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The problem

Ax =b n > 1000

Ax = Az, x| =1,

using Krylov subspace type methods

K,,(A,v) = span{v, Av, ..., A" v} v=">b— Auxy,

when A is either:
e Not known exactly

e Computationally expensive to deal with




Many applications in Scientific Computing

Av = F(v) function (linear in v)
Shift-and-Invert procedures for interior eigenvalues
Schur complement: A = BT S~1B S expensive to invert

Preconditioned system: AP~ 1z = b, where

1. . p—1




The exact approach

Key relation in Krylov subspace methods:

Avm — m—l—lﬂm UV = Vm+1615

System:
T, € Range(V,,) = K;,(A,0) =

Eigenproblem:

(0, z) eigenpair of H,, = (6,V,,2) Ritz approximation to (\, x)




The exact approach. The actual key quantity

System:

For r,,, = b— Ax,,:

T'm = b— Amem =0b— Vm—}—lﬂmym — m—l—l(elﬁ — ﬂmym)

Avmym — m—l—lﬂmym

Note: all components of y,, may change as m grows

Eigenproblem: (6, z) eigenpair of H,,:

" = OViz — AV, 2 =0V 2 — V1 H, 2 = vahmH,me%z




The inexact key relation

+14m 41

[f17f27“°7f’ln]

F,,, error matrix:

e Inexact A (all cases described earlier)

e Finite Precision Computation

e Deflation strategies in block methods

How large can Fj,, be allowed to be?

Tm = b — Amem =b— Vm+1ﬂmym — mem = Vm—|—1(€16 — ﬂmym) _mem

computed residual

T = OV, 2 — AV, 2z = vahmH,me%;z — F.z




Size of the error matrix F),

+141m41
[f17f2a"'7fm]

In practice:
Ame — Vm—l—le—i—ly + me

The correct question is: How large can F),y be allowed to be?

Note: y is given and || f;||'s can be controlled




A dynamic setting

Ame — Vm—l—le—i—ly + me

me:[flaf27“°7fm] ) :Zfﬂ?z
: =1

¢ The terms f;n; need to be small:
1 .
Il < —e ¥i = [Fuyll<e

omn; small = f; is allowed to be large




Linear systems: The structure of the solution

Ym = [N1;72; .. .;Nm] depends on the chosen method, e.g.

e Petrov-Galerkin (e.g. GMRES):  y,,, = argminy|je; 5 — H,,y||,

min - m

ri—1: GMRES computed residual at iteration 7 — 1.

Simoncini & Szyld, SISC 2003 (see also Sleijpen & van den Eshof, SIMAX 2004)

Analogous result for Galerkin methods (e.g. FOM)




Eigenproblem: The structure of the Ritz pair

Ritz approximation:

(0,z) eigenpair of H,,

2= n1;m2; - Mml,

Om,i quantity related to the spectral gap of 6 with H,,

ri—1: Computed eigenresidual at iteration 7 — 1

Analogous results for Harmonic Ritz values and Lanczos approx.

Simoncini, SINUM To appear




A practical example: Inexact coefficient matrix

At iteration 1: A - v; not performed exactly = (A+ E;)-v;

| E5|| (or ||E;v;]|) can be monitored

(e.g. Schur complement, Multipole methods, Multilevel methods, etc.)

Arnoldi relation: Vin = [v1, 02, ..., U]

[(A T El)vla (A + E2)/027 R (A T Em)vm]
AVm + [Elﬂl, EQUQ, e ey Em’Um]

\ 7

—F,,

True vs. computed residuals:

'm = b— Amem — m—i—l(elﬁ — ﬂmym> — mem
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Relaxing the inexactness in A
T'm = b— Amem — m—l—l(elﬁ — ﬂmym) — mem

with (A -+ Ez)vz Fm = [El’Ul, EQ’UQ, ce ,EmUm]

GMRES: If (Similar result for FOM)

O-min(ﬂm) 1
[ E:]| <

— E
m |71

1=1,....m

then

HmemH <e = Hrm — Vm+1(€16 — ﬂmym)H <e

ri—1: GMRES computed residual at iteration 7 — 1




An example: Schur complement

B'ST'Bx=b y; «— BTS™!Bu,
A

Inexact matrix-vector product:

Solve Sw; = Bwv; Approx solve Sw; = Bu;
=

Computey; = B w; Computey; = B w;

w; = W; + € €; error in inner solution

BT’l/ﬁi — BTwZ- — BTEi — (A + EZ)fUz
S—— =
A’Ui —Eq;vq;




Relaxation strategy for inner stopping criterion

AUZ' BT’UA}Z = BT’LUZ' — BTEZ' = (A -+ EZ)UL
—— =
A’Ui _Eivi

| E;v;|| can be monitored through the inner residual:

| Bv;|| < |BYS™Y| [|riomery], ri™eT inner residual at it. k

This, together with the requirement

Omin(ﬂm) 1
[ E:]| <

= e 1=1,...,m
m |71

allows to relax the accuracy with which we solve Sw; = Bwv; at each
iteration while outer convergence takes place




Numerical experiment: Schur complement

\BTS_lBJa: = b at each it. 7 solve Sw; = Buv;

A

Inexact FOM

[0}
ke
3
=
c
o)
o}
1S
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Eigenproblem

Inverted Arnoldi: Ax = Az Find min || y — A v

Matrix SHERMAND
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Problems to be faced

e Make the inexactness criterion practical

1

||

= Bl <

€

(series of CERFACS tr. of Bouras, Frayssé, Giraud, 2000)

e What is the convergence behavior?

e What if original A was symmetric?




Selecting ¢,,,.: system AP lx =1
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Right: estimated /,,,




Convergence behavior

Does the inexact procedure behave as if |E;|| = 07

The Sleijpen & van den Eshof’s example:

Exact vs. Inexact GMRES

b= €1
FE; random entries

inexact

residual norm

|
10 15
number of iterations




Inexactness and convergence

For general A and b convergence is the same as exact A

Problems for:
e Sensitive A (highly nonnormal)

e Special starting vector / right-hand side

* Superlinear convergence as for A (Simoncini & Szyld, SIREV 2005)




Flexible preconditioning

Flexible:

P~ 1y, — P,L._lvi, Tm Espan{vl,APl_l’Ul,APQ_l’U%

Directly recover x,, (Saad, 1993):

[Pl_lvla P_1U27 < 7P_1Um] — Zm = Lm = LZmYm

m

= |nexact framework but exact residual




A practical example

f I 0
g 0 B'B

Application of P~ corresponds to solves with B! B
Y

P = Use CG to solve systems with B' B

Variable inner tolerance: At each outer iteration m,

A,

HT outeTH

’LTLTLBT’H
I




Electromagnetic 2D problem
Outer tolerance: 108

Cn,.

ol

Il <

Eo = €

Elapsed Time

Pb. Size | Fixed Inner Tol | Var. Inner Tol. | Var. Inner Tol.
e=10"19 | e=10"1/||r|| | e = 10712 /|r|]
33810 17.0 (54) 11.4 (54) 14.7 (54)
9102 82.9 (58) 62.8 (58) 70.7 (58)
14880 198.4 (54) 156.5 (54) 170.1 (54)




Structural Dynamics

(A+oB)xr =10

Solve for many o's simultaneously = UBl+oDT=0

(Perotti & Simoncini 2002)

Inexact solutions with B at each iteration:

Prec. Fill-in 5 Prec. Fill-in 10

e-time [s] | # outer its | e-time [s] | # outer its
Tol 107° 14066 296 13344 289
Dynamic Tol 11579 301 11365 293

20 % enhancement with tiny change in the code




Inexactness when A symmetric

A symmetric = A + E; nonsymmetric

o Assume VI'V,, =1 — H,, upper Hessenberg

e Wise implementation of short-term recurr. /truncated methods
(Vin, non-orth. — W, H,, tridiag./banded — T,)

- Inexact short-term recurrence system solvers
(Golub & Overton 1988, Golub & Ye 1999, Notay 2000, Sleijpen & van
den Eshof tr.2002, ...)

- Truncated methods (Simoncini & Szyld, Num. Math. To appear)

- Inexact symmetric eigensolvers
(Lai, Lin & Lin 1997, Golub & Ye 2000, Golub, Zhang & Zha 2000, Notay
2002, ...)




A sym. (2D Laplacian)

Preconditioner:

P nonsymmetric perturbation (107°) of Incomplete Cholesky

2

10

norm of residual
magnitude

|
10 12 8 10 12 14 16
number of iterations number of iterations




Application: Computation of the exponential

A symmetric negative semidefinite (large dimension), v s.t. ||v|| =1,

exp(A)v = xp = Vi exp(Hy,)er = Vinym

Problem: Find preconditioner for A to speed up convergence
Hochbruck & van den Eshof (SISC To appear):

Determine z,, ~ exp(A)v as

T = Vintym € K (I —yA)", v)  for scalar v

= Ym = exp(H,,)e1 has a structured decreasing pattern

(Lopez & Simoncini, tr. 2005)




Conclusions

e A may be replaced by A + E; with ||E;|| increasing in norm and

still converge

e Stable procedure for well conditioned problems

Property inherent of Krylov approximation

4

Many more applications for this general setting
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