current memory effective strategies rely on factored low rank or sparse approxima-
tions. The possibility of computing a memory conserving good approximate solution
in the large scale case highly depends on the data. In particular, for C definite,
accurate low-rank approximations may be hard, if not impossible, to find. For in-
stance, the equation AX + XAT = I with A nonsingular and symmetric admits the
unique solution X = %A‘l, which is obviously full rank, with not necessarily quickly
decreasing eigenvalues, so that a good low rank approximation cannot be determined.

The distinction between small, moderate and large size is clearly architecture de-
pendent. In the following we shall refer to “small” and medium problem size when the
coefficient matrices have dimensions of a few thousands at most; on high performance
computers these digits can be considerably larger. Small and medium size linear
equations can be solved with decomposition-based methods on laptops with moder-
ate computational efforts. The target for current large-scale research are matrices of
dimensions O(10°) or larger, with a variety of sparsity patterns.

Throughout the paper we shall assume that E, D are either the identity, or that
at least one of them is nonsingular. Singular E, D have great relevance in control
applications associated with differential-algebraic equations and descriptor systems
but require a specialized treatment, which can be found, for instance, in [162].

Equation () is a particular case of the linear matrix equation

A1 XB; + A3XBy + ... AL XBy, = C, (12)

with A;, B;, i = 1,...,k square matrices, and C of dimension n x m. While up
to 15-20 years ago this multi-term equation could be rightly considered of mainly
theoretical interest, the recent developments associated with problems stemming from
applications with parameters or a dominant stochastic component have brought multi-
term linear matrix equations to play a fundamental role; see section Bl and section [[.2]
for applications and references. Equation ([2)) is very difficult to analyze in its full
generality, and necessary and sufficient conditions for the existence and uniqueness
of the solution X explicitly based on {A;},{B;}, are hard to get, except for some
very special cases [166],[I55]. While from a theoretical view point the importance of
taking into account the structure of the problem has been acknowledged [I55], this
has not been so for computational strategies, especially for large scale problems. The
algorithmic device most commonly used for (L2)) consists in transforming the matrix
equation above into a vector form by means of the Kronecker product (defined below).
The problem of the efficient numerical solution of ([L2]), with a target complexity of
at most O(n3 4+ m3) operations, has only recently started to be addressed. The need
for a low complexity method is particularly compelling whenever either or both A;
and B; have large dimensions. Approaches based on the Kronecker formulations were
abandoned for (II]) as core methods, since algorithms with a complexity of a modest
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power of the coefficient matrices dimension are now available. The efficient numerical
solution to ([L2)) thus represents the next frontier for linear matrix equations, so as to
assist rapidly developing application models.

Various forms of generalizations have also been tackled in the literature, as they
are more and more often encountered in applications. This is the case, for instance,
for bilinear equations (in two unknown matrices), and for systems of bilinear equa-
tions. These are an open computational challenge, especially in the large scale case,
and their efficient numerical solution would provide a great advantage for emerging
mathematical models; we discuss these generalizations in section [1

A very common situation arises when B = 0 and C is tall in (1], so that the
matrix equation reduces to a standard linear system with multiple right-hand sides,
the columns of C. This is an important problem in application, and a significant
body of literature is available, with a vast number of contributions in the past twenty
years. Since the most popular procedures for the solution of AX = C' are usually
derived from the single right-hand side case, we shall not discuss them here, as the
topic surely deserves a dedicated treatment; instead, we refer the reader to [212] and
to the more recent list of references in [I11].

After a brief account in section ] of the numerous application problems where
linear matrix equations arise, we shall recall the main properties of these equations,
together with possible explicit forms for their solution matrix. The rest of this paper
describes many approaches that have been proposed in the recent literature: we first
treat the Sylvester equation, when A and B are small, when one of the two is large, and
when both are large. Indeed, rather different approaches can be employed depending
on the size of the two matrices. We shall then focus on the Lyapunov equation:
due to its relevance in control, many developments have specifically focused on this
equation, therefore the problem deserves a separate treatment. We shall describe the
algorithms that were specifically designed to take advance of the symmetry, while we
shall only mention the solution methods that are common to the Sylvester equation.
The small-scale problem is computationally well understood, whereas the large-scale
case has seen quite significant developments in the past ten years. Later sections
report on the computational devices associated with the numerical solution of various
generalizations of (ILT]), which have been taking place in the past few years.

2. Notation and preliminary definitions. Unless stated otherwise, through-
out the paper we shall assume that the coefficient matrices are real. Moreover, spec(A)
denotes the set of eigenvalues of A, and AT, A* denote that transpose and conjugate
transpose of A, respectively. For z € C, Z is the complex conjugate of z.

A matrix A is stable if all its eigenvalues have negative real part, and negative
definite if for all unit 2-norm complex vectors x, the quantity x* Az has negative real
part, namely, the field of values W(A) = {z € C: z =2*Ax, z € C",||z|| = 1} is all
contained in the open left half complex plane. The notation A>0 (A>0) states that
A is a Hermitian and positive definite (semi-definite) matrix.

The vector e; denotes the ith column of the identity matrix, whose dimension will
be clear from the context; I,, denotes the identity matrix of size n, and the subscript
will be omitted when clear from the context. Throughout, given « € C", ||z|| denotes
the 2-norm of z, ||A]| or ||A]|2 denotes the matrix norm induced by the vector 2-
norm, while ||A|z denotes the Frobenius norm of A = (a;;)i=1,....n,j=1,..m, that is
[All% = >2;;lai;[>. The notation [A; B] will be often used to express the matrix
obtained by stacking the matrix B below the matrix A, both having conforming
dimensions.
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For given matrices A € C"A*™4 A = (a;5)i=1,...na,j=1,..m and B € C"BXm5,
the Kronecker product is defined as

allB CngB almAB
ang QQQB e agmAB AT X AT
A®B= . € Cranpxmams, (2.1)
anAlB anAQB e anAmAB
the vec operator stacks the columns of a matrix X = [z1,...,x,,] € C"™™ one after
the other as
Ty
vee(X)= | : | e C"™*,
Lm

We summarize some well known properties of the Kronecker product in the next
lemma,; see, e.g., [130].

LEMMA 2.1. Some properties:

(i) vec(AXB) = (BT @ A)vec(X) (note the complex transposition for B);

(i) If A € R™™ and B € R™* ™, and A4 € spec(A), \p € spec(B), then
AaAp € spec(A ® B); (and every eigenvalue of A ® B is the product of
eigenvalues of A and B)

(iii) Under the hypotheses of (ii), Aa + Ap € spec(I;, ® A+ B® I,,); (and every
eigenvalue of I, ® A+ B ® I, is the sum of eigenvalues of A and B.)

3. Applications. Matrix equations are ubiquitous in signal processing, control
and system theory; see, e.g., [],[248],[88],[66],[26],[216],[59] and references therein.
Most time-dependent models may be represented as linear or non-linear dynamical
systems, accounting for the prediction, simulation and control of real world phenom-
ena. The numerical solution of matrix equations and the relevance of its role within
engineering applications justify the great effort put into this problem by the scientific
community, both from a mathematical and from an applied angle. Special issues of
journals and multi-contribution books are often devoted to advances in this and re-
lated areas, attesting the search for new algorithms that can take into account the
properties of the problem, such as structure, size and functional characterizations.

Linear matrix equations have an important role in the stability analysis of linear
dynamical systems, and take also part in the theoretical developments of non-linear
ones. Consider the following continuous-time linear syste

& = Ax + Byu, y=DByux, (3.1)

where x is the model state, u is the input and y is the output, and the matrices A, By
and By are time-invariant. Assuming A is stable, that is its eigenvalues have negative
real part, then the solutions P and Q to the following Lyapunov equations

AP +PA" + BB =0, ATQ+ QA+ ByB) =0,

are called the controllability and observability Gramians, respectively, and they are
used, for instance, to measure the energy transfers in the system BI)[4, sec.4.3.1].

2In the control literature, By, B are usually denoted by B and C'T, respectively; we opted for a
slightly different notation because here B and C have a different meaning.
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Under certain additional hypotheses it may be shown that the symmetric matrices P
and Q are positive definite. These two latter matrices are key when one is interested
in reducing the original system into one of much smaller dimension, while essentially
preserving the main dynamical system properties. Indeed balanced reduction, which
was originally used to improve the sensitivity to round-off propagation in filter design
[186], determines an appropriate representation basis for the system such that the
Gramians are equal and diagonal [4], so that the reduction of that basis will maintain
this property of the Gramians. The diagonal Gramians then contain information on
the output error induced by the reduced model.

Alternatively, if By and By have the same number of columns, one can solve the
following Sylvester equation,

AW + WA+ BB, =0,

thus obtaining the cross-Gramian W [84], which contains information on controlla-
bility and observability of the system. For Bj, B having a single column, or for A
symmetric and By, By such that By (21 — A)~! By is symmetric, it is possible to show
that W2 = PQ, so that the eigenvalues of W coincide with the square root of the
eigenvalues of PQ [85],[234]. In general, the latter are called the Hankel singular
values of the system, and they are invariant under state space transformations; see [4]
for a detailed discussion of these quantities and their role in model order reduction.
A different Sylvester equation was used in [89] to derive a numerical algorithm that
couples the two Gramians P and Q. Similar results can be stated for the case of the
discrete-time time-invariant linear systems

z(k+1) = Az(k) + Biu(k) (3.2)
y(k) = By x(k),
which are associated, for instance, with the discrete-time Lyapunov equation
AXAT - X+ BB =0.

As a particular case of the linear equation in (L), the generalized Lyapunov
equation

AXET + EXAT =, (3.3)

has a special interest in control; see also recent applications in Hopf bifurcation iden-
tification in linear stability analysis [80],[I82]. The case E # I arises in a control
problem, for instance, whenever a second or higher order ordinary differential equa-
tion is discretized. Consider the linear time-invariant second-order system

Mq"(t) + Dq'(t) + Kq(t) = Bau(t)
Caq'(t) + Crq(t) = y(t),

where ¢(t) € R™ is the displacement, and u(t) € R™, y(t) € RP are the control input
and output, respectively. Then by defining the matrices

I 0 I 0
s ] a=[% 4] 5-[2] wa c-toncn

the second-order system can be rewritten as a first order linear system

Ex'(t) = Az(t) + Bu(t), y(t) = Cx(t),
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with z(t) = [¢(t); ¢'(t)], whose stability analysis gives rise to ([B3)).

The Sylvester equation is classically employed for the design of Luenberger ob-
servers [I80]; we refer the reader to section [ for a more detailed discussion. Linear
matrix equations are also used in control as a technical tool for solving other prob-
lems, see, e.g., [269],[88],[168],[191], and for the reduction of nonlinear models; see,
e.g., [216],[26] and references therein.

The Sylvester equation often occurs in linear and generalized eigenvalue problems
for the computation of invariant subspaces by means of the Riccati equation [230],
[227], [68]. In fact, the algebraic Riccati equation itself, defined in the symmetric case
as

ATX+XA-XFX+G=0, (3.4)

with F' and G symmetric, provides a formidable setting for linear matrix equa-
tions: this quadratic equation is sometimes dealt with by solving a sequence of linear
Sylvester or Lyapunov equations with possibly varying known term and coefficient
matrices. The following Newton-Kleinman iteration is one of the leading methods for
solving ([34) in the large scale case, whenever F' = BBT and G = CTC have low
rank:

Algorithm 1. Given X, € R"*" such that X = X, AT — XoBB' is stable

1. For £ =0,1,..., until convergence

2. Set A] = A" — X;;BBT

3. Set C,| = [X;B, CT]

4. Solve AZXIC-H + Xk+1Ak + CkTCk =0

At each iteration the most computationally intensive operation is step 4, which re-
quires the solution of a Lyapunov equation, whose data changes at each iteration

With the aim of controlling resonance modes in vibrating structures, Sylvester
equations also arise in solving quadratic eigenvalue assignment problems, see, e.g., [48].
Large eigenvalue problems are also a key step in the detection of a Hopf bifurcation
in large-scale dynamical systems that depend on some physical parameters. However,
it is possible to compute these parameters without actually computing the relevant
eigenvalues. In [I82], it was shown that this can be performed by means of a matriz
inverse iteration procedure, which involves approximately solving a sequence of large-
scale Lyapunov equations; see also [80]. Lyapunov equations are a theoretical and
computational tool also in hydrodynamic stability theory of time-dependent problems,
which is emerging as an attractive alternative to classical modal analysis, in the
quantitative description of short-term disturbance behaviors [217]. A large list of
references on application problems where the Lyapunov equation plays an important
role is available in the last chapter of [8§].

Different application areas have emerged that can take advantage of an efficient
solution of linear matrix equations. Problems associated with image processing seem
to provide a rich source. For instance, Sylvester equations can be used to formulate
the problem of restoration of images affected by noise [53]. The degraded image can
be written as g = f 4+ n, where n is the Gaussian noise vector. A linear operator
(filter) L is applied to g to determine an estimate f := Lg of the original image.
A possible choice for L is the Wiener filler L = ®¢(®; 4+ ®,)~*, where ®, is the
covariance matrix of the noise, while ®; = ®, ® ®, is the covariance of f, assuming
that the variability in the vertical (y) and horizontal (x) directions are unrelated.
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The minimum mean square error estimate f of f can be computed by solving the
linear system (I + <I>n<I>]71)f =g. For &, = 0727], corresponding to white noise n and
Gaussian with variance 072], the system is given by

(I+olo,' @0, )f =g,

which is nothing but the Kronecker formulation of a Sylvester equation.

A similar optimization model can be used in adaptive optics, a technology devel-
oped for compensation of aberrations in optical systems or due to atmospheric turbu-
lence, mainly used in high quality astronomical observations and measurements [200].
Within the image processing application, the problem of estimating a 3D object’s
pose obtained from 2D image sequences can be stated as a constrained optimization
problem [57]. This leads to the solution of a sequence of small Sylvester equations. In
fact, depending on the number of poses, the occurring linear matrix equations have
more than two terms, and can be formulated as in ([2)); see [57].

The Sylvester equation was highlighted as a model problem in the solution of el-
liptic boundary value problems governed by the two-dimensional differential operator

L(u) ==V - (kVu)

by Ellner and Wachspress [78]: they devised a matrix algorithmic version of the (differ-
ential) ADI algorithm by Peaceman and Rachford, and this became the foundation of
ADI-type methods for linear matrix equations. Wachspress showed that the constant
coefficient second order differential equation can be used as preconditioner for the
original operator, and that the application of the preconditioner amounts to solving a
Lyapunov equation [256]. Sylvester equations can also be used in the implementation
of implicit Runge-Kutta integration formulae and block multi-step formulae for the
numerical solution of ordinary differential equations [82].

Discrete-time Sylvester and Lyapunov equations (see section [0 also arise for
instance in statistics and probability ([I51],[I50],[149],[10]), and as a building block
for solving the discrete-time algebraic Riccati equation [42].

Similarly to the Sylvester equation, the multi-term matrix equation (2] may be
viewed as a model problem for certain convection-diffusion partial differential equa-
tions. For instance, let us consider the following two-dimensional problem with sepa-
rable coeflicients:

= €Uz — Elyy + O1(T)V1(Y)ue + G2(x)P2(y)uy = f,  (z,y) €Q, (3.5

with € > 0, and for the sake of simplicity, = [0, 1]x [0, 1] with zero Dirichlet boundary
conditions. Using standard centered finite difference discretization for each term, and

setting U,; := u(x;,y;), where (z;,y;) are interior grid nodes, i, = 1,...,n, we
obtain

TU+UT + &, BUV]| + U, U(®,B)" =F,  F=(f(zi,95)); (3.6)
here

€ ... .
T= —3 tridiag(1, —2, 1), B = % tridiag(—1,0,1),
and

), = diag(dw (1), ..., dr(Tn)), Wy, = diag(Yr(y1), - - -, Yr(yn)), k=12,
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where h is the mesh size. Equation (B0 is a four-term linear matrix equation in U and
it was used in the early literature on difference equations; we refer the reader to, e.g.,
[41], for similar derivations. Common strategies then transform the problem above
into the following standard non-symmetric linear system by means of the Kronecker
product:

(I QT +T @I+ T, @ (®1B) + (P2B) ® \112)11 =f,  u=vec(U), f = vec(F),

for whose solution a vast literature is available. We are unaware of recent strategies
that exploit the matrix equation formulation of the problem for its numerical solution,
whereas the matrix structure may suggest particular preconditioning strategies.

In the context of dynamical system analysis, multi-term matrix equations of the
type ([2) arise in the numerical treatment of bilinear systems in the form (see, e.g.,
[116], [215])

#(t) = (A+u(t)N)x(t) + Bu(t), =z(0)=ux0, y(t)=Cz(t), (3.7

which occur when the model accounts for a stochastic component by means of the
term involving N. Other generalizations of Gramians can thus be considered, which
can be written as the solution X to the following multi-term linear matrix equation,

AX +XA" + NXNT +BB" =0,

together with its counterpart with respect to CTC; note that extra terms N; can
be included in the sum; see [30] and references therein. The solution X carries in-
formation on the reachability and observability properties of the state vectors [105].
The one above is an example of linear jump systems (see [181]), in which the linear
coeflicient matrices depend on a Markovian random process, giving rise to systems of
matrix equations with the extra term, accounting for the probabilistic nature of the
problem.

Another typical emerging setting where the multi-term matrix equation in (L2))
arises is the analysis of uncertainty quantification in data modelling. For instance,
the stochastic steady state diffusion equation with homogeneous Dirichlet boundary
conditions is given by

{ —V-(e¢Vp)=f inDxQ (3.8)

p=20 on 0D x (,

where D is a sufficiently regular spatial domain and 2 is a probability sample space.
Both the forcing term f and the diffusion coefficient ¢ have a stochastic component.
By properly discretizing the weak formulation of (B8], and under certain assumptions
on the stochastic discretized space, one obtains the algebraic linear system (see, e.g.,
[83] and references therein):

m

Ap=f, A=GiaK¢+Y VAG, @K, (3.9)
r=1

By passing to the matrix formulation, and introducing the matrix X of coefficients in
p, 33) can be rewritten as

KoXGy + Y VAKXG =F, (3.10)

r=1
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where F' contains the components of f, in which each column of F' corresponds to
a different basis element in the probability space. In many simulations, while the
underlying mathematical formulation is still (8], the quantity of interest is ¢Vp,
rather than p. Using for instance the derivation in [87], a direct approximation to
¢Vp is obtained by introducing the variable (flux) @ = ¢Vp which gives

12 _ .
{c @—Vp=0 inDxQ (3.11)

—-V-u=f in D x €, p=0 on 0D x Q.

By means of a discretization with proper (tensor products of) finite element spaces
of the weak formulation of BII)) (see, e.g., [87],[83],[201]), one obtains the following
saddle point algebraic linear system

T m
L;} " } m _ m , A=G0®KO+Z;\/ZG,®KT, B = Gy ® By(3.12)
The solution vectors u and p contain the two dimensional coefficients of the (discrete)
expansions of 4, and p column by column. Once again, a closer look at the two equa-
tions above reveals that the matrix formulation could replace the Kronecker products.
Indeed, if U is the matrix such that u = vec(U), whose coefficients are (u;¢), and
similarly for P, then the linear system above reads:

KoUGE + Y VMK, UGE + B{PGy =0, (3.13)
r=1

ByUG! = F, (3.14)

with obvious meaning for F'. This system is a natural generalization of the case in
(BI0), and may be thought of as a saddle point generalized matriz system. This type
of systems of linear matrix equations will be discussed in section

4. Continuous-time Sylvester equation. The continuous-time Sylvester equa-Jj
tion is possibly the most broadly employed linear matrix equation, and is given as

AX +XB =C, (4.1)

with A € R"™" B € R™*™ and C' € R"™ ™. In general, the dimensions of A and
B may be orders of magnitude different, and this fact is key in selecting the most
appropriate numerical solution strategy.

A general result on the consistency of the Sylvester equation was given by Roth
in 1952 in [209], and it reads: the equation ({{.1)) admits a solution if and only if the
matrices

{gl :g} and {’g _%] (4.2)

are similar; the similarity transformation matrix is given by

"

where X is the solution to ({T]).



Computational methods for linear matrix equations 11

Using the Kronecker product, the matrix equation in [@I]) can be rewritten as
the following standard (vector) linear system

A=I1,0A+B"®1,

Ax=c, with x = vec(X), ¢ =vec(C),

(4.3)
from which we can deduce that the system admits a solution for any ¢ and this is
unique, if and only if the matrix A is nonsingular. Taking into account Lemma [2ZT|(iii),
this is equivalent to requiring that spec(A)Nspec(—B) = O (see, e.g., [I30, Th. 4.4.6]).
In the following we shall thus always assume that this latter condition is satisfied, so
that the solution to (1)) exists and is unique; standard matrix analysis books describe
the case when this spectral condition is not satisfied (see, e.g., [130], [I65]). The
homogeneous case, namely when C' = 0, can be handled correspondingly: the matrix
equation has only the trivial solution X = 0 if and only if spec(A4) N spec(—B) =
[95] sec.17.8].

The solution X of ([I]) may be written in closed form in a number of different
ways. These forms have been derived in different references throughout the 1950’s
and 1960’s, with contributions by E. Heinz, A. Jameson, M.G. Krein, E.C. Ma, M.
Rosenblum, W. E. Roth, etc. A beautiful account of these early contributions can be
found in the survey by P. Lancaster [166], to which we refer the reader also for the
bibliographic references. Here we report the main closed forms:

(a) Integral of resolvents. The following representation, due to Krein, exploits

spectral theory arguments:

1 (M, — A)~2C(ul,, — B)~
X=—-— 4.4
4’/T2 /Fl ~/1"2 )\+,u dud)‘a ( )

where I'y, 'y are contours containing and sufficiently close to, the spectra of
A and B, respectively.

(b) Integral of exponentials. This representation, due to Heinz, is tightly con-
nected to the previous one,

X:—/ etcePlt, (4.5)
0

where et is the matrix exponential of Ht. Here the spectra of A and B are

supposed to be separated by a vertical line.

(¢) Finite power sum. Let C = CaoCp. Let a,, of degree m be the minimal
polynomial of A with respect to C4, namely the smallest degree monic poly-
nomial such that a,,(A)Cs = 0. Analogously, let by of degree k be the
minimal polynomial of B with respect to Cz. Then

m—1k—1
=0 j=0
Cp
1 CiB
=[Ca, ACy, ..., A" Cyl(y@1I) : (4.6)
Cgék—l

where ~ is the solution of the Sylvester equation with coefficient matri-
ces the companion matrices of a,, and by, and right-hand side the matrix
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[1;0...;0][1,0,...,0] [67]; a block version of this result using minimal matriz
polynomials can also be derived [223].

(d) Similarity transformations. Strictly related to (c), in addition this form as-
sumes that A and B can be diagonalized, U~'AU = diag(\1,...,\,) and
V-IBV =diag(yu, . .., fim). Let C = U~'CV. Then

Ai+

X =UXV~!', with X =

Other representations can be found in [I66], and for more general equations of
the same type, in [261]. We also mention that the columns of [X; I] span an invariant
subspace for the left matrix in (£2]), that is

A —C| X X

o 0= w
where it holds that S = —B. Equation ([@7) has been used both to derive matrix
properties of the solution X, and also to construct solution devices.

In [67] the closed form in (c) is used to derive results on the solution rank; Results
on the nonsingularity of the solution based on the same conditions are also contained
in [I18]. For more general equations, corresponding nonsingularity conditions can
be found, e.g., in [260]. In [67], the controllability (resp. observability) of the pair
(A, Cy4) (resp. (BT,Cp)) plays a crucial roldd.

Early computational methods relied on one of the analytic expressions above; see
the account on early computational methods in [88]. However, these closed forms
are no longer used to numerically solve the Sylvester equation, as they are clearly
inefficient - and possibly unstable - even for small n,m. On the other hand, they

have been used as motivation to several successful methods and they represent an
important starting point for theoretical investigations of numerical approaches.

4.1. Stability and sensitivity issues of the Sylvester equation. In this
section we provide a brief account of the sensitivity issues encountered when solving
the Sylvester equation. The topic is broad, and it also involves the solution of related
matrix equations; we refer to the thorough treatment in [I55] for a full account on
the perturbation theory of this and other important equations in control.

The sensitivity to perturbations of the solution X to (1) is inversely proportional
to the separation between A and —B, where the separation function of two matrices
A; and A, is defined as

sepp(Al,AQ) = H;I’ﬁllil ||A1P — PA2H10>

with p = 2, F; see, e.g., [236]. This can be viewed by recalling that the columns of
[X; I] are a basis for an invariant subspace for the first block matrix in (£7)). We refer
the reader to, e.g., [90] section 7.6.3] where the role of ||X]| in the conditioning of the
associated eigenvalues is emphasized. More specifically, it holds that

1€

X 22—
X <2 (2, ~B)

(4.8)

3A pair (M, C) is controllable if the matrix [C, MC, ..., M"1C] has full row rank n, equal to
the row dimension of M; (M,CT) is observable if (M T, C) is controllable.
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For non-normal matrices, the bound above suggests that a good spectral distance
between A and — B might not be sufficient to limit the size of || X]||, since sepy (A, —B)
can be much smaller than the distance between the spectra of A and —B. The function
sep plays the role of a condition number for the following Sylvester operator

S RV S R §(X) = AX + X B; (4.9)

numerical estimates for the sep function can be obtained by carefully adapting classical
strategies [49]. The occurrence of the sep function in the bound ([8]) suggests that for
small scale equations, algorithms that rely on orthogonal reduction should be preferred
in terms of numerical stability. Methods that rely on more general transformations
X = UXV~! may transfer the ill-conditioning of the transformation matrices U and
V onto large errors in the obtained solution; moreover, (see, e.g., [236 Exercise V.2.1])

sep(A, B)

(O)r(v) < SoPUAUT VBV < s(U)s(V)sep(4, B).

A major difference between matrix equations and standard linear systems lies in
their stability properties. In particular, a small Sylvester equation residual does not
necessarily imply a small backward error [122] sec.15.2]. Define the backward error
for an approximation X as

7(X) :=min{e : (A+ AA)X + X(B + AB) = C + AC,
[AAllF < el|Allr, |AB||lr < €l|Bllr, [|AC||F < €||CllF},

and the residual as R = C' — (AX + XB). Then ([122])

1Bl

n(X) < ,
X) < 1 AT 7 1B IXTr T 1CTF

(4.10)

where g is an amplification factor depending on the data norms and on the singular
values of X. For instance, for n = m this factor has the expression

_ _ UAlr +1IBl#)IIX]lr + IC]lr
(A1 + 1Bl )omin(X)? + |CI%)

)

N

making the dependence on the norm and ill-conditioning of X more apparent. A
more complex situation occurs for n # m; we refer the reader to [123] sec.15.2] for
more details, and to [I55] for a more general treatment. We also mention that in
[244] bounds for the norm of the solution X and of its perturbation are obtained, that
emphasize the influence of the possibly low-rank right-hand side on the sensitivity
of the solution itself. The distribution of the singular values of X plays a crucial
role in the stability analysis of dynamical systems and also in the quality of low rank
approximations. In section 4] we recall same available estimates for the singular
values, that also motivate the development of low rank approximation methods.

4.2. Sylvester equation. Small scale computation. A robust and efficient
method for numerically solving Sylvester equations of small and moderate size was
introduced in 1972 by Bartels and Stewart [I5], and with some modifications is still the
state-of-the-art; in section 8 we give an account of current software, highly relying on
this method. The idea is to compute the Schur decomposition of the two coefficient
matrices and then transform the given equation into an equivalent one that uses
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the quasi-lower/upper structure of the Schur matrices. The last equation can then
be explicitly solved element by element. For introducing the algorithm, let us first
consider the general case of complex A and B. Then the following steps are performed

(see, e.g., [90]):

Algorithm 2.
1. Compute the Schur forms: A* = URU*, B = VSV* with R, S upper trian-
gular;
2. Solve R*Y +YS =U*CV for Y;
3. Compute X =UY V™.

The Schur forms in the first step are obtained by the QR iteration [96], while the
third step is a simple product. It remains to explain how to solve the new structured
Sylvester equation in the second step. Since R* is lower triangular and S is upper
triangular, the (1,1) element of Y can be readily obtained. From there the next
elements of the first row in Y can also be obtained sequentially. A similar reasoning
can be used for the subsequent rows.

In the case of real A and B, the real Schur form may be exploited, where R and S
are now quasi-triangular, that is the diagonals have 2 x 2 and 1 x 1 blocks, correspond-
ing to complex and real eigenvalues, respectively. The process relies on the equivalence
between a 2 x 2 Sylvester equation and the associated Kronecker form in ([@3) [221].
The same sequential process as in the complex case can be employed to compute the
elements of Y, as long as the diagonal blocks can be made conforming [I5],[96]. The
method just outlined is at the core of most linear matrix equations solvers in software
packages such as LAPACKH and SLICOT [247],[230],[33]. The leading computational
cost is given by the Schur forms in step one, which for real matrices are nowadays
performed in real arithmetic. Explicitly writing the Schur form costs at least 10n?
for a matrix of size n [96]; to limit costs, the Bartels-Stewart algorithm is commonly
employed only if either A or B is already in Schur or upper Hessenberg form; see, e.g.,
[230]. For general matrices A and B, the method proposed by Golub, Nash and Van
Loan in 1979 ([97]) can be considerably faster, especially if either m or n is signifi-
cantly smaller than the other. This latter method replaces the Schur decomposition
of the larger matrix, say, B, with the Hessenberg decomposition of the same matrix
whose computational cost is 5/3m?, which should be compared with 10m? of the
Schur form [97]. We refer the reader to [221], sec.2.3.1] for a more detailed comparison
on the computational costs. In [233], a variant of the Bartels-Stewart algorithm is
proposed: the forward-backward substitution in step 2 is performed by a column-wise
block scheme, which seems to be better suited for modern computer architectures
than the original complex version. In [141],[142], the authors propose an even more
effective implementation, based on splitting the matrices - already in block triangular
form, and then recursively solving for each block. For instance, if A is much larger
than B (n > 2m), then the original equation can be written as

Ann A [ X X1 Ch
+ B = ,
[ Aga| | X2 X5 Cy
with obvious meaning for the blocks. The second block equation gives the smaller
size Sylvester equation Ass Xs + XoB = (s, which can again be split by using the

block triangular form of Ass, and the solution obtained in a recursive manner. Once

4http://www.netlib.org/lapack/
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X5 is fully recovered, X; can be computed by recursively solving with the updated
right-hand side in the first block equation above. Different size cases and different
triangular structures can be handled and are described in . These advanced
strategies have been included in the software package RECSY] and in LAPACK; see
section

Tterative solution strategies for small size matrices have also been proposed: given
an initial guess Xg, they determine a sequence of matrices Xy, ..., Xy, ... that con-
verge to X. These are related to a basic Newton iteration for approximating the
matrix sign function. In section we will give more details in relation with the
Lyapunov equation, although the procedure can be used for stable Sylvester equa-
tions as well [38]. These approaches are easier to parallelize than QR based methods.
For instance, it is shown in [38] that they provide high efficiency and scalability on
clusters of processors.

To conclude, a special mention should be paid to the Sylvester equation with
B = —A, yielding the so-called displacement equation

AX — XA =C, (4.11)

which measures how far A and X are from commuting; see, e.g., [94] for typical
applications in the context of structured matrices such as Cauchy-like and Toeplitz
matrices.

4.3. Sylvester equation. Large A and small B. When either n or m is large,
Schur factorization may require a prohibitive amount of space, due to the dense nature
of the corresponding large matrix. Selecting the most appropriate solver still depends
on whether the smaller matrix has very small dimension. Different approaches can
then be used when decomposing the small matrix is feasibldd. To fix ideas, and
without loss of generality, we shall assume that B is small (size less than 1000) and
A is large (size much bigger than 1000), so that m < n.

In this section we thus consider that the equation can be visualized as:

A X|+ [X]|[B]=|C], (4.12)

so that the large dimension of A makes the methods discussed in section [f.2] unfeasible.
This setting arises for instance in the solution of eigenvalue problems [259, sec.2.4,
sec.6.6] and in (separable) boundary value problems [256],[257],[41]. We readily notice
that for very small m, the transformation with the Kronecker product (£3]) may be
appealing, since the dimension of the linear system may be just a few (m) times that of
A. However, projection methods acting on the original matrix equation turn out to be
extremely effective in this case, possibly explaining the fewer attempts to pursue such
Kronecker formulation. We next describe some of the standard approaches currently
employed in the literature and in applications.

Assume that B can be spectrally decomposed cheaply and stably. Then by writing
B =WSW~! with S = diag(si,...,5m), we obtain

AX+XS=C, X=XW, C=CW. (4.13)

Shttp://www8.cs.umu.se/ isak/recsy/.
SFeasibility is machine architecture dependent; nonetheless, a matrix of dimension much less
than one thousand should be considered small.
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For B Hermitian, W~ = W*. Each column of X can be obtained by solving a shifted
linear system (A + s,1)(X); = (C);, where (X); denotes the ith column of X. The
main steps can be summarized in the following algorithm:

Algorithm 3.
1. Compute the decomposition B = WSW 1
2. Set C = CW
3. For each i, solve (A + s,1)(X); = (C);
4. Compute X = XW 1

The shifted systems in step 3 can be solved simultaneously by using standard
solvers for algebraic linear systems, either direct or iterative; see, e.g., [212], [228] and
their references. We also note that step 3 is “embarrassingly parallel” in case different
systems can be distributed on a multiprocessor machine.

If the eigendecomposition of B is not appealing, then one can resort to a (complex)
Schur decomposition B = QRpQ*, giving AXQ + XQRp = CQ. Since Rp is upper
triangular, these systems can still be solved by using the shifted form, but this time
in sequence: letting 7;; be the (¢,7) entry of Rp and C' = CQ, we have

i—1
fori=1,....m, (A+r)(X);i=(C)i = mi(X)r, X=XQ; (4.14)
k=1

such an approach has been used in different contexts, see, e.g., [108],[234],[32], where
the considered Sylvester equation is occasionally called a sparse-dense equation.

For moderate n, the use of direct methods in (£I3)) and ([@I4]) may entail the use
of complex arithmetic if the shifts (eigenvalues) are complex, significantly increasing
the computational cost; the alternative of solving two real systems also leads to higher
computational costs. In addition, in case the use of sparse direct methods appears to
be competitive, it should be noticed that only the sparsity analysis step can be done
once for all, whereas the actual decomposition needs to be performed again for each
distinct shift.

Major computational savings may be obtained if C'is low rank, namely C = Cy R,
with Cp € R™ ™ and m < m. Indeed, the m shifted systems can be solved more
efficiently by only working with the common matrix Cy. For the rest of this section
we assume that C' is full rank, and postpone the treatment of the low-rank case to
later, when we discuss the occurrence of large B. Indeed, the rank of C is key in
developing general projection methods, as explained next.

Projection methods. Let V be a Subspaceﬁ of C™ of dimension k, and let the
columns of V;, € C"** span V. An approximate solution X;, with range(Xy) C V is
sought such that

Ry = AX, + X,B—-C =0.

Several options arise, depending on the choice of V and on the strategy to determine
X within the space V. For a given V, let thus X, = VY, =~ X, for some Y €

"We use complex arithmetic for V to allow for complex spaces also for real data, which may occur
when using Rational Krylov subspaces with complex shifts. A careful implementation can construct a
real space in case conjugate shifts are used. For the sake of generality we stick to complex arithmetic
for V.
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R*¥*™ to be determined. Recalling the operator S defined in ([@3]), we observe that S
generalizes to the “block” B the concept of shifted matrices, namely

x> (A+ Bz = Az + .

Therefore, it is very natural to extend the algorithmic strategies of linear systems
to the case of S. Extensions of the linear system solvers CG (FOM) and MINRES
(GMRES) can be thought of for A Hermitian (nonhermitian), although the actual
implementation differs. All these solvers are derived by imposing some orthogonality
condition on the system residual. If we require that the columns of the matrix Ry be
orthogonal to the approximation space V in the Euclidean inner product, then we are
imposing the following Galerkin condition (see also ([€23)):

Vk*Rk =0 < (I ® Vk)*vec(Rk) =0.
For simplicity let us assume that V;*Vj, = I. Then
0=Vy R, =V AV,Yr + Y B - V;C. (4.15)

The condition thus gives a new, reduced in size, Sylvester equation to be solved.
Under the hypothesis that spec(V;*AVy) N spec(—B) = 0, equation ([I5) can be
solved efficiently by one of the methods discussed in section 2l The procedure above
holds for any space V and associated full rank matrix V. Therefore, the effectiveness
of the approximation process depends on the actual selection of V. A well exercised
choice is given by the block Krylov subspace

K (A, C) = range([C, AC, ..., AF=1C)). (4.16)

The following result proved in [207, Lemma 2.1}, [223] generalizes the well known shift
invariance property of vector Krylov subspaces to the case of blocks, where the m xm

matrix B plays the role of the shift.
PROPOSITION 4.1. Define S7(C) = S(S771(C)), j > 0 and S°(C) = C. Then

KZ(A,C) = KZ2(8,C) :=range([C,S(C), ..., S* ().

With the space in (£I8]), the procedure just outlined is the complete analog of
the one giving rise to the Full Orthogonalization Method (FOM) for m = 1 or for
B = 0. However, due to possible loss of rank in the basis, it was suggested in [207]
to generate the subspace with A rather than with S. As an example, Algorithm 4
describes an implementation of the projection method with the generation of the
block Krylov subspace and the determination of the approximation by imposing the
Galerkin orthogonality condition.

Algorithm 4. Given A, B,C

1. Orthogonalize the columns of C to get v1 = V3

2. k=1,2,...

3. Compute Yy, solution to (VAVL)Y + YB -V C =0

4. If converged X = V;, Y and stop

5 Arnoldi procedure for the next basis block:
0= Avk
Make o orthogonal wrto {vy,..., v}
Orthogonalize (wrto 2-norm) the columns of ¥ to get vg41
Update: Vk+1 = [Vk,vk+1}
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For later reference, we remark that the Arnoldi procedure used in Algorithm 4
generates a matrix recurrence that can be written as

AVy, = Vi Hy, + e}, (4.17)

where 0 is the new block of basis vectors, prior orthogonalization, and Hj contains
the orthogonality coeflicients, with Hj), = V7 AV},.

One could consider constraint spaces different from the approximation spaces; in
this case, a so-called Petrov-Galerkin condition is imposed on the residual. To this
end, let us consider the matrix inner product defined as

(Y, X)p = trace(Y*X), X, Y e R™*™, (4.18)

Following the standard linear system case with m = 1, and using, e.g., the space
spanned by the columns of AV), one would be tempted to impose the condition
(AVi)* Ry = 0 in the Euclidean inner product, giving

Vi A" AV Y, + VA VLY, B — V7A*C = 0. (4.19)

In the standard (B = 0) linear system setting, this condition is equivalent to mini-
mizing the residual Ry in the Frobenius norm, that is

min || Ry||F. (4.20)
Y, ERkXxm
However, for B # 0, such equivalence does not hold, that is, the solution to (T3]
is not a residual minimizing approximation. To attain a residual minimization, the
orthogonality condition should be applied to the operator S in (£9)) in the Frobenius
inner product ([I]); to this end, we note that the adjoint operator S* with respect
to the inner product in [@IF) is given by S*(X) = A*X + X B*.
PROPOSITION 4.2. [207, sec.3] Let Yy, € RF*™ and let Ry = AV, Y+ Vi Y, B —
C be the associated residual. Then

Y = arg renﬂglxm |Rk||7 if and only if Ry Lp S(Kn(S,V1)).
k

For the choice V = KE(A, ('), the minimization process in (A20) is the matrix
analog of GMRES (for m = 1 or B = 0) (see [212], sec. 6.12]). Similar results are
discussed independently in [I08]. Inspired by the “block shift” invariance of Propo-
sition {1 the authors of [207] provide a detailed description of the parallel between
solving ([12) for m < n with Galerkin and with minimizing procedures, and solving
linear systems AX = C' by means of block methods. Upper bounds for the resid-
ual norm of Galerkin and residual minimizing methods with V = KJ(A,C) are also
provided in [207], together with numerical experiments on the performance of the
approaches.

Preconditioned global Krylov subspaces have also been proposed as approximation
space [46], which however simply amount to a convenient implementation of a subspace
method for the Kronecker formulation of the problem; see also section E.4.11

An alternative choice of approximation space V has recently shown great potential
compared with the block Krylov subspace, and it is given by the Eztended Krylov
subspace, defined as

EK,(A4,C) := KZ(A,C)+ K (A7, A1 C). (4.21)
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Since the spaces are nested, namely EKy(A,C) C EKy1(A,C), the space can be
generated iteratively, allowing one to improve the approximate solution as the re-
currence proceeds. For A large and sparse, experiments in [225] show that the good
performance of the derived method seems to fully compensate the high costs of solving
linear systems with A at each iteration.

4.4. Sylvester equation. Large A and large B. In the most general case,
both A and B have large dimensions. This setting arises in many situations, as in
the discretization of separable PDEs [78], or in the computation of the cross Gramian
in control [4]. A particularly important observation is that the dimensions of A and
B determine that of X, and that although A and B may be sparse, X is dense, in
general. In this context, the distribution of the singular values of X plays a key role
in the development and convergence analysis of iterative solution methods. Indeed,
a Sylvester equation having solution with exponentially decaying singular values can
be well approximated by a low rank matrix. The possibility of writing C' = C,Cy
with C7,Cy with low column rank is crucial to obtain good low-rank approximations
to X, thus avoiding the storage of the whole matrix, which is in general prohibitive.
We recall here the result described by Sabino in [213] Th.2.1.1], while Sabino’s PhD
thesis contains further discussion related to this bound. Here K and K’ are the
complete elliptic integrals of the first kindd [1]. Additional considerations and results
are postponed to the Lyapunov equation case in section

THEOREM 4.3. Let A and B be stable and real symmetric, with spectra contained
in [a,b] and [c,d], respectively. Define n = 2(b—a)(d — ¢)/((a + ¢)(b+ d)). Assume
C is of rank p. Then the singular values o1 > ... > Owin{m,n} of the solution X to

(1) satisfy

Upr+1< 1_\/E
o1 1+\/E

where kI. = 1/(14+n++/n(n + 2)) is the complementary elliptic modulus corresponding
to the nome q", q := exp(—7K'/K).

A more accessible and practical estimate for B = A and small condition number
k(A)= ||A||||JA~1|| may be obtained as ([213])

2
) , 1< pr<n,

% < dexp(—n2r/ log(4r(A))). (4.22)
1

Easy to use variants of ([{22]) in [213] are favorably compared with earlier estimates in
[197]. Results for A and B nonsymmetric are few; non-normality may strongly influ-
ence the solution rank, so that results will significantly depart from the above bound.
A satisfactory understanding of the singular value decay for non-normal coefficient
matrices is still lacking.

From a numerical analysis viewpoint, we notice that the main rational approxima-
tion ingredients used for results of the type above are the same as those obtained for
rational space projections and ADI-type iterations (see section ATl and section [L.4.2]
respectively), which also rely on minimax rational approximations; in fact, the result
above is intimately related to similar estimates by Ellner and Wachspress for ADI in

78], [79].

8They are defined as K = K(k) = fol[(l —12)(1 — kt2)]71/2dt and K’ = K(1 — k), with k being
the modulus, k = /1 — (k’)2, while the complementary elliptic modulus k' is given.
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Numerical methods in the literature have mainly proceeded in three directions:
Projection type approaches (mostly based on the Krylov subspace family), matrix
updating sequences (such as Alternating-Direction-Implicit iterations), and sparse
data format recurrences. Combinations of these have also been explored.

The convergence rates of the strategies in the first two classes strongly depend
on the spectral properties of the coefficient matrices (eigenvalues or field of values).
For those problems with unfavorable spectral information, for instance a large field of
values close to the origin, the most efficient available methods rely on iterations that
involve solving linear systems at each step, either with A or with A + oI for some
appropriately chosen o. For A large but very sparse, these solves can be conveniently
carried out by means of direct methods. On the other hand, if the direct solution with
A becomes prohibitively expensive, in terms of CPU time or memory requirements, an
(inner) iterative solution of the linear systems with A + o[ is performed at each step,
giving rise to an inner-outer procedure. In this case, one usually talks about “inexact
solves”, unless the iterative process allows one to reach machine precision accuracy.
Such a consideration noticeably influences the evaluation of the computational costs
of these methods, whose performance is thus problem dependent.

Due to the important role the Lyapunov equation has in control problems, many
authors have developed numerical procedures specifically for the Lyapunov equation,
and not for the Sylvester equation, although in many cases they could be extended
to the latter in a natural manner. For historical reasons, and also to avoid constant
reference to the equation context, we will refer to the literature the way the methods
were originally presented. In particular, it will be apparent that the literature on large
scale Lyapunov equations is richer than that for the Sylvester equation, especially in
the large scale case.

We also notice that, as a major distinction from linear vector equations, the
numerical solution of matrix equations cannot directly rely on preconditioning strate-
gies, unless the Kronecker formulation is employed. Indeed, preconditioning methods
would necessarily destroy the symmetry properties of the problem, which allows one
to deal with computational costs that depend on powers of n and m, but not on
powers of n - m. As an example, let us assume that a nonsingular matrix P existd]
such that P~'A and P~!BT have better spectral properties than the original matri-
ces - for A, B symmetric, this requirement corresponds to a better clustering of the
eigenvalues. Then we could consider applying P as follows

PAXP- T+ p'XBP T =p-lcp~T.

To be able to rewrite such an equation in terms of a single unknown matrix, one could
premultiply and postmultiply X by P~ and P~ T, that is

(PPAP)P'XP~ " + P 'XP~ " (P'BP ") =P 'CP™".

Unfortunately, this transformation yields coefficient matrices that are similar to the
original ones, thus making the whole procedure useless. This simple example shows
that different acceleration strategies need to be developed for the Sylvester equation;
research has thus focused on constructing information-rich approximation spaces by
using spectral transformations, rather than preconditioning, the way it is done in
eigenvalue computations.

90ne could also consider the existence of two matrices, one for A and one for BT, respectively.
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4.4.1. Projection methods. When both n and m are large, the dense solu-
tion matrix X of ([@IJ]) cannot be stored, therefore the determination of a memory
saving approximation becomes mandatory. Whenever C' = C;Cy has low rank, the
results discussed in section [£.]] suggest that a low rank approximate solution may be
determined, so that projection strategies are very appealing. Indeed, these methods
compute low rank approximations X = VkYV[/jT ~ X, with V;, and W; having far
fewer columns than n and m, respectively, and are generalizations of the procedure
seen in section

Let V and W be two subspaces of C", in principle not necessarily of the same
dimension, and let the & (j) columns of Vi, (of W}) be orthonormal bases for V (for
W), with k < n, j < m, such that V is not orthogonal to range(C7) and W is not
orthogonal to range(Cs). We look for an approximation X = VkYWjT ~ X, and we

let R := C,C) — AX — XB be the associated residual. Then we have X =vec(X) =
(W; @ Vi)vee(Y), where X is an approximate solution of ([@3). Imposing a Galerkin
(orthogonality) condition to the vector residual ¢ — AX with respect to the space
spanned by W; ® V}, corresponds to writing

(W;@Vi) (c—AX) =0 < V,/RW; =0. (4.23)

Other conditions could be considered, such as the minimization of the residual in some
norm, or the orthogonality of the residual with respect to some other space; see, e.g.,

If the columns of Vj and W; span the spaces K'(A,Cy) and K(BT,Cy), re-
spectively, as in (@I0]), then the obtained approximate solution X = V;fYWjT may
also be written as

X = [C1, ACY, ..., A 1C1]|G[C, BT Cy, ..., (BT)* 1y T,

showing that projection methods yield a polynomial approximation to X, which may
be viewed as particular truncations of the finite sum closed form of the solution in
E0) [223].

Substituting the residual matrix in the equation VkTRWj = 0 gives the following
small size Sylvester equation:

Vi,  AViY + YW, BW; = VT CL (W, Ca) . (4.24)

If VkTAVk. and WJTBWj have disjoint spectra, then this equation admits a unique
solution for any right-hand side. By assuming that the fields of values of A and B
are disjoint, one can ensure that Vk—'—AV;c and Wj—r BW; have disjoint spectra. Though
restrictive, such an assumption is welcome also for stability purposes, so as to monitor
that the solution X have moderate norm. A typical implementation which simulta-
neously proceeds with both spaces is depicted in Algorithm 5.

Algorithm 5. Given A, B, C1, Cs
1. Orthogonalize columns of C7 to get v; = V)
. Orthogonalize columns of C5 to get w; = Wy
.Fork=1,2,...
Compute Yy, solution to (V' AVx)Y + Y (W, BW}) -V, C1C] Wy, =0
If converged return Vi, Yy, Wi s.t. Xy = VkYkW,;r and stop
Compute next bases block:
Compute ¢ and w for the chosen approximate space

o ot o



22 V. Simoncini

Make ¢ orthogonal wrto {v1, ..., v} and @ orthogonal wrto {wq, ..., wg}
Orthogonalize columns of ¢ to get vi41 and columns of W to get wi41
Update: Vk+1 = [Vk,kaL Wk+1 = [Wk;warl]

The process outlined in Algorithm 5 is very similar to that of Algorithm 4, the
only difference being that here the space for B' also needs to be generated. For
C1,Cs having p columns, and n and m rows, respectively (with, say, m > n), the
computational cost at each iteration k can be summarized as follows:

i) Solution of the projected problem: O((kp)?) flops (see section H2);

ii) Orthogonalization of the new basis vectors wrto the older vectors: O(mkp?);

iii) Orthogonalization of the new block, O(mp?).

We also recall that in case the generated basis experiences loss of rank, standard
deflation procedures can be applied to remove redundant columns, ensuring the re-
duction in the number of columns of the current basis block in subsequent iterations.
Loss of rank may occur independently of the presence of an invariant subspace of the
coeflicient matrix, but simply due to the redundancy of some of the generated infor-
mation; see [IT1] for a discussion in the context of multiple right-hand sides linear
systems.

The computational cost of generating the next basis vectors ¥ and w and the
quality of the approximation both depend on the choice of V and W. This choice is
usually based on similar arguments for each of the two spaces. We thus discuss the
choice of V, while the choice of W can be made analogously. In his seminal article [211],
Saad proposed Krylov subspaces for determining a low rank approximate solution
to the Lyapunov equation by projection (the extension to the Sylvester equation is
straightforward); the motivation was that Krylov subspaces tend to approximate well
the action of the matrix exponential to a vector, so that the solution in the integral
form ({3 can take advantage of this property (see also section [ for an explicit
derivation). A major problem with this approach is that both bases V}, and W; need
to be stored to compute the final approximate solution. Since both matrices are full,
this provides a severe limitation on the maximum affordable size of the two Krylov
subspaces when A and B are large. In the quest of small but more effective spaces,
several alternatives have been investigated. The impressive performance results of
these enriched spaces have led to a resurgence of projection-type methods for linear
matrix equations. In addition to the standard Krylov subspace, we list here a couple
of recently explored selections for V with A and Cy; similar choices can be made for
W using BT and Cj.

(a) Standard (block) Krylov subspace:

V = range([C1, ACy, A*Cy, .. ]);
(b) Rational (block) Krylov subspace:
V= range([(A + 0'1[)7101, (A + 0'21)71(14 + 0'1])7101, . ]),

for a specifically chosen sequence {o,}, j = 1,2, ... that ensure nonsingularity
of the shifted matrix.
(¢) Global Krylov subspace:

V= ZAileyi, v € R 3 =span{Cy, ACy, A%Cy, ...},

i>0

where the linear combination is performed block-wise.
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In all instances the least number of powers is computed so as to reach the dimension
k. The subspaces listed above are somewhat related. For instance, the standard
Krylov subspace can be formally obtained from the rational Krylov subspace for
oj = oo for all j. Moreover, the Rational block Krylov subspace also includes the
special choice of fixed poles at zero and infinity, which corresponds to the extended
Krylov subspace in (@21]), namely K7(A,Cy)+ KJ(A™, A71C1), where j and k can
in principle be different [72]. In addition, one can impose that C; belongs to the
rational Krylov subspace with the choice 01 = co. The global Krylov subspace in (c)
is a subspace of the block Krylov subspace; it was first proposed to solve linear systems
with multiple right-hand sides [139], and then adapted to the Sylvester equation in
[137. Global spaces may be viewed as simplified versions of block Krylov spaces,
where the polynomial coefficients are chosen to be multiples of the identity matrix,
therefore lowering the number of degrees of freedom.

The criterion for stopping the iterative procedure in Algorithm 5, and thus the
approximation spaces expansion, is usually based on the Frobenius or 2-norm of the
residual matrix R = AX + XB — C,C27. In general, R is dense and should not be
computed explicitly if it has large dimensions. Its norm can be computed more cheaply
if the generated spaces satisfy certain relations. Hence, assume that vy, w;, H,,
and K; exist such that AVy = [Vi,0k]Hy, and BTW; = [W;,@;]K;, where [Vy, U]

and [W;,w;] have orthonormal columns. If C; and C, satisty C; = [Vk,i)\k]ka),
Cy = [Wj,@j]Cz(J) for some ka)7 02(1)7 then

IRl F = |AVYW, + ViYW, B — V.Y (W, 9T | 5
= ||[Va, BR](HY[1,0] + [L0]Y K — O (C) T Wy, @] ||
= |H,Y[1,0] + [;0]YK] — ¢ (C9)T | p. (4.25)

The last expression involves a small matrix if £ and j are small, and thus its norm can
be cheaply evaluated. The spaces (a) to (c) above do satisfy the required conditions,
and thus the residual norm can be monitored as the iteration proceeds.

All spaces listed above are nested, so that an approximate solution can be derived
while each of these spaces is expanded.

The implementation can allow for different space dimensions for A and B, respec-
tively, especially if the two coefficient matrices have rather different spectral proper-
ties. The idea of generating different approximation spaces - of the same dimension
- for A and B by means of standard Krylov subspaces was first developed in [I31],
where however the right-hand side C' of the original problem was approximated by a
rank-one matrix cjcj , to be able to build the standard Krylov subspaces K (A, c1)
and K; (BT, cy) as approximation spaces. The approach was then generalized to block
Krylov subspaces in [223], so as to exploit the low (but possibly larger than one) rank
matrices C7, Cy. Distinct Krylov subspaces for the right and left subspaces should
be considered also when B = AT, as long as C;C, is nonsymmetric. Nonetheless, in
this case the generation of the two spaces can share some computationally intensive
work, such as shifted system solves with the same coefficient matrix. The possibility
of using nonsymmetric Lanczos processes which simultaneously generate K;(A,C)
and K, (A, C) was explored in [I34].

In Figure ] we report a typical convergence history for the norm of the residual
matrix, when the standard Krylov and extended Krylov subspaces are used for both
A and B. Here data refer to A as the finite difference discretization of the Laplace
operator in the unit square with homogeneous boundary conditions, and B as the
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same type of discretization for the operator Lu = (exp(—4zy)uy)s + (exp(dzy)uy )y,
leading to matrices of the same size, 40, 000 x40, 000; C' = cjcy with ¢, o vectors with
normally distributed random entries. We notice that with a subspace of dimension
less than 140 for each matrix, the extended Krylov subspace is able to reduce the
norm of the residual matrix by ten orders of magnitude, whereas the standard Krylov
subspace of the same dimension shows a very modest residual norm reduction. In
terms of computational costs of the extended procedure, the matrices A and B are
pretty sparse and systems with them can be efficiently solved by a sparse direct solver.

100,00

Frobenious norm of residual matrix

~—— Extended Krylov|
== Standard Krylov

20 40 60 80 100 120 140
dimension of approximation space

0.00001
0

Fia. 4.1. Typical convergence history of projection methods for the Sylvester equation with
standard and Extended Krylov subspaces.

Rational Krylov subspaces have a rich history. First introduced by Ruhe in the
context of eigenvalue approximation [210], their relevance has significantly spread in
applied approximation theory and model order reduction frameworks, due to their
functional approximation properties; see, e.g., [],[106],[I12] and references therein.

The effectiveness of general rational spaces strongly relies on the efficiency of solv-
ing systems with A or its shifted variants. The reliability of recent direct sparse and
iterative linear system solvers has made it possible to use these richer approximation
spaces for more complex problems like the ones we are addressing. The choice of the
shift is crucial to achieve fast convergence; this issue is postponed to the corresponding
discussion for the Lyapunov equation in section B.2.11

In the quest for memory savings, the possibility of restarting the process could
be considered: a maximum subspace dimension is allowed and the final approximate
solution is obtained as X = X(© + X1 4 X2 4 | where the superscripts indicate
a new restart. Strategies on how to generate the new approximations were proposed
in [I31]. We mention that new restarting procedures were recently proposed in [3],
but their overall computational costs for large scale matrices have not clearly been
assessed. An alternative that could be considered in the symmetric case is to resort
to a two-pass strategy, inspired by a similar procedure in the eigenvalue context.
Indeed, for A and B symmetric, not necessarily equal, an orthogonal basis of each
standard Krylov subspace together with the projected matrix could be generated
without storing the whole basis, but only the last three (block) vectors, because
the orthogonalization process reduces to the short-term Lanczos recurrence [212].
Therefore, in a first-pass only the projected solution Y could be determined while
limiting the storage for V;, and Wj; at convergence the factors of the approximate

solution X = VkYWj—r could be recovered by generating the two bases once again; an
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implementation of such an approach can be found in [I58] for B = AT and Oy = Cs.
The same idea could be used for other situations where a short-term recurrence is
viable; the effectiveness of the overall method strongly depends on the affordability
of computing the two bases twice.

The convergence analysis of projection methods has long been overlooked. Fol-
lowing recent significant advances in the convergence study of projection methods for
the Lyapunov equation (see section B2.1]) Beckermann in [2I] provided a thorough
study: residual norm bounds are given for Galerkin projection methods when Ratio-
nal Krylov subspaces, of possibly different dimensions, are used for A and BT. The
proposed estimates rely on new residual matrix relations, and highlight the role of the
field of values of the two coefficient matrices; we refer the reader to Proposition 4]
below for further details on the results in [2I]. Advances in the theoretical aspects of
projection methods have been made in close connection with the recent great steps
ahead taken in the understanding of polynomial and rational approximation meth-
ods for matrix functions such as the matrix exponential. The interplay of numerical
linear algebra, approximation theory and functional analysis has made this possible;
see, e.g., [124],[I112] and their references.

4.4.2. ADI iteration. The Alternating-Direction-Implicit (ADI) iteration was
first introduced in [I92] in 1955, and proposed to solve large Sylvester equations
by Ellner and Wachspress in . Since then, and with various computationally
effective refinements, the approach has been one of the leading methods for solving
large-scale Sylvester (and Lyapunov) equations. In its original form discussed in [7§]
and summarized next, the ADI iteration is derived for a full matrix X (see also Smith
[231] for the derivation below). A low memory factorized version is used in practice
for large matrices, and it will be presented in the sequel. In the following we assume
that both real matrices A and B have eigenvalues with positive real parts. We can
equivalently rewrite (1)) as

(I + A)X(gI + B) — (¢I — A)X(qI — B) =2qC, q#0.

For ¢ > 0, ¢ + A and ¢I + B are nonsingular and we can multiply by their inverses
so as to obtain the following equation:

X — (qI + A~ (qI — A)X(qI — B)(qI + B)™' =2q(qI + A)~*C(qI + B)™".

Let A= (¢I+A)"Y(gI-A), B= (qI-B)(qI+B) ' and C = 2q(qI+A)~*C(qI+B)~'.
With this notation, the matrix equation above has the form X — AXB = C, and it
is called the Stein equation ; see section [l The matrix X = Y ;2 AF71CB* 1 is a
formal solution to the Stein equation, and since both A and B have spectral radius
less than on, the series is convergent. This consideration drives the implementation
of the following sequence of approximations

Xo=C, Xip41=C+ AX.B. (426)

The approach can be generalized to two parameters p,q > 0 for A and B, respectively,
giving the transformed equation

10The authors of [78] referred to these Sylvester equations as Lyapunov equations.
1 For a given matrix A with eigenvalues A in Ct and ¢ > 0, the eigenvalues of (qf — A)(qI + A)~!
are given by (¢ — \)/(¢ + A), with absolute values all less than one.



26 V. Simoncini

with A(p,q) = (pI + A)""(A — qI), B(p,q) = (B —pI)(¢] + B)~" and C(p,q) =
(p+q)(pl + A)~*C(ql + B)~!. A recursion similar to the one for a single parameter
can be derived, and it is convergent if the spectral radii of A(p,q), B(p,q) are both
less than one. Therefore, the parameters p,q are selected so as to minimize these
spectral radii, and if A, B are both symmetric with spectral intervals (a,b) and (¢, d),
respectively, this corresponds to solving the ADI minimax problem

(g—s)p—1)
(p+s)(g+1)

The generalization of this concept allows one to choose different p,q at each
iteration, providing a sequence of parameters p1,pa, ... and ¢, gz, .. .. The associated
ADI minimax problem after J iterations thus becomes

min
P,9>0 s€(a,b),tE(c,d)

T (@ = 5)(p; — t)

min max
(pj +s)(g; +1)

P;»2;>0 s€(a,b),te(c,d)

)

Jj=1

which, if solved exactly, provides optimal parameters for the convergence rate of the
ADI iteration. In practice, a fixed number J of parameters is selected a priori and
then cyclically repeated until convergence. The choice of J is driven by the quality of
the computed parameters: few parameters may be better than many badly distributed
parameters. We will return to this issue in section

Following a successful idea developed for the Lyapunov equation, the authors
of [25] propose a factorized version of the ADI iteration, which allows one to write
the approximate solution as the product of three memory saving factors, as long as
C = 0,0y is low rank. We will expand on this and other implementation aspects
in the case of the Lyapunov equation, since the changes occurring when generalizing
ADI to the Sylvester equation are mainly technical and are due to the presence of a
left space and a right space; we point here to the recent works of Peter Benner and
his collaborators for a comprehensive implementation investigation of ADI for the
Sylvester equation.

We conclude with a theoretical comparison recently made between ADI and the
Galerkin method (see section A7) in the Rational Krylov subspaces

Kn(A,Cy) =range{Cy, (A +oo])71Cy, -, (A + o, 1) C1 ),
Kn(BT,Cy) = range{Cso, (BT +1m2I)"*Cys, "+, (BT 4 nnl) "1 Cs},

where in both cases the first pole is taken to be at infinity, so that the columns of C
and C5 belong to the corresponding spaces. In [86], Flagg and Gugercin showed that
ADI and the Galerkin approach are equivalent whenever the poles of both methods
coincide with the eigenvalues of the projections of of A and B (Ritz values) in the two
spaces, respectively; the same result was earlier proved for the Lyapunov equation
with different techniques (see Theorem [5.0]). Moreover, for general poles the following
result is proved by Beckermann for the error [2I), Corollary 2.2].

PROPOSITION 4.4. Let X be the exact solution to the Sylvester equation. Let
Sa,BX = AX + XB, and let X%m, XAPL be the approzimate solutions obtained
after m iterations of the Galerkin method in K,,(A,C1), Kn(BT,Cy), and after m
ADI steps, respectively, with the two methods using the same poles. If the fields of
values W(A) and W(—B) have empty intersection, then

I1S4,5(X = X5 )llF < v0llSa,5(X = X0 Pl F
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with a constant o < 3 + 2¢, with co = 2diam(W (A), W(—B))/dist(W(A), W(—DB))
independent of the poles used to generate the space.

The constant v is not optimal. As stated in [2I], Proposition 4] shows that,
even for optimal poles, ADI cannot give much better results than rational Galerkin;
moreover, for poor poles ADI is known to give much larger residuals. Further results
will be discussed for the case of the Lyapunov equation.

4.4.3. Data sparse and other methods. A variety of approaches relying on
the data sparsity structure has been analyzed. These methods may be particularly
appropriate in the large scale case when the right-hand side matrix C is sparse and
full rank.

The Kronecker formulation allows one to consider a wide range of linear system
solvers for ([£3); an early ad-hoc implementation of the classical SOR was proposed
in [235], although the exploding dimensions of the problem significantly penalize the
method, when compared with the approaches analyzed so far. We also recall from sec-
tion [ 4.1l that global Krylov subspace methods represent an implicit way to deal with
the Kronecker formulation. Other iterative solvers based on the Kronecker formula-
tion ([3]) have been explored specifically for the Lyapunov equation, and they will be
reviewed in section These appear to be the main directions taken whenever C
is not numerically low rank.

For data-sparse matrices A € R™*" and B € R™*™ namely such that matrix-
vector multiplications for A and B can be performed with complexity O(n) and O(m),
respectively, an extension of the multigrid algorithm was more recently proposed in
[101], where A and B stem from the discretization of a class of partial differential
equations, and their spectra are assumed to be separated by a line. A particular
computational caveat of this extension is the smoother (e.g., Jacobi), which in this
case requires approximately solving a diagonal Sylvester equation at each iteration.
This step is carefully discussed in [I0I], and a procedure for determining a cheap and
low rank approximate solution is devised. Other crucial points include handling the
connection between the (independently generated) sequences of matrices for A and B,
which is accounted for during the smoothing procedure, and the imposition of regular-
ity constraints on the continuous operators associated with A and B. A major issue
arising when using these hierarchical methods is whether the approximate solution X
is low rank, so that it can be stored cheaply by means of a (hierarchical) sparse for-
mat, the H-matrix format. Such a format is a data-sparse representation for a special
class of matrices, which appear to occur after the use of several discretization meth-
ods, when PDEs or integral equations are treated numerically [I03]. The H-matrix
format consists of partitioning a given matrix recursively, into submatrices admitting
low-rank approximations. The definition of this format requires the introduction of
further arithmetic operations/approximations, so as to be able to determine, e.g., an
H-matrix after the approximate inversion of an H-matrix, so as to make the class
closed with respect to some important matrix operations; see section [5.2.3] for further
details.

A different though related approach consists in adapting small scale iterations
to the large setting, again under the condition that C' is low rank. This can be
performed, for instance, within the sign function iteration, by using rank truncation
of the iterates, and sparse format for the approximate solution. More details on the
sign function iteration will be given in section Here we mention that such an
approach is investigated in [I8] (see also [20]), where the sparse format chosen for the
data and for the approximate solution is the hierarchical H-matrix format also used in
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[99], [T01]. With this approach, sparse approximate solutions to a Sylvester equation
of size up to n = 262144 associated with a control problem for the two-dimensional
heat equation are reported in [I8]. The accuracy and effectiveness of the method
depend on some thresholds used for maintaining sparsity and low rank during the
iteration, and are thus problem dependent.

5. Continuous-time Lyapunov equation. For B = AT from the Sylvester
equation we obtain the Lyapunov equation

AX +XAT =C, (5.1)

with C' symmetric, and its generalized counterpart, AXE" + EXAT = C, with F
nonsingular. Clearly, this latter equation can be transformed into the form (G1I) by left
and right multiplication by E~' and E~ T, respectively. If E is symmetric and positive
definite, a Cholesky decomposition could be performed and its inverse factors applied
to the equation on the left and right sides, so as to maintain the problem structure.
These are called the continuous-time Lyapunov equations, to be distinguished from
the discrete-time equations, which will be discussed in section They arise in the
analysis of continuous-time and discrete-time linear dynamical systems, respectively.
A very detailed analysis of the Lyapunov equation, with computational developments
until 1995 and many relevant connections in the control application area can be found
in [88].

In the context of inertia theory, (BI) with C' > 0 relates the location of the
eigenvalues of both A and X with respect to the imaginary axis. Since C' is symmetric,
the solution X is also symmetric. According to the Sylvester equation theory, the
solution to () exists and is unique if and only if A; + A; # 0 for all eigenvalues
i, Aj of A [130]. If all eigenvalues of A have negative real part, namely A is stable,
then this condition is satisfied, so that a unique solution is ensured. We remark
that the stability of A is an important property in the control setting, therefore
it is not regarded as a restriction for solving the Lyapunov equation, although not
strictly required. We shall see, however, that some of the large-scale methods require
additional restrictions on A, namely its negative definiteness, to ensure the existence
of an approximate solution. For A nonsymmetric, this extra condition may limit
the applicability of the method, since in general a stable matrix A is not necessarily
negative definite.

It can be verified that if A is stable and C>~0 (C*>0) then X>0 (X*>0); in this case
the problem is called the stable Lyapunov equation. If C=0 and (A, C'T) is observable,
then X~0. A detailed account of various relations between the inertia of A and of X
can be found, e.g., in [I65, section 13.1], [219],[220]. A specialized sensitivity bound
can be obtained for the stable Lyapunov equation. Assume that X + AX solves

(A+AA) (X +AX) + (X + AX)(A+AA)T +(C+AC) =0,

then

|AX]]
X + AX]|

1AA] 1AC]
|A+AA] " IC+AC] ]

<2l A+ AA[lH]|

where H satisfies AH+HAT +1 = 0, and all denominators are assumed to be nonzero
[120]. Estimates for the backward error associated with the Lyapunov equation do
not differ from those in ([@I0) for the Sylvester equation; therefore, except for the sub-
stitution B = AT, the extra structure of the problem does not modify the sensitivity
properties of the solution [122].
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The sensitivity of the solution to () can also be analyzed by looking at the
spectral properties of the solution matrix; this topic has attracted a lot of interest,
especially in light of its consequences in the stability analysis of dynamical systems.
Various authors have explored the spectral decomposition of the Lyapunov solution,
to make statements on the decay of its eigenvalues; see, e.g., [197],[232],[5],[154]. In
[5], an error estimate for a low rank approximation to the solution of (Bl) was proved.
For the sake of simplicity we report here only the case when C' is rank-one. The result
relies on the fact that the solution matrix admits the following decomposition:

APVSE

>\+)\

X =27DZ", D =diag(6,...,0,), 0=

2R )\k

where A; are the eigenvalues of the diagonalizable matrix A.

THEOREM 5.1. Assume A is diagonalizable with eigenvector matriz Q, having
all unit norm columns, and let C = cc'. Let X = > 8252 solve (@), with
the nonnegative values 0; sorted decreasingly, and for k € {1,...,n} define X}, =

Zf:l 8252 . Then

X = Xpll < (0= k)61 (5(Q) | cl|2)?,

where || || is the matriz norm induced by the vector 2-norm.

The bound may not be sharp for highly non-normal A, for which x(Q) may be
large. A more specialized bound was earlier given by Penzl for A symmetric, which
only depends on the condition number of A [I97].

THEOREM 5.2. ([197]) Let A be symmetric and negative definite, with condition
number k(A), and C = C1C{ with Cy of rank p. Let X\;(X) with i = 1,...,n be the
nonincreasingly ordered eigenvalues of X. Then

2
Ao (X) (GO 1)
A1 (X) s k(23+1)/(2k) 4 1
It was also shown in [I97] that eigenvalues alone cannot predict the eigenvalue dis-
tribution of X in the nonhermitian case; this is reminiscent of similar limitations
of non-normal matrices in the convergence analysis of iterative methods for linear
systems [I74, sec. 5.7.3].

Bounds on the eigenvalue decay that attempt to cope with non-normality were
obtained in [213] sec.3.1.2], where the concept of pseudospectrum is used; in there,
some interesting counter-intuitive convergence behaviors are also described. Overall,
much remains to be understood in the decay of the solution spectrum in the non-
normal case.

In addition to the application relevance, establishing conditions under which the
solution matrix has exponentially decaying eigenvalues provides theoretical ground
for the good performance of low rank projection methods in the large scale case.

5.1. Lyapunov equation. Small scale computation. As for the Sylvester
equation, the closed form solutions described in section Ml could be used in theory. A
detailed account of early methods can be found in [88], together with some ad-hoc
algorithms appropriate when special forms of A - e.g., Schwarz, Companion or Jordan
forms - are available; see also [39], [I19] for improved approaches for the companion
form.
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The standard method for efficiently solving (BIl) when A has small dimensions
does not essentially differ from those for the Sylvester equation discussed in previous
sections. In fact, since B = AT, the computational cost of the reduction to Schur
form is halved in the Bartels-Stewart method [221].

A specifically designed algorithm was proposed by Hammarling, to exploit the
case when C' is positive semidefinite. It was shown in [I13] that if C = C;C] = 0,
it is possible to determine the Cholesky factor L of the solution X = LL", without
first determining X. The computation of the Cholesky factor has some advantages
when X is nonsingular but severely ill-conditioned, so that dealing with L significantly
improves the accuracy and robustness of computations with X; in [273] a comparison
between Hammarling’s and Bartels-Stewart methods can be found. A block vari-
ant of Hammarling’s method for the discrete-time Lyapunov equation is suggested in
[156], which can dramatically improve the performance of the original scalar (unpar-
titioned) algorithm on specific machine architectures, while preserving the stability of
the original method.

We also mention the possibility of pre-processing, proposed both in the continuous
and discrete-time equations, so as to transform the original symmetric problem onto
a skew-symmetric one, so that the solution will also be skew-symmetric (X = —X ),
allowing for some memory savings; see [88] sec. 2.1.2] and references therein.

A completely different approach exploits the fact that the solution X may be
computed by means of matrix functions, in particular, by using the sign function.
Although less general than Schur-form-based algorithms, they allow one to handle
larger problems, especially if the right-hand side is low-rank or structured, and can
be more easily adapted to a high performance computational environment. The idea is
to use well-established matrix iterations to obtain the matrix sign function in a cheap
manner, by fully exploiting the possible sparse format of the matrix. The whole
procedure is actually more general, and it also applies to the symmetric algebraic
Riccati equation (see Algorithm 1). Here we will follow the derivation proposed in
[19], see also [27], although the main iteration was introduced by Larin and Aliev
in [167] for the generalized Lyapunov equation. Let A = Xblkdiag(J,,J_ )X ! be
the Jordan decomposition of a given matrix A, where J,,.J_ represent the Jordan
matrices associated with the eigenvalues in the open planes C* and C~, respectively.
Then sign(A) = Xblkdiag(l, —1)X !, where the dimensions of I, —I match those of
Jy and J_, respectively. For A stable, the solution to the Lyapunov equation satisfies

(see, e.g., [208])

{8 ﬂ = % (1+sign ([fg —CAD) . %(I—i—sign(Zo)). (5.2)

With this property, the following matrix iteration corresponds to applying the Newton
method to the nonlinear equation (signZy)? = I:

1
Zk+1:§(Zk+Z];1)v k':O,l,..., (53)
yielding
. . -1 2X
51gnZo—kli>Ho10Zk— [0 I}'

Although the iteration is globally and (asymptotically) quadratically convergent, the
basic iteration above may have slow initial convergence, therefore it is often accelerated



Computational methods for linear matrix equations 31

by using a parameterized procedure, that is Zx11 = %(cka +(crZy) ), k=0,1,...,
for an appropriate selection of the parameter ¢, > 0. A popular choice is ¢, =
|det(Zy)|~ = [BO); see [7] for a review of other choices.

5.2. Lyapunov equation. Large scale computation. Recalling the discus-
sion for the Sylvester equation in section [£4] the solution of the Lyapunov equation
for A of large dimensions focuses on the determination of memory saving and compu-
tationally appealing approximations. For the stable problem, this is achieved in most
cases by looking for a low rank approximation X = ZZ*, so that only the tall matrix
Z is actually computed and stored. This is possible if, for instance, the right-hand
side has low rank, since in that case we also have X > 0. Nonetheless, strategies to
approximate the general right-hand side by low-rank matrices have also been explored
in the literature; see, e.g., [I31].

To help fully grasp the relevance of the topic, we notice that a number of recent
PhD theses have been devoted to the theory and computational aspects of the large-
scale Lyapunov matrix equation, whose results have significantly advanced knowledge
on the problem; among them, [195],[I87],[I83],[128],[273],[I72],[213]. The list would
expand if one were to also include closely related theses on model order reduction of
linear dynamical systems.

We conclude this section by noticing that a systematic numerical comparison
of all iterative methods described in the following subsections on a variety of very
large problems (of size n > 10%) is still lacking, although in our presentation some
guidelines are given about the settings in which each of the discussed method should
be preferred.

5.2.1. Projection methods. As in the case of the Sylvester equation, the
derivation of a projection method can be determined by imposing, e.g., the Galerkin
condition to the residual, with respect to some approximation space. In particular,
from equation [@24) with k = j, V; = W; and Cy = C4, we obtain the following
projected small size Lyapunov equation:

VEAVIY , + YR VATV, = VECH(VECy), (5.4)

whose solution matrix Yy gives X, = VY,V = X. Since Y} is positive semi-
definite and numerically singular, it is possible to perform a truncated decomposition
of Y, as Y, = LL*, so that only the slim factor Z;, = VL of the solution X, = Z, Z}
needs to be stored. To ensure that (54) admits a unique solution, the matrix V,* AVj
is assumed to be stable. Such a sufficient condition is met by requiring that A be
negative definite, which is the usual hypothesis when using projection methods. This
condition represents a limitation of projection methods, since the original problem
admits a unique solution even in case of a stabld*d but not necessarily negative definite
A. On the other hand, these are sufficient conditions: projection methods can work
in practice without this assumption, although they may break down or show some
erratic convergence behavior; see [I76] for an analysis.

An apparently different (functional) approach, based on the approximation to the
matrix exponential and on ([£4]), leads exactly to the same approximation procedure
as Galerkin. Indeed, the action of the matrix exponential to C7, exp(tA)Cq, can be
approximated in the space V as Vi exp(tHy)(VyC1) where Hy, = V;* AV}, so that the
analytic expression in ([d4]) for the solution can be approximated explicitly; this is the

12 As already said, even stability of A is not strictly necessary for the solvability of the Lyapunov
equation, but only that I ® A + A ® I be nonsingular.
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way the Galerkin approximate solution was originally obtained in [2I1] for a rank-one
matrix C.

ProposITION 5.3 ([210]). Let V be a subspace of R™, and let V be such that
V = range(V). Let also H be the projection and restriction of A onto V, and ym, =
exp(tH)(V*Cy). Then the matriz VY V™ with

Yzéw%w%@w

is the Galerkin approximate solution to the Lyapunov equation in V.

The procedure above is very general, and the success of the approach, in terms of
computational cost, depends on the choice of the approximation space V. All choices
discussed in section have been explored. For instance, the block Krylov subspace
K(A, Cy) was exploited in [I35], and it was referred to as the Arnoldi method, after
the procedure used to build the block Krylov subspace. The following computationally
convenient relation for the residual Ry = AXy, + X;A* + C1C; can be deduced from

@235) ([135, Th. 2.1]):
IRkl = V20| (i1 Ave) Ei Yl p, B =[Oy, O, L],

where vi11 contains the next block of basis vectors.
Finally, the solution Xy, is the exact solution to the nearby problem ([135])

(A= A)X +X(A—A) = C,Cf =0,

with A = Ve (Vi AVVE, [AllF = (Vi AVl e

The asymptotic convergence of the Arnoldi method was recently analyzed in [220].
Here we report a sample of such analysis, which applies to A symmetric and positive
definite, and C} of rank one and unit norm; the derived bound was shown in [226] to
provide an accurate worst-case convergence rate of the method.

THEOREM 5.4. Let A be symmetric and positive definite, and let A\nin be the
smallest eigenvalue of A. Let :\min, j\max be the extreme eigenvalues of A + Aminl
and k = j\max/j\min. Let X,,, be the Galerkin approximate solution to X in a Krylov
subspace of dimension m. Then

Vi+1 <\/E1> | (55)

X=X < (Y
where the matriz norm is the one induced by the vector 2-norm.

This result shows that the error norm is bounded by the same asymptotic quan-
tity as for the Conjugate Gradient method applied to a standard linear system with
coefficient matrix A + Apinl.

As already mentioned, the algorithmic steps to compute an approximate solution
by projection remain unchanged when a different approximation space is used. In
[224] an efficient method based on the extended Krylov subspace in ([£2I]), namely
K (A, Cy) + K (A7, A71Cy), was introduced for Cy of low rank. In [224] the
method was experimentally shown to be highly superior to the Arnoldi method for
sparse and large coefficient matrices, allowing the computation of an equally accurate
solution with a significantly smaller dimensional subspace, at lower computation costs
for sparse A; convergence plots are typically similar to that in Figure 41l According
to the experiments in [224], the method also compares well with respect to ADI. A
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recent asymptotic analysis in [I52] theoretically confirmed these results, showing that
the Extended Krylov subspace method is expected to have higher convergence rate
than the Arnoldi method, and than ADI with a single pole.

More recently, rational Krylov subspaces have been introduced as approximation
space in the solution of the Lyapunov equation, showing the great potential of projec-
tion methods, when solving shifted systems with A is affordable [73]. In [76] estimates
for the error norm were derived, assuming that the field of values W(A) of A and the
set of parameters {o0;};=12, .. are both contained in the same half plane. We first
report on an error bound that emphasizes the connection with ADI.

THEOREM 5.5. Let C7 € R”, and let X,, be the approximation obtained by a
Galerkin method in range([(A + o1 1)71Ch, ..., (A+ 0, I)71C4]). Let v1 > 0 be the

Crouzeiz constant (with v1 < 11.08) and v, = m. Then

[Llz-ai 2
X - Xullr <2712y max =" " Y2, 5.6
H Il < 2m®e mex fi = GlG (5.6)

where || - ||F is the Frobenius norm.

The maximization problem appearing in the upper bound is the same as that
characterizing the convergence rate in the ADI method (see section (.2.2]). We also
note that the ADI bound is reachable, in terms of convergence rate, therefore it
may be viewed as a worst case scenario for ADI. Therefore, the result of Theorem
provides a realistic picture of the performance of the Rational Krylov subspace method
compared with that of ADI, whose implementation for the Lyapunov equation is
described in detail in section The superiority of the rational Krylov subspace
method for the same shifts can be easily appreciated in practical cases; we refer the
reader to, for instance, Examples 4.3-4.4 and Fig. 4.5 in [76]. Beckermann in [21]
expanded this type of result to the more general setting of the Sylvester problem (see
Proposition 4]). Nonetheless, if close to optimal poles can be selected, ADI may still
provide a competitive alternative to rational Krylov subspace methods.

Asymptotic error bounds for the Galerkin method in the Rational Krylov subspace
were derived in [76]. The reported numerical experiments on worst-case spectral
distributions show that these bounds are indeed sharp for certain classes of data.

The general rational Krylov subspace requires the selection of a series of shifts
(poles), which can either be computed a-priori or during the generation of the space.
The a-priori pole computation may require possibly high computational costs, follow-
ing the same procedure as that used for other parameter-dependent methods such as
ADI (see below). On the other hand, it was shown in [74] that it is possible to employ
a greedy algorithm to compute the next pole on the fly, while the iteration proceeds,
with computational costs of a modest power of the order of the space dimension,
which is usually significantly smaller than the problem dimension. This is done by
exploiting approximate spectral information generated within the current approxima-
tion space. More precisely, for C; = ¢; € R™, we first observe that an element of the
rational Krylov subspace of dimension m can be written as x = py,—1(A)gm(A) " te
with p,,—1 and g, polynomials of degree m — 1 and m, respectively, and where the
roots of g,, are the parameters o1, ..., o,,. For the sake of the derivation, assume that
the linear system (A 4 sI)x = ¢; for some parameter s > 0 is to be solved, then the
residual of an approximate solution x,, obtained by imposing the Galerkin condition



34 V. Simoncini

with respect to the space can be written as

M T (2) H Z+A

—(A 1 m — y =
e~ (A+shz rm(8) 240

Jj=1

where Aq,...,\; are the eigenvalues of the projection of A onto the space (Ritz val-
ues). The adaptive procedure amounts to determining the next parameter o,,+1 by
capturing the parameter o for which the current rational function is largest:

1
Omi1 = arg (maé{m |m<a>|) !

where S,,, C CT approximates the spectral region of A, and 95, is its border.The
actual computational procedure requires an initial rough estimate of 35,,, which for
real A can be taken to be the approximate extreme values of the interval 95, N R.
These can be easily obtained by few iterations of an eigenvalue solver [74].

Numerical experiments reported in [74] show that the method is superior to the
Extended Krylov subspace when, for instance, the field of values of A is very close to
the imaginary axis. The computational cost of the general rational Krylov subspace
method may be much higher than for the extended space, since a group of new shifted
linear system with the same right-hand side needs to be solved at each iteration, with
a different shift at each iteration. On the other hand, the extended method only
requires system solves with A: if A is such that an efficient LU decomposition can
be performed, then this is done once for all at the beginning of the computation and
only the backward solves are required while expanding the space. The numerical
experiments reported in [74] seem to ensure that the rational approximation space
dimension remains usually very low, so that few systems have to be solved. The
difference in computational costs per iteration is less significant if an iterative solver
is used to solve the inner systems; in that case, the extended method can possibly
still reuse the same preconditioner, but the computation with the iterative method
still needs to be performed anew.

The rational function idea is particularly appealing when C' = C;C]" has rank
p larger than one. In that case, the extended Krylov subspace increases its dimen-
sion by 2p vectors per iteration, making the whole procedure memory consuming if
convergence is not fast.

In general, memory requirements may become a serious concern when C; has
rank much larger, say a few tens, since the approximation space dimension increases
proportionally with that rank. In [75] a tangential procedure is proposed to expand
the rational Krylov subspace at each iteration, in a way that only the most relevant
directions are retained. More precisely, small matrices dy,...,d; are determined so
that the following space is constructed

range([(A + o11) ' Bdy, (A + 02I) ' Bds, ..., (A+ opI) "' Bdy)).

The actual column dimension of each d; may vary as the iteration proceeds. Numerical
experiments reported in [75] show that this strategy is capable of successfully handling
the presence of many columns in C7, and provides a performance that is largely
superior to that of the block rational Krylov subspace.

The Global Krylov subspace method for the Sylvester equation was applied to
the Lyapunov equation in [140], with natural simplifications due to the fact that a
single space needs to be generated; numerical experiments in [140] showed better
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performance than the standard block Krylov subspace methods. No numerical com-
parisons seem to be available for global and rational Krylov subspace methods. We
also mention [121] for a generalization to the simultaneous solution of a coupled pair
of Lyapunov equations, corresponding to the two Gramians of a dynamical system.
This last problem was also considered in [I34]: the coupled block Arnoldi method
and the nonsymmetric block Lanczos recurrence were analyzed for simultaneously
approximating both Gramians, so as to obtain approximations to the linear transfer
function of the system; see also [I36] for enhancements of the proposed approaches.

The Galerkin condition for the Lyapunov equation residual can be replaced by a
Petrov-Galerkin condition; see the discussion around Proposition [£.2 for the Sylvester
equation. If the constraint space is AV, then the resulting algorithm minimizes the
residual in the Frobenius norm and the problem admits the following formulation:
Find X, = VkYkaT such that Y}, satisfies

Y, =arg min [|[AVYiV, + WYV, AT +C.C) ||F, (5.7)
YkeRkapk
where the columns of Vj form a basis for the approximation space V. Assume once
again that for the space V a relation of the type AV, = Vi1 H,, is available, with
‘7]611‘7]@4_1 = I and H,, of size p(k + 1) x pk. Then (&) can be rewritten in smaller
dimension as the following matrix least squares problem (see, e.g., [176]):

Y, =arg min (5.8)

Y Rk X pk 0 0 0

H,Y [I,0] + H YH] + [73 0}

F

where Cy = Vjyg. This approach was explored in [I35] for the standard block Krylov
subspace and in [I31] for the rank-one case. The projected problem entails the so-
lution of (58)) for which expensive (order O((pk)?*)) procedures have been proposed
[135],[131]. More recently, the minimal residual method was revisited in [I76] for a
generic low rank C, and a more effective (order O((pk)?)) solver for the inner problem

(E8) was proposed.

5.2.2. ADI method. For B = A", the ADI method of section for the
Sylvester equation simplifies, leading to the following recursion for the whole matrix
X; with two half steps (see [255]):

(A + SjI)XJ; = ClClT — Xjfl(AT — Sj]n),
(A+s,1)X; =C1Cf —(X,_1)*"(AT —s;1,.), j=1,...,k

J—3
Here the shifts {si, s2,...} are complex, and are employed cyclically. If both A and
C are real, then the approximate solution will be real and symmetric, as long as both
complex conjugates shifts are used [I79]. A key idea to make the recursion amenable
to large dimension matrices is to keep the solution iterate in factored form. This
idea was successfully explored by Penzl in 2000 in [196] and was the basis for the
software package Lyapack [198]; see also [35]. The resulting low-rank ADI (LR-ADI)
thus determines a recurrence for the factor Z; of X; = Z;Z% as

Zj+1 = [(A* — SJI)(A* + st)*Zj, \/ —28]'(14* —+ SjI)ilcl], (59)

with Z; = /=2s1(A*+s,1)71Cy: the number of columns in the factor Z; is enlarged
by rank(C7) columns at each iteration. The success of the low-rank ADI approach
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is related to what Penzl called the low-rank phenomenon in the solution X, namely
the already mentioned fact that the eigenvalues of X tend to decay very quickly
towards machine precision, so that a low rank approximation appears to be possible
(see section FT]).

The iteration matrix Z; is complex during the whole iteration, whenever some
of the shifts are complex. A way to overcome this problem and to maintain real
arithmetic throughout whenever A and Cy are real is discussed in [I96]; see also the
more recent contribution [24].

The iteration in (B9) requires solving systems with right-hand sides Z; and C4
at each step 7. A computational improvement to decrease the number of solves per
iteration was suggested in [I71] (where the LR-ADI method was called CF-ADI, in
which CF stands for Cholesky Factor). In there, the columns were reordered so
that only the previous iterate requires solves with a shifted matrix. The resulting
recurrence is given in the following algorithm (see [I71], Algorithm 2]):

Algorithm 6. Given A,C; and {s;}, j =1,..., jmax
1. Set z; = \/—281(14 + 81[)_101, 7, =12
2. For j =2,..., jmax
21z = \/j;;il(f — (5j-1+5)(A+5;0) 7 )z
2.2 Zj = [Zj—la Zj}
If converged stop

At each iteration, the recurrence in Algorithm 6 thus requires system solves with
a fixed number of right-hand sides corresponding to the number of columns of Cf.
As for the generation of the rational Krylov subspace, a new block of linear systems
needs to be solved, as the shift varies. For a very sparse A and a small number of
precomputed shifts, one could consider factorizing each of the matrices A 4 s;1 by
means of a sparse solver, and then back solve at each ADI iteration. The feasibility
of this procedure is clearly problem and architecture dependent.

In [24],[34] some key relations are used to show that the residual norm can be
computed efficiently. More precisely, it holds that AZ;Z7 +Z;Z; A"+ C1C7 = W; W7
where W; is a matrix of rank p (the rank of C7) defined as (here with real poles)

W]’ = Wk—l — ZSij, Wo = Cl
where Ql = (A + 81)7101 and Qj = (I — (Sj + ijl)(A'F SjI)il)ijl, 7> 2. This

way,
|AZ;Z] + Z;Z7 A" + CLC7 || = [|[W; W] = (W)W,

* = 2, F, where the last norm is cheap to computed and memory efficient.
Additional recent contributions were devoted to further improving the computa-
tional cost per iteration. A strategy for reducing the number of solves was proposed
under the name of “modified” low-rank Smith method in [I10]. The idea is to com-
pute the singular value decomposition (SVD) of the iterate at each step and, given
a dropping tolerance, to replace the iterate with its best low-rank approximation. A
main ingredient is that the SVD is not recomputed from scratch; instead, it is up-
dated after each step to include the new information and then truncated to retain
only those singular values that lie above the specified tolerance. The use of the SVD
exploits the fact that if Z ~ VXU™* is a truncated SVD decomposition of Z, then
X = Z7Z* ~ VX2V* is the truncated spectral decomposition of X, so that the low
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rank factor can be readily maintained. In general, the procedure reduces the number
of system solves per iteration, in a way that depends on the linear independence of
the new iterate columns with respect to those of previous steps. Since X belongs
to a rational Krylov subspace, the SVD computation determines an orthogonal ba-
sis - the columns of V' associated with numerically nonzero singular values - for the
generated rational space. This fact makes the truncated ADI method even closer to
projection methods based on the rational Krylov space: the only difference is the way
the reduced solution matrix is computed; see [76] for a formalization of this relation
by means of the skeleton approximation.

A bound for the difference between the traces of the solution X of the Lyapunov
equation and its ADI approximation is proposed in [245], which shows that the right-
hand side of the Lyapunov equation can sometimes greatly influence the eigenvalue
decay rate of the solution.

Computation of the shifts. The selection of the ADI parameters and of their
number has been a major topic of research for many years, since the performance of
the method, in terms of number of iterations, heavily depends on them.

Let A be stable. Assuming a zero starting approximate solution, from the general
ADI recurrence it follows that the error matrix associated with the ADI approximation
XADT after k full iterations is given by (see also [196])

X — X2PT = (7 (A)rp(—A) X7 (A) e (—A) (5.10)

This expression shows that for A diagonalizable, for a fixed k optimal parameters can
be obtained by solving the minimax problem

k

A— s
min max . (5.11)
§1,0e58,EC— AeA(A)j:1 A+ 85
The value of k is adjusted so that the set {s1,...,sx} is closed under conjugation in

the case A is real. It is worth mentioning that it can be computationally advanta-
geous to repeatedly apply a modest number of poles, rather than use a larger set of
poles that gives a marginally faster convergence rate for the scalar rational approxi-
mation problem, if the cost of computing these poles is significant. For A having real
spectrum, this minimax problem was solved by Zolotaryov; if A is also symmetric,
this leads to an asymptotically optimal linear convergence rate for the approximation.
The optimal parameters are then given as (see, e.g., [T9])

(2j DK

stdn[ o5

,m] , j=1,...k

where dn is a Jacobian elliptic function, and K is the complete elliptic integral of the
first kind, of modulus m [I]. Generalizations to the case when the complex spectrum
lies in certain specified complex regions 2 were discussed in [79]. However, it was
only with the heuristic approach of Penzl in [196] that the computation of suboptimal
ADI parameters became a more manageable procedure. The proposed strategy is
performed as a pre-processing of the actual ADI computation: consider the Krylov
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subspaces Kj, (A, c), Ki,_, (A", ¢) for some vector ¢, and let V, W be such their
orthonormal columns span the two spaces, respectively. Let 2., _ be the regions
containing the eigenvalues of VT AV and of W T AW (the Ritz values). The key idea
in [I96] is to replace the spectrum of A with the region Q := Q, UQ_, and then
solve the minimax problem (BII)) in ©. The set Q2 may be regarded as a reasonable
approximation to the region of interest, the convex hull of the spectrum of A, and
it can be more cheaply computed, especially for small ka,k -1; see [I96] and the
package [198] for more technical details. An adverse effect of this pre-processing is
its computational cost: for rank-one C' the cost induced by the generation of both
K (A ¢), Ki, (A7, ¢) for some vector ¢ to determine the suboptimal poles is
comparable to that of, e.g., the construction of the extended Krylov subspace of
corresponding dimension; however, by the time good suboptimal poles are determined,
the extended Krylov approach has also computed an approximate solution to the
Lyapunov equation.

In spite of the significant improvements in the ADI parameter estimation, how-
ever, the method remains quite sensitive to the choice of these shifts, and performance
can vary dramatically even for small changes in ka,k4-1; see, e.g., the experiments
in [224]. Adaptive strategies for pole selections such as those derived for the rational
Krylov subspace in [74] are hard to obtain, since a basis for the generated space is
not readily available. Nonetheless, these considerations have led to the investigation
of hybrid approaches, which are described later in this section.

It was observed in [I71] that the ADI method actually generates a (block) rational
Krylov subspace for the given vector of shifts s = [s1,...,s,]. The connection
between the ADI method and the Galerkin method with the rational Krylov subspace
Ki(A, C1,si) = range([(A+s11)~1Cy, . .., (A+s,I)"1C4]), can be made more precise,
when the two methods are used with the same parameters.

THEOREM 5.6. ([76, Th.3.4]) Assume that the field of values of A and s;, j =
1,...,k lie in the same half complex plane, and that Cy has rank one. Let the columns
of V' form an orthonormal basis of K(A,C1,s), and let \j, j = 1,...,k be the
Ritz values of A onto Ki(A,Ch,sk), that is \; are the eigenvalues of V*AV. Then
the ADI approrimation coincides with the Galerkin approximate solution Xy with
Ki(A,C1,s) if and only if s; = Nj, = 1,...,k (under a suitable index permutation
for the A;’s).

The condition s; = )\7, j=1,..., kis seldom satisfied when the shifts are obtained
by either an adaptive procedure or by a Penzl-style pre-processing (however, see [109]
for an iterative process that approximates such a set of parameters, in the context
of optimal model order reduction). We also recall that the bound of Proposition
44 shows that ADI cannot give much better results than the Galerkin approach
with the rational space, while it is known that for poor poles ADI may give much
larger residuals than in the optimal case [2I]. Moreover, the lack of some form of
optimality condition, e.g. orthogonality, seems to penalize the ADI idea; this problem
was explored in recent works summarized in the next paragraph. Selected numerical
experiments comparing the adaptive Rational Krylov subspace method and ADI can
be found in [76].

Hybrid ADI methods. Tt was observed in [28] that “The most criticized property
of the ADI iteration for solving Lyapunov equations is its demand for a set of good
shift parameters to ensure fast convergence. [...] Most of the [computationally cheap
parameters| are suboptimal in many cases and thus fast convergence can indeed not
be guaranteed. Additionally, if the convergence is slow, the low-rank Cholesky factors
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may grow without adding essential information in subsequent iteration steps.” In
[28] it was thus suggested to combine the subspace projection idea with the ADI
recurrence. The projection is performed onto the space spanned by the columns of
the current ADI factor, the idea being motivated by the fact the ADI solution factor
belongs to the rational Krylov subspace with the same shifts as ADI. The projection
is performed every k ADI iterations by computing an orthonormal basis spanning
the range of the current factor, and the small size projected equation is solved by
means of a Schur-type method (see section [B.1]). Since the number of columns grows
at each iteration, the cost of computing the orthonormal basis significantly increases.
To overcome this problem, the authors suggest to truncate the obtained projected
solution so that a small rank factor is retained for the next ADI iteration. More
technical implementation details can be found in [28]. The idea is very reminiscent
of a restarting process in the standard linear system framework, although here the
truncation is performed in a different fashion. To complete this parallel with linear
system solves, this procedure may be viewed as a hybrid restarted process, where a
rational function (here the ADI single step) is applied to the solution before restart;
see, e.g., [228] for a review of polynomial acceleration procedures of restarted methods
in the linear system setting. The resulting process is called the Galerkin projection
accelerated LRCF-ADI (LRCF-ADI-GP). Note that although ADI does not require
that A be either positive or negative definite, the extra projection step is ensured not
to break down only under the additional definiteness constraint. It is also interesting
to observe that, without the truncation of the projected solution, the procedure might
be mathematically equivalent to the Galerkin method in the Rational Krylov subspace
obtained with the same shift parameters; a formal proof still needs to be carried out.
Selected numerical experiments comparing the adaptive tangential Rational Krylov
subspace method and projected ADI can be found in [75].

We also mention the procedure proposed in [I38], where the continuous Lyapunov
equation is first transformed into a discrete (Smith) Lyapunov equation with rational
matrix functions as coefficient matrices, and then solved by means of the Global
Krylov subspace method. This may be viewed as a preconditioning strategy.

5.2.3. Spectral, sparse format and other methods. As for the Sylvester
equation, the Kronecker formulation can be used to restate the matrix equation as
the following very large linear system,

Ax = (I,, @ A+ AT @ I,)x = c, x = vec(X), ¢ = vec(C) (5.12)

of size n?, if n is the size of 4; see, e.g., [I25] for an early attempt. For A symmetric
and positive definite, the convergence rate of CG applied to the Kronecker formulation
is driven by the condition number x(A) = k(A), whereas the convergence rate of the
Galerkin procedure directly applied to the original Lyapunov equation is driven by
K(A 4+ Aminl) (see Theorem [BA4]), which can be significantly smaller than x(A). This
analysis justifies the better performance of projection methods applied to the matrix
equation. A second possibly stronger argument is given by memory requirements: the
Kronecker formulation requires n?-length vectors. Nonetheless, it was recently shown
in [I83] that when solving (5.12]) floating point operations can be carried out so as to
lower memory storage from O(n?) to O(n). Moreover, a standard Krylov subspace
method for (B12]) can take full advantage of the structure, since most matrix-vector
multiplications can be rewritten as matrix-matrix operations.

A possible way to overcome slow convergence is to choose an effective precondi-
tioning strategy, that can drastically improve the spectral properties of the coefficient
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matrix A. Hochbruck and Starke used a Krylov subspace solver for the system (&.12]),
and they investigated SSOR and ADI iteration (with a fixed number of iterations) as
operator-based preconditioners; see also [I83] for some implementation aspects of pre-
conditioning strategies. More recently, a flexible GMRES approach was proposed in
[44], which allowed for a variable ADI preconditioning step. Very preliminary numer-
ical results report promising performance of the Kronecker formulation, while taking
into account the matrix structure. These approaches may have broader applications
for more general matrix equations; see the discussion in section

A rather different approach consists of using an appropriately modified version
of the sign function iteration depicted in (E2). As memory requirements are exces-
sive in its original form for large scale problems, two major amendments have been
explored (see, e.g., [I7]): i) A sparsified version of A, so as to substantially reduce
the computation and storage of Z, L. i) For C = C1C], a factored version of the

approximation X, so that only a full (low rank) factor need be iterated. The latter
problem was addressed in [27], where the following coupled iteration was proposed:

1 1
AO = A7 By = ClaAk-‘rl = E(Ak +A];1)7 Bk-‘rl = E[B/m Allek]a k= 07 1.

giving Y = % limy, 00 Bi, with YY T = X. Note that the size of By is doubled at

each iteration, therefore a rank reduction is suggested in [27]. More recent develop-
ments include new algorithms that appear to be well suited for large problems with
dense and unstructured matrices [222]; the discussion in [222] in fact addresses the
generalized Sylvester equation.

Item i), namely reducing the cost of dealing with the explicit inverse of large
matrices, may be addressed by exploiting data-sparse matrix representations and ap-
proximate arithmetic. In [19], but also in previous related works for the algebraic
Riccati equation, the H-matrix format was used (see section LZ3). If Invy (A) de-
notes the inverse in the H-matrix format, then the coupled recurrence above can be
performed as

A1 = 1(Ak +Invy(Ak)),  Brt1 = i[Bk, Invy (Ag)Bi], k=0,1,...,
2 V2

where the sum to obtain Ay is intended in H-matrix format. More implementation
details can be found in [19]. According to the analysis performed in there, the error
induced by the new format can be controlled while performing the rank reduction of
Bi11, so that the format errors do not grow unboundedly with k; these results are
in agreement with the general theory of H-matrices for Riccati equations, developed
in [I02]. In [I9], the derivation with the H-matrix format is extended to the case
of the generalized Lyapunov equation (see section [). Numerical experiments show
that the H-format allows the sign function iteration to be employed for medium
size problems (O(10000)), for which the dense algorithm requires excessive memory
allocation. Finally, an example comparing a linear multigrid solver using H-format
matrices with ADI is reported in [I00, sec. 7.6], showing that on that specific example
the multigrid approach is about ten times faster than ADI (implemented in the same
framework), although both methods scale linearly with the number of multigrid levels.

We conclude this section with strategies that are more explicitly based on invari-
ant subspaces. All considered methods assume that the maximum rank of a sufficiently
accurate approximate solution is either known or given. Therefore, the context where
these approaches are used is different from the one of previous methods.
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The integral representation of X in (@A) and the decay of the singular values
of X suggest various eigenvalue-based strategies. One such method focuses on ap-
proximating the leading invariant subspace of X. In [129] and [126] an Approximate
Power Tteration (API) approach was proposed, which aims to approximate the domi-
nant eigenvectors of X. The method is closely related to the power iteration and the
Lanczos method for computing the extremal eigenpairs of a positive definite symmet-
ric matrix, and the authors report good convergence properties when the eigenvalues
associated with the sought after eigenvectors are away from zero and well separated
from the others, so that a good low-rank approximation of X can be determined. The
method works under the assumption that A is negative definite, as with projection
methods. The API method applies the power method to X, which is only known
implicitly and approximately by means of products of the type Y = Xwv through the
solution of the auxiliary “tall” Sylvester equation

AY +YO + ¢ =0, (5.13)

where © = v Av is a small square matrix and ¢ = C1C] v (see section [L3)). The
numerical experiments reported in [I26] on actually quite small problems, seem to
imply that API is a promising method for the approximation of the leading eigen-
vectors of X, without the computation of X itself. The approach is reminiscent of
the implicitly restarted Arnoldi method [I69], although each iteration requires the
solution of a Sylvester equation. A variant of this approach was proposed in [252] to
overcome misconvergence caused by the omission of the term X(I —vv")ATv in the
equation (BI3]). Motivated by [126], an algorithm combining the power method and
(implicitly) the ADI iteration was proposed in [I88]; see [I87] for a more thorough
presentation of these approaches.

With the same aim of approximating the leading invariant subspace of X of given
dimension, the procedure explored in [I07] performs a refined numerical approxima-
tion by repeatedly integrating the dynamical system associated with the Lyapunov
equation, as the basis for an orthogonal power iteration.

A somewhat related approach was proposed in [229], and it exploits the popular
proper orthogonal decomposition (POD) approach employed in reduced order modeling
of large-scale dynamical systems [26]. The idea is to collect a sample of m solutions
to the associated linear differential equation with different starting data, and for a
chosen k, form a rank-k approximate Lyapunov solution by using the eigenpairs of
the sample, obtained by collecting the approximate solutions of a sequence of linear
time-dependent differential equations with different starting solutions (the so-called
method of snapshots). The approach relies on the integral representation of the
Lyapunov solution, and according to the author, it is particularly appropriate for
infinite dimensional problems.

Finally, a novel very different approach was recently proposed by Vandereycken
and Vandewalle in [250] for A symmetric and positive definite: the method finds a
low-rank approximation to X by minimizing the function

fiMr =R, X trace(XAX) — trace(X ()

on the manifold of symmetric and positive semidefinite matrices of rank & in R™*",
namely

min f(X).

XeMy
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Note that the minimization of f corresponds to the minimization of the error in the
energy norm, having used the Kronecker formulation of the Lyapunov equation. By
using the smoothness of My the problem is solved within a Riemann optimization
framework, which allows one to embed the rank constraint in the space, and solve
an unconstrained minimization problem by means of a Riemann trust-region method,
a second-order model based on the Hessian [2]. At convergence of the minimization
process, if the current solution rank is not sufficiently accurate, the process is restarted
basically from scratch. As a result, the method may be appealing when the optimal
rank is approximately known a-priori, otherwise the approach may not be competitive
with respect to other strategies discussed so far.

6. The Stein and discrete Lyapunov equations. The Stein and the discrete
Sylvester equations are the discrete-time counter part of the (continuous-time) equa-
tions discussed in the previous sections, and they naturally stem from a discrete-time
system; see [B.2]) and, e.g., [4], sec.4.3]. Other relevant applications include for instance
statistics [T51],[T50], probability [I0], spectral analysis [132]; these equations are also
a computational tool in the design of control systems [I17], or in the coprime matrix
fraction description of linear systems [271].

The Stein equation may be written as

X + AXB = C, (6.1)

where it is assumed that the eigenvalues of A and B are contained in the open unit
disk. The discrete-time Lyapunov equation is obtained by choosing B = —AT, in
which case, if C' is symmetric and if a solution X exists, then X has to be symmetric.
In the context of inertia theory, for C' = 0 the discrete-time Lyapunov equation
allows one to analyze the proximity of spec(A) to the unit circle and the proximity of
spec(X) to the imaginary axis; see, [I65, sec.13.2], and also, e.g., [264],[I70] for more
specialized results.

Under the condition that \;(A)\;(B) # —1 for all 4, j, the solution X exists and
is unique for any C' (see, e.g., [164]), and this is highlighted by the Kronecker form of
@), given as (I + BT ® A)x = ¢, where x = vec(X) and ¢ = vec(C). Necessary and
sufficient conditions for the existence and uniqueness of the solution X were obtained
in [263] as a generalization of the property (@2 for the Sylvester equation. Inertia
and other transformation-based results for B = —A" can be derived in a natural
manner from those on the Lyapunov equation; see, e.g., [219],[220]. We also refer the
reader to [163] for a solution expressed in terms of the companion form of the given
matrices, and to [39] for related computational considerations.

To numerically solve the equation for, say, B nonsingular, one could think of
working with XB~! + AX = CB~! which is a standard Sylvester equation, and then
adopt one of the solution methods from previous sections. In fact, (GI)) is nothing
but a generalized Sylvester equation as in (L)) with special choices of the first two
coefficient matrices. For large B, the matrix B~! should not be formed explicitly, but
its action used within iterative methods.

Forming B~! explicitly is not recommended also in the small size case, whenever
B is ill-conditioned. Alternative transformations that bring the discrete equation to
standard form are given by (here for B = —AT, see [202])

AX+XAT =C, withA=(A-D)"YA+1I), X= %(A —D)TX(A-1),
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and ([12], [199], [147])
AX +XAT =C, withA=(A-DA+D)LC=2AT + ) 'C(A+ 1)1,

where it is assumed that the inversions are well defined. In general, however, the same
stability considerations as for methods using A~! apply.

All these difficulties encourage solving the discrete equations (GI) directly. A
Schur-form type method for small size coefficient matrices that directly deals with
(6] can be found, e.g., in [13], while a generalization of the “continuous-time” Ham-
marling method was proposed by Hammarling himself in [I14].

In [251], Varga established a rank-two updating formula for the Cholesky factors
in Hammarling’s algorithm for solving the real, non-negative definite Stein equation.
As a generalization of his algorithm for the Lyapunov equation, a block variant of
Hammarling’s method for the discrete-time Lyapunov equation is suggested in [156].

In spite of the large similarity with the standard equation, directly attacking
(1) is an interesting problem in its own, especially for A and B of large dimensions
and with either of the two matrices singular. For a low rank C, projection methods
are applicable to solve (GI), and an approximate solution X = V; YW, can be
determined, where the columns of Vi, and W), span approximation spaces associated
with A and BT, respectively. For instance, a global Krylov subspace approach was
proposed in [I37, sec. 5],[143], and its implementation is a natural modification of
that used for the standard Sylvester equation. Similar derivations can be obtained
for other Krylov-based methods.

The discrete-time Lyapunov equation motivated the development of the Smith
method [231], which is at the basis of the modern ADI iteration for the Lyapunov
equation. For A d-stable (i.e., with eigenvalues inside the unit circle), the unique
solution to (G.I]) with B = —A" can be written as X = > o AIC(AY)T, and it is
symmetric and positive semi-definite, if C' is. The (convergent) Smith iteration is
defined as

Xo=0, Xpp1=C+AX AT,

with a closed form given by X;, = Z§:1 AI7IO(AI=1) T, Faster - quadratic - conver-
gence can be achieved with the squared Smith method, which becomes of interest in
the large scale case precisely for C of small rank [I96]. The iteration is generically
given as

gk+1 ok+1, T 21 ) AT . 21 ) T
X=A""X(A" )T+ > AcA)T, X = lim AC(AYT,
i=0 k= 130

The resulting recursion is given by Hy, 1 = Hk—f—AkaAZ, Hy = C, where A1 = A2,
so that Cy — X as k — oo. By exploiting the low rank of C' = C’OCOT, Hyiyy =
Ck+1C,;r+1 with Cgy1 = [Ck, A Ck]. Therefore, the number of columns of Cj41 dou-
bles at each iteration, and Cj1 is contained in a block Krylov subspace generated
by A and C. Recent advances to make this recurrence more effective both in terms
of computational costs and memory requirements include compressions, truncations
and restarts, with a tricky use of the underlying Krylov subspace [173],[214],[31]. In
these references, estimates for the residual and error norms are also derived. Finally,
we point out an ADI acceleration strategy in [214] (for B = —AT) and in [31], which
significantly improves the convergence speed. In fact, a major breakthrough for the
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Smith method consisted in combining its recurrence with the ADI idea, as developed
in [196].

All these approaches rely on the fact that often the solution X has (numerical)
rank much lower than n; indeed, in [31] it is shown for the Stein equation that if the
eigenvalues of A and B lie inside the open unit disk and C' has rank p,

Trpt+1(X)

< ||A*|||B*|l,
s < 14184
indicating that indeed the solution rank may be small if the powers of A and B
decrease rapidly in norm. In [214] the following estimate was derived for B = — A"
and ||A] < 1:

o (X) _ A+
a(X) 1A

In general, a computational comparison of various variants of the approaches based
on the Smith iteration is still lacking, though it would be highly desirable.

A related matrix equation is the T-Stein equation, given by X = AX "B + C,
whose solvability conditions have been recently analyzed in [I75]. More generally,
a broader class of matrix equations can be written as X = Af(X)B + C, where
f(X)=XT, f(X) = X or f(X) = X*, whose analysis and numerical solution can
be recast in terms of the Stein matrix equation [272]. This and more general forms of
linear equations are discussed in the next section.

7. Generalized linear equations.

7.1. The Generalized Sylvester and Lyapunov equations. The term gen-
eralized refers to a very wide class of equations, which includes systems of matrix
equations, bilinear equations and problems where the coefficient matrices are rect-
angular. We start with the most common form of generalized Sylvester equation,
namely

AXD + EXB = C, (7.1)

which differs from (1)) for the occurrence of coefficient matrices on both sides of the
unknown solution X.

If D and E are both nonsingular, left multiplication by £~! and right multiplica-
tion by D~ lead to a standard Sylvester equation, with the same solution matrix X.
In case either F or D are ill-conditioned, such a transformation may lead to severe
instabilities. This problem is common to other generalized equations we will encounter
later in this section, and it justifies the development of solution methods that stick
to the original form (ZI)). The case of singular D and E, especially for D = ET
and B = A" has an important role in the solution of differential-algebraic equations
and descriptor systems [162]. The solution of (Tl for F and D singular requires
knowledge of the spectral projectors onto the right and left deflating subspaces of
the stable pencils AE — A and AD — B, associated with the finite eigenvalues along
the right and left deflating subspaces associated with the eigenvalue at infinity. In
such a setting, the right-hand side matrix is also projected onto the corresponding
deflating subspaces, and the equation takes the name of projected Sylvester equation.
The numerical treatment of this matrix equation necessitates of ad-hoc procedures,
that appropriately and stably take into account the Weierstrass canonical form of the
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pencils A\E — A, AD — B, from which the spectral projectors can be derived; we refer
the reader to, e.g., [237],[I77] and their references for further details on projected
Sylvester equations.

The following result ensures the existence of a unique solution X to ([Z1]).

THEOREM 7.1. ([254]) The matriz equation AXD + EXB = C has a unique
solution if and only if

(i) The pairs (A, E) and (D, —B) are regular pencils;

(ii) The spectra of (A, E) and (B,—D) are disjoinf.

Under the hypotheses of Theorem [Z.1] uniqueness is thus still ensured if one of the
matrices A, B, D or F is singular, as long as the corresponding pencil is nonsingular.

A natural extension of the Bartels-Stewart method can be implemented for nu-
merically solving (I)) when dimensions are small, and this was discussed in [91],
[92], [194], where the starting point is a QZ decomposition of the pencils (A, F) and
(B, D), followed by the solution of a sequence of small (1-by-1 or 2-by-2) generalized
Sylvester equations, which is performed by using their Kronecker form. For C' positive
semidefinite and (A, F) stable, in [194] a generalization of the Hammarling method is
also proposed. The algorithm developed in [91], [02] is also able to treat the case in
which some specifically selected coefficient matrices are singular.

The large scale setting does not significantly differ from previous cases, as long as
E, D are not too ill-conditioned. The problem can be recast as a standard Sylvester
equation in E~'A and BD~'. In the case of rational Krylov subspace and ADI
methods, shifted systems can be solved with the coefficient matrix (E~1A + sI) =
E~1(A+ sE), and analogously for systems with BD~!. In the case of ill-conditioned
E, D, one could consider using a specifically selected o € R (or o € C) such that the
two matrices F 4+ aA and D — aB are better conditioned and the solution uniqueness
is ensured, and rewrite (7)) as the following equivalent generalized Sylvester matrix
equation, AX(D — aB) + (E+aA)XB =C.

We mention the specific application of global Krylov subspace methods (see sec-
tion 4]), which are obtained by using the mapping M(X) = AX D+ EX B, therefore
they can be applied in general to the equation Zgzl A; XB; = C, as done in [46];
note that this kind of approach can only be applied to medium size problems, as
the matrix formulation involves dense matrices. We recall once again that there is
a tight relation between global methods and the Kronecker form, which provides a
good ground for the theoretical understanding of global methods.

A unique solution to the generalized Lyapunov equation

AXET + EXAT =, (7.2)

is ensured if and only if Theorem [ZI] applies, that is all eigenvalues of the pencil
(A, E) are finite, and they do not have pairwise zero sum. As a consequence, a unique
solution is only obtained if one of the matrices A, E is nonsingular. In this case one
can recast equation ([B3) as a standard Lyapunov equation.

To avoid stability problems caused by a possibly ill-conditioned FE or A, it is
usually preferred to work with F and A implicitly. This is realized by performing a
simultaneous Schur decomposition of £ and A, E = QSZ*, A = QT Z*, with S and

3Here the notion of disjoint spectra ([254) formula (7)]) should be intended keeping in mind
the definition of “spectral set” in generalized eigenvalue problems, as defined for instance in [236]
Definition VI.1.1].
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T (complex) upper triangular [I84]. Plugging in this transformation, 3] becomes
QT7*XZS*Q* + QSZ*XZ*T*Q* = C, that is

TXS* + SXT* = Q*CQ, X =27*XZ.

The elements of X can then be obtained by exploiting the structure of T and S [113].

A different approach adapts the matrix sign function iteration in (B3] to this
more general context, and it is shown in [27] that it is applicable under the hypothe-
sis that the Lyapunov equation is stable. In the case of C' in factorized form in (B3]),
a recurrence is proposed in [27] to generate an approximation to the Cholesky-type
factor of the resulting semidefinite solution X. Comparisons in terms of memory re-
quirements and floating point operations with respect to the generalized Hammarling
method (see [I94]) are also reported in [27]. We also refer the reader to [194] for some
estimates of the separatio and the condition number of the operator associated
with 33), which is important to assess the accuracy of the computed solution.

7.2. Bilinear, constrained, and other linear equations. Other generaliza-
tions of the Sylvester equation have attracted the attention of many researchers. In
some cases the standard procedure for their solution consists in solving a (sequence
of) related standard Sylvester equation(s), so that the computational core is the nu-
merical solution of the latter by means of some of the procedures discussed in previous
sections. We thus list here some of the possible generalizations more often encoun-
tered and employed in real applications. We start by considering the case when the
two coefficient matrices can be rectangular. This gives the following equation:

AX+YB=C, (7.3)

where X, Y are both unknown, and A, B and C are all rectangular matrices of
conforming dimensions. Equations of this type arise in control theory, for instance in
output regulation with internal stability, where the matrices are in fact polynomial
matrices (see, e.g., [262] and references therein). The following theorem is a first
result on the existence and uniqueness of the pair X, Y, and is reported as originally
stated in [209]; see also more recent advanced developments in [81].

THEOREM 7.2. ([209]) The necessary and sufficient condition that the equation
AX —-YB =C, where A, B, and C are m X r, s X n, and m X n malrices respectively
with elements in a field F, have a solution X,Y of order r x n and m X s respectively
and with elements in F is that the matrices

A C A 0
o5 e 0 s
be equivalent.
The matrix equivalence in the theorem can be explicitly obtained as

I Y [A C||I -X| _[A 0
0 I||0 B||0 I | |0 B|’
where Y and X are the solution matrices to the matrix equation ([3]). Solvability

conditions of this equation can be derived from [236, Chapter VI]; the result is stated
next.

MDefined as sep, (A, E) = min) x =1 |ATXE + ETXA||p, with p =2, F.
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PROPOSITION 7.3. ([236]) Assume A and B are nonsingular. Then the problem
AX +YB = C has a unique solution when the spectra of A and B are disjoint.
These are extensions of the analogous result for the standard Sylvester equation,
see ([A2]) and [209], [I30]. Note that by setting for instance U = [X;Y], equation
([C3)) can be rewritten as a
I, 0
AU M ‘U H e

in the single unknown matrix U [I55].
The two-sided version of ([[3]) is given by

AXD + EYB =C,

and this is an example of more complex bilinear equations with several left-hand side
terms considered in the literature; see, e.g., [271] and references therein.
A typical generalization is given by the following bilinear equation:

AXD + EXB =CY + F, (7.4)

where the pair (X,Y) is to be determined, and X occurs in two different terms.
Theoretical aspects are collected in [265], and also in [266], where closed forms for
(X,Y). In [270] general parametric expressions for the solution matrices X and Y
are also obtained, under the hypothesis that D is full rank and F' is the zero matrix.

The main objective in the aforementioned papers is in fact the solution of systems
of bilinear matrix equations:

(7.5)

A X+YB =04
A2X+YB2 = 02;

see, e.g., [140],[77], for which a recent perturbation analysis can be found in [I78].
These systems can arise, for instance, in the numerical treatment of systems of stochas-
tic partial differential equations, giving rise to large and sparse coefficient matrices;
see, e.g., (BI3) and [83]. The system () is an important step in deflating subspace
computations for pencils [144],[236], Ch.VI],[254]. Indeed, the system can be formu-
lated in terms of a transformation P~1(M — AN)Q onto a block diagonal form, of
the matrix pencil

A -Gy Ay —Cy
o[ G] e o)

The pair (X,Y) is sought such that

_ I -Y I X A 0 A 0
7)1<M_,\N)Q::|:O I](M—W)[O I:|:|:()1 Bl]_)\[()? B2:|.
Setting

L:(X,Y) = (41X +YB;, A,X + YBy),

the problem of solvability of (TH]) corresponds to that of determining when the op-
erator £ is nonsingular. It turns out that for (A4;, B;), i = 1,2 regular pairs, £ is
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nonsingular if and only if the spectra of (A;, By) and (Az, By) are disjoint [2306, The-
orem 1.11]; this result also leads to the one in Proposition The operator L is a
generalization of the corresponding operator for the Sylvester equation; its sensitivity,
in terms of distance to singularity can be defined analogously to the sep operator; see,
e.g., [146],[236, section VI.2.4].

From a numerical standpoint, the most reliable approach for small scale compu-
tations was proposed in [146] and further developed in [145], and it is based on the
stable generalized Schur method, which applies the QZ algorithm to the pairs of coef-
ficient matrices; a perturbation analysis is also included. Few other alternatives have
been explored so far, that go beyond a cleverly implemented Kronecker formulation.
The idea suggested in [77] amounts to “expanding” the two equations into a single
one of larger size, whose solution contains both X and Y, but requires the Jordan
decomposition of some of the coefficient matrices. A similar framework is used in [69]
where more than two unknown matrices are allowed, and an approximate solution
is obtained by means of a least squares approach. It is not clear how any of these
procedures can be adapted to the large scale setting.

The number of linear matrix equations and unknown matrices can in fact be
quite large, as discussed for instance in [45]. Necessary and sufficient conditions for
the resulting systems to have a solution pair are studied in [258]. Computationally
speaking, this general case has only been treated so far by using the Kronecker formu-
lation, so that only very small problems have been tackled; but see [271], where the
problem of solving the set of matrix equations is recast as an optimization problem.

A special class of nonlinear problems is given by the following Sylvester-Observer
equation, which stems from the problem of determining a reduced order observer model
[70], [I80]. Find matrices X,Y and Z such that

XA-YX =7ZC, FC(] invertible, (7.6)

where A and C are known matrices with C' having few rows. A solution to (6]
exists for any choice of spectrum of Y, therefore this spectrum can be predetermined;
a choice that makes Y a stable matrix also ensures convergence of the reduced order
observer; we refer the reader to [I80] for more details on these aspects. A possible way
to address the solution of ([Z.0)) is to choose Y and Z arbitrarily and then solve for X
the resulting Sylvester equation. Early approaches in this direction did not lead to a
numerically stable method. For small size matrices, the reduction to Hessenberg form
proposed by Van Dooren in [70] is still one of the most effective methods for solving
([CH). The algorithm is based on a reduction to “staircase form” of the pair (A, C),
and on the determination of the solution X with a particular structure in a different
coordinate system. We also refer the reader to [249] for a more detailed survey on
methods for dense matrices. More recently, other approaches have been proposed: for
instance, a block generalization of the method in [70] was proposed in [54]; moreover,
in [55] the authors proposed a block algorithm for determining a full rank solution,
and it seems to be most appropriate for large-scale problems with sparse A. In this
latter setting, a successful early method was proposed in [63]. The approach first
assumes that ZC' is rank-one and exploits the resemblance between the observer-
Sylvester equation and the Arnoldi relation [@IT). As a by-product of the method,
the authors in [63] also derive an algorithm for solving the partial-pole-assignment
problem for large and sparse A, which is generalized in [65] to higher rank of ZC.
The authors in [52] propose a new strategy for a-priori choosing the eigenvalues of Y
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that makes the algorithm in [63] more efficient. From a control theory point of view,
the possibility to determine a reduced order model is also important in the derivation
of stable closed-loop systems, giving rise to a well exercised eigenvalue assignment
problem. We refer the reader to, e.g., [66], for a brief survey on this and other related
problems.

Within the Sylvester-observer equation, we can formulate the problem in a slightly
different manner, namely by means of a constraint (see, e.g., [239],[246],[I85]), and
it can be stated as follows (see, e.g., [II]): Given A € R™™ stable, B € R"*P,
C € R™*" gnd F € Rv=m)x(n=m) = find Y e R(r=m)xm gnd X € RO=mIXn gych
that

XA—FX=YC, with XB=0, (7.7)

so that [X; C] is full rank.

The problem may be viewed as a homogeneous system of linear matrix equations,
a generalization of ([T, with two terms in X as in (C4), and C; = 0, Cy = 0;
however, there is no need to expand it by means of the Kronecker product. In [IT]
the authors provide necessary and sufficient conditions for a solution to (Z.17) to exist,
and propose an algorithm for its computation in the small-scale case. The main
ingredients are a QR factorization and the solution of a standard Sylvester equation.
In [93] a modification of this method was presented, to handle the case of almost
singular Sylvester equations. The large scale case has been recently addressed in [218]
by generalizing the method in [IT]. We also point to [56] for an approach that handles
a “regional pole-placement constraint” on F' in (1) for a descriptor system, and to
[62] and its references for further theoretical properties.

Going back to a single unknown matrix, other “generalized” Lyapunov equations
more in the spirit of (L2) include extra linear terms:

AX + XA* 4+ NXN* + CCT =0, (7.8)

and they stem, for instance, from complex dynamical systems like the one in (87). We
refer the reader to [I05] for sufficient conditions on the existence of the controllability
and observability Gramians; more complex forms involve more structured matrices IV,
see, e.g., [22],[58]. In fact, more terms of the type N;XN7, j=1,2,... could arise to
fulfill more general model requests. Polynomial and infinite dimensional systems are
also of interest, see, e.g., [267] and [60], respectively, and their references. In addition
to a robust Kronecker-form based iteration reviewed in [61, sec.3.1-4], Damm in [61]
proposed a regular splitting for the numerical solution of (), yielding the following
iterative scheme:

AXk+1 + Xk—i—lA* = -NX.N* — Cle, Xo =0,

which entails the solution of a sequence of standard Lyapunov equations. Convergence
to X is obtained if the spectrum of A is sufficiently away from the imaginary axis.
In [6T, sec. 4] the generalized case of the Lyapunov operator is also treated. In the
recent article [30] a thorough discussion and contextualization of the algebraic problem
in stochastic model order reduction can be found. In [22], various methods for the
Lyapunov equation, such as ADI and projection techniques, are adapted to the setting
of (L), including sparse format approaches for the Kronecker formulation; reported
experimental results on large problems seem to favor this latter approach, with the
caveat of tuning the sparsity and accuracy parameters, as described in section
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An approach that may be appropriate for large scale problems is implicitly sug-
gested in [8]. In the context of model order reduction, the following approximation
space is introduced:

range(V) = span { U range{V(k)}} , (7.9)

k=1
with range(V(1) := K,(A~!, A=1Cy) and
range(V(k)) = K, (A, A_lNV(k_l))7 k=2,...,m1.

Using a Galerkin approximation onto range(V'), the equation (Z.8]) can be reduced and
solved with a direct procedure; a possible implementation of this idea was recently
proposed in [29]. Another approach for solving multilinear systems in Kronecker form
was analyzed in [I61], for which a tensor-based form for the approximate solution is
considered. Such a strategy is well suited in the approximation of parameterized linear
systems, as they arise for instance in certain discretization strategies for the numerical
solution of stochastic partial differential equations [6]. Data sparse methods associated
with the Kronecker formulation may provide a possible successful venue for attacking
the general linear multi-term matrix equation (L2); to the best of our knowledge, no
attempts have been made in this direction so far for really large problems.

7.3. Sylvester-like and Lyapunov-like equations. Sylvester and Lyapunov-
like linear matrix equations of the form ([47], [40])

BX+ f(X)A=C, A'X+ f(X)A=C, B,AXeCm™ ™", (7.10)

with f(X) = X, f(X) = X7, f(X) = X*, or their “discrete-time” variants (see
section [G]) are less common; but see, for instance, ﬂﬂﬂﬂ for an occurrence in structured
eigenvalue computation. The homogeneous case (C' = 0) has been recently analyzed in
[243], where a complete description of the solution in terms of the Kronecker canonical
form of A+ Af(B) is derived, whenever information on this latter pencil is available.
These equations have attracted increasing interest in the past few years, with recent
contributions on the necessary and sufficient conditions for the solvability of this
equation, for any right-hand side matrix C' [133]; a different proof of this result that
also induces a numerical method is proposed in [253]. As a sample of this type of
result, in [51, Lemma 5.10] for f(X) = X', it is proved that a unique solution X
exists if and only if the pencil A — ABT is regular and if its spectrum is T-reciprocal
fre, with possibly the only exception of the unit eigenvalue, which should be simple.

Interestingly, it was recently shown that for A and B nonsingular, the problem
AX + X T B = C can be recast as a standard Sylvester equation. The following result
is proved in [71].

PROPOSITION 7.4. Assume that A and B are nonsingular. If X is a solution to
the matriz equation AX +XT B = C, then X is also a solution to the Sylvester matriz
equation

(B-TAX -X(A""By=B"'"C-B "CA™"B. (7.11)
The reverse also holds if (7.11) admits a unique solution X.

15A set of complex numbers {\1,..., Ay} is *-reciprocal free if \; # 1/A% for any 1 < i,j < k.
Typically, x = T or * = %, so that )\; is \j or Xj, resp.



Computational methods for linear matrix equations 51

Under the given hypotheses, this result allows one to solve the T-Sylvester equa-
tion by means of procedures for the standard Sylvester equation, with the caveat of
maintaining good stability properties of the problem.

Going back to the original formulation in ([TI0]), in [242] an algorithm that relies
on the generalized Schur decomposition of the pair (A, f(B)) (via the QZ algorithm)
is proposed to determine X for small A and B. For f(X) = X T this can be briefly
summarized as follows:

1) Decompose A = URV and BT = USV, with U, V unitary and R, S upper
triangular;

2) Compute £ =VCV'T,;

3) Solve STW + W TR = E element-by-element;

4) Form X = UWV.

The solution of the equation in step 3) is also treated in detail in [242].

Recent developments have considered the case where both A and B have large
dimensions. In particular, in [7I] projection methods are derived to solve the T-
Sylvester equation for the case when A and B are nonsingular. They generate right
and left approximation spaces V,, and W,,, respectively, satisfying BTV,, = Wi,
so that a suitable Petrov-Galerkin condition can be imposed. The reduction yields a
small Sylvester-like equation of the same form, which can be solved with the Schur
decomposition strategy above. The two approximation spaces can be chosen as any
of the Krylov-based spaces described in previous sections; we refer the reader to [71]
for algorithmic details.

In [268] a closed-form solution to the equation for f(X) = X is considered, to-
gether with the set of all possible solutions for (Z4]) and for the bilinear problem
AX 4+ BY = XF. Chiang, Duan, Feng, Wu and their collaborators have thoroughly
investigated these formulations and their role in control applications.

A particular extension of this class of problems is given by polynomial equations.
Consider a polynomial matrix R(¢) = Ry + Ri€+ -+ + R4 in the unknown ¢, where
R; are constant square matrices and such that det(R(€)) is not identically zero, and
let Z be a square polynomial matrix satisfying Z(¢) = Z(—¢) . The equation

R(=€)TX(&) + X(=¢) " R(¢) = Z(9),

in the square polynomial matrix X is called the polynomial Sylvester equation. This
special equation plays a role in the computation of integrals of quadratic functions of
the variables of a system and their derivatives (see, e.g., [240]), and in the stability
theory for high-order differential equations. In [I93] the authors focus on the case
when the right-hand side has the form Z(¢) = Q(—¢)"SQ(¢), where Q is a real
rectangular polynomial matrix in ¢ such that QR™! is a matrix of strictly proper
rational functions and ¥ is a diagonal, signature matrix. An iterative solution method
inspired by the method of Faddeev for the computation of the matrix resolvents is also
described; we refer the reader to [115] for a detailed derivation of the Faddeev sequence
in connection with the solution of Lyapunov and Sylvester equations. More general
equations include polynomial Diophantine matrix equations in the form D(£)X(£) +
N()Y (&) = F(&); in [T17] closed form solutions are presented, which could be used
to numerically solve small size equations. In the large scale setting, this problem is
computationally unsolved.

Finally, special attention should be paid to the homogeneous version of the
Sylvester-like equation previously discussed with B = A,

AXT +XA=0. (7.12)
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For each fixed complex matrix A, the solution space to this latter equation is a Lie
algebra equipped with Lie bracket [X,Y] := XY — Y X. We refer the reader to the
recent articles [241], [90] and their references for more details.

8. Software and high performance computation. Reliable software for solv-
ing matrix equations has been available for a long time, due to its fundamental role
in control applications; in particular, the SLICE Library was made available already
in 1986. Early in the 1990s the SLICOT library (http://www.slicot.org/,[247])
replaced SLICE, and since then a large number of additions and improvements have
been included; see, e.g., [230], [83]. Most recent versions of MatlaHq also rely on
calls to SLICOT routines within the control-related Toolboxes. SLICOT includes
a large variety of codes for model reduction and nonlinear problems on sequential
and parallel architectures; as a workhorse, both the Bartels-Stewart algorithm and
the Hessenberg-Schur algorithm are implemented. The Bartels-Stewart algorithm for
triangular matrices is also included as a standard in LAPACK. Functions for solv-
ing the Lyapunov equation are also available in other computational environments,
such as Mathematical]. Related projects have lead to the developments of addi-
tional codes, which are usually available either in more general websites or directly
from the authors. For instance, specifically oriented to linear matrix equations in
the Matlab framework, the lyapack set of routines developed by Penzl in [I98] has
been particularly successful as a possible implementation of the ADI method for large
scale Lyapunov equations, relying on preprocessing for the computation of quasi-
optimal parameters. These routines were included in the NICONET Project repos-
itory (http://www.icm.tu-bs.de/NICONET/). The MESS sefd by Saak, Mena and
Benner is the successor to the lyapack package, with the aim of fully exploiting the
capabilities of newer releases of Matlab. In addition, MESS allows for the solution to a
larger variety of matrix equations associated with the differential Riccati equation. A
rather detailed list of routines for solving control-related matrix equations is provided
in the book by Sima [221] and in the more recent book by Datta [64].

A number of benchmark problems have been made available for testing purposes.
In addition to those available in the NICONET website, a variety of datasets is avail-
able in the Oberwolfach collectior@, accompanied by a well documented description
of the originating application problems; see also the description in [159].

Refined implementations of structured linear equation methods have been pro-
posed for high performance computations. In particular, the efficient solution of tri-
angular and quasi-triangular Sylvester equations has been discussed in [204], [200]. A
high performance library for triangular Sylvester-type matrix equations (continuous
and discrete-time) is also available at http://www8.cs.umu.se/  isak/recsy/, while
a parallel SCALAPACK-style version of this software, called SCASY, is available at
http://www8.cs.umu.se/ granat/scasy.html. Some of the SLICOT routines are
overloaded in these libraries; see [141],[142],[98] for more information on the imple-
mentation on parallel architecture.

In [I28] an early parallel algorithm was developed to solve medium size (0 < n <
1000) Lyapunov problems with a banded and negative definite matrix A; experiments
with a shared memory multiprocessor machine (Alliant FX-8) can also be found. The
approach is similar in spirit to classical iterative linear system methods such as Jacobi

16MATLAB is a registered trademark of The MathWorks Inc.

I"Mathematica is a registered trademark of Wolfram Research.

18 Available at http://www.en.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/mess.php?lang=en
19 Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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and Gauss-Seidel. More recently, specialized parallel algorithms for Lyapunov, Stein
and other generalized matrix equations for different modern architectures have been
presented by a number of authors; see, e.g., [203] within the Cray T3E, [36],[37]
employing a cluster of PCs, [23] within hybrid CPU-GPU platforms. The use of
approaches based either on the square Smith iteration or on iterative techniques for
the matrix sign function, as opposed to the Schur decomposition, is key to obtain
good parallel performance.

Systems of matrix equations were implemented in a parallel environment in [45]
and references therein. A parallel algorithm for the small scale solution to the multi-
input Sylvester-observer equation (see section [[.2)) was proposed in [43], and tested
on two shared-memory vector machines.

9. Concluding remarks and future outlook. The solution of linear matrix
equations has always attracted the attention of the engineering and scientific commu-
nities. The reliability of efficient core numerical linear algebra methods has made the
solution of these matrix equations increasingly popular in application problem mod-
elling. A good understanding of the theoretical tools and of the variety of numerical
methods available for Sylvester-type equations provides a solid ground for attacking
more general - nonlinear, multi-term or multi-functional - matrix equations. In partic-
ular, the efficient solution of multi-term matrix equations as those in (L2 represents
the next frontier for numerical linear algebra, as it currently is one of the major bot-
tlenecks in the numerical treatment of PDEs involving stochastic terms. Advances in
this direction will be tightly related to those which are being made in the solution
of linear systems with tensor product structure, which in the simplest case can be
written as

k
Ax=0b with A=) 1,0 @I, @A &1, - OI,. (9.1)

j=1

This problem is a further level of generalization of the standard Sylvester equation,
where the solution is a k-way tensor, and its size explodes with k, even for mod-
est values of n; [I53]. The complex Kronecker structure arising in (0.I]) makes the
problem very hard to even analyze, and its size calls for truncation or reduction pro-
cedures that rely on approximation theory and on hierarchical data structures; see,
e.g., [104],[189],[190]. Scientific computing multi-dimensional applications can exploit
these data tools to considerably lower the computational complexity of their model;
see, e.g., [148] for a recent survey. Among the very recent projection methods used for
the solution of (@), we find Krylov subspaces based procedures, that considerably
generalize methods used for the two-dimensional case; see, e.g., [157],[9]. We envisage
that a lot of scientific research will be devoted to multi-term and multi-dimensional
problems in the forthcoming years.

We have limited our presentation mainly to linear problems. Non-linear matrix
equations have a crucial and ever increasing role in many applications: for instance,
the popular algebraic Riccati equation (see [164]) has a leading position in control
applications and is an important tool in eigenvalue problems; we refer the reader to
[42] for a very recent presentation of the rich literature on computational methods.
Other fully nonlinear equations include, e.g, matrix eigenvalue problems ([80],[182]),
and equations of the type X +A T F(X)A = @, where F is a properly defined nonlinear
function of X; see, e.g., [205] and references therein.

Linear matrix equations with special properties arise when dealing with periodic
dynamical systems. These problems give rise to periodic counterparts of the equa-
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tions we have analyzed, such as Lyapunov and Sylvester equations. Corresponding
Schur forms can be used for their solution, and necessary and sufficient conditions
for a periodic discrete-time system to be equivalent to a time-invariant system are
known; thorough treatments with developments on both the theoretical and algorith-
mic aspects, mainly on small size problems, have been carried out by R. Byers, P.
Van Dooren, J. Sreedhar, A. Varga and their collaborators.
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