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-
Discretizations and heterogeneous variable setting

A given differential problem may depend on space variable and

> Time (high quality soln of heat-, wave-type equations, dynamical systems generally)

> Parameters (e.g., coefficients with uncertainty, model tuning)

Irrespective of this, discretization may lead to a component mixing via
AX _ f, A c Rnxn

Solution methods: Preconditioned Krylov subspace methods (CG, MINRES, GMRES,
BiCGSTAB, etc.)
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A given differential problem may depend on space variable and

> Time (high quality soln of heat-, wave-type equations, dynamical systems generally)

> Parameters (e.g., coefficients with uncertainty, model tuning)

Irrespective of this, discretization may lead to a component mixing via
AX _ f, A c Rnxn

Solution methods: Preconditioned Krylov subspace methods (CG, MINRES, GMRES,
BiCGSTAB, etc.)

As an alternative: Use a tensor space at the discretization phase
H xS

with & 7. spatial variables & S: time/parameter variables
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-
|dentity /Property-preserving algebraic formulations

Avoid the mixing

4

AX + XG =F, x = vec(X), f =vec(F), X eRMx"e
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|dentity /Property-preserving algebraic formulations

Avoid the mixing

4

AX + XG =F, x = vec(X), f =vec(F), X eRMx"e

Among the various solvers, Projection-type methods:
Assume F = F1F2T. Given low dim. approx spaces Kp, K¢, and V,,, W,, their bases
let X, := Vi, Yo W, X, = X

Galerkin condition: R := AX,, + Xn,GT — F1F2T 1L Kia®Kg

V) RW,, =0

Note: Ka, K¢ tiny wrto K(A, f) ‘

The hard-to-find space is V,,, = Krylov space based J
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Pausing on pros and cons

Current full-orth based Krylov subspaces may be “expensive” J

P> ‘“expensive’ in different ways: Memory, computation, communication, etc.

» General concern :
linear systems, eigenvalue problems, matrix function evaluations, etc.

Imperative

Keep the Krylov recurrence short and cheap!
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-
Several steps back. Short-term recurrences

Main ingredient: Krylov decomposition (Stewart, '01)
AUk = U B + w1 bj 4

with
- By is k x k, Rayleigh quotient

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by 1 = Bri1ex)
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Several steps back. Short-term recurrences

Main ingredient: Krylov decomposition (Stewart, '01)
AUk = U B + w1 bj 4

with
- By is k x k, Rayleigh quotient

- [Uk, uk+1] are linearly independent, build a Krylov space (here, by 1 = Bri1ex)

Procedures fitting this framework:

- Full orth Arnoldi (*)
Truncated Arnoldi, restarted Arnoldi

- Chebyshev, Newton, ... iterations

- Nonsymmetric Lanczos

Except for (*), all methods suffer from lack/loss of orthogonality properties! J

(Rich literature from the 1990s and early 2000s)
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-
Towards stabilized procedures

AU, = UiBy + uk+1b7§

* Let 7 : R7<(k+1) 5 Rsx(k+1) be 3 row selection operator with s > k + 1
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Towards stabilized procedures

AU, = UiBy + uk+1b7§
* Let 7 : R7<(k+1) 5 Rsx(k+1) be 3 row selection operator with s > k + 1

* Let J(U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, '14)

Ideal low-cost stabilization problem

Given Uii1 = [Uk, uk+1], for some s with k + 1 < s < n, find J giving the best
conditioned matrix

Uk+1 = Uk-»—l"'?i1

where j(Uk+1) = QR
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* Let 7 : R7<(k+1) 5 Rsx(k+1) be 3 row selection operator with s > k + 1

* Let J(U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, '14)

Ideal low-cost stabilization problem

Given Uii1 = [Uk, uk+1], for some s with k + 1 < s < n, find J giving the best
conditioned matrix

Uk+1 = Uk-»—l"'?i1
where j(Uk+1) = QR

Unrealistic:
» Solving this problem is expensive

» Columns of Uy are assumed not to be available simultaneously!
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Towards stabilized procedures

AU, = UiBy + uk+1b7§
* Let 7 : R7<(k+1) 5 Rsx(k+1) be 3 row selection operator with s > k + 1

* Let J(U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, '14)

Ideal low-cost stabilization problem

Given Uii1 = [Uk, uk+1], for some s with k + 1 < s < n, find J giving the best
conditioned matrix

Uk+1 = Uk-»—l"'?i1
where j(Uk+1) = QR

Unrealistic:
» Solving this problem is expensive

» Columns of Uy are assumed not to be available simultaneously!

Select J a priori = random subsampling, with row selection probability p;
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A randomly subsampled Krylov decomposition

Let Ux = UeR;

Randomized Krylov decomposition v.1 (Palitta, Schweitzer, Simoncini, '23)
It holds that

T(AU) = T(U) (B + dief) + arsixwes, arsr L T(Uk)

1. :§k + dej rank-one modification (last column) of §k = Rk_lBkRk

2. Randomized Krylov decomposition corresponds to J* J-orthogonalization of original
Krylov decomposition
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A simple example. Matrix function evaluation.

exp(A)v = Uk exp(gk + dkeg)erxo
n = 4900, s = 200 — similar results for s = 80 (kmax=40)

Nonsymmetric Lanczos iteration:
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Carrying on

Why non-symmetric Lanczos iterations?
» Pros: Inherently short-term recurrence (no truncation parameter!)

» Pros: Builds same Krylov subspace as all Arnoldi-type methods
» Cons: Requires A7

» Cons: Breakdown possible
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» Pros: Inherently short-term recurrence (no truncation parameter!)

» Pros: Builds same Krylov subspace as all Arnoldi-type methods
» Cons: Requires A7

» Cons: Breakdown possible

Is row subsampling enough?
» Row sampling cheap and easy fix
» Row sampling is often not enough as stabilizer
» Conditioning not necessarily low
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Carrying on

Why non-symmetric Lanczos iterations?
» Pros: Inherently short-term recurrence (no truncation parameter!)
» Pros: Builds same Krylov subspace as all Arnoldi-type methods
» Cons: Requires A7

» Cons: Breakdown possible

Is row subsampling enough?
» Row sampling cheap and easy fix
» Row sampling is often not enough as stabilizer
» Conditioning not necessarily low

Sketching strategies: Subspace embedding J
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Sketching strategies. Subspace embedding.

A (1= ¢€) £-subspace embedding for V € R"*¥ is an operator S such that

(1 =) Vxll3 < IS(V)I3 < (1 +e)[Vxll3,  Vx e R

The Subsampled Randomized Hadamard Transform
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Sketching strategies. Subspace embedding.

A (1= ¢€) £-subspace embedding for V € R"*¥ is an operator S such that

(1 =) Wxll3 < IS(V)I3 < (1 +e)Vx[l3,  Vx e R"

The Subsampled Randomized Hadamard Transform
A convenient such choice (Rademacher operator)

1

S(v) = N

PCDv, S() is an s X n matrix
with
D “rotation” (diagonal matrix from random distr. in {—1,1})

C fast cosine transform
P coordinate sampling

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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-
Subspace embedding in Krylov decomposition

S(AU) = S(U)(Bx + dke}) + qrsrxer,  qusr L S(Ux)
with
l1+4+¢
1—¢

Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

ra(U) <

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

Paradigm: Stabilize while constructing

At each iteration k
» Compute next Lanczos vectors uy, wy
»> Compute embedded vector S(uk)
»> Update QR of embedded basis (i.e. stabilization matrix Ry)
'S

Update and use §k + dieg
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Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

ra(U) <

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

Paradigm: Stabilize while constructing

At each iteration k
» Compute next Lanczos vectors uy, wy
»> Compute embedded vector S(uk)
»> Update QR of embedded basis (i.e. stabilization matrix Ry)
'S

Update and use §k + dieg

Enhanced stabilitization within non-sym Lanczos:
& Weak biorthogonality in Up,, V;,, (no parameters)
& Strong subsampled orthogonality in Uy,

Shared step: Two-pass strategy to recover problem solution (quick basis recostruction)
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..
Another example with nonsymmetric Lanczos
FD discretization of the operator
L(u) = —(exp(—xy)ux)x — (exp(xy)uy), — 100(x + y)u, + 500u,
such that n = 4900, v = randn (norm'd), s = 200
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Conclusions (so far)

» Randomized subsampling is a good compromise
> Sketching as pure stabilization procedure, for the more skeptical practitioners ;)

» Still many open issues to make sketching robust beyond “expectation”
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Lecturers of the Thirty-fourth Woudschoten Conference

(October 2009)
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Howard and me at Lake Tahoe, 2011
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