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Discretizations and heterogeneous variable setting

A given differential problem may depend on space variable and

▶ Time (high quality soln of heat-, wave-type equations, dynamical systems generally)

▶ Parameters (e.g., coefficients with uncertainty, model tuning)

Irrespective of this, discretization may lead to a component mixing via

Ax = f , A ∈ Rn×n

Solution methods: Preconditioned Krylov subspace methods (CG, MINRES, GMRES,

BiCGSTAB, etc.)

As an alternative: Use a tensor space at the discretization phase

H× S

with ♣ H: spatial variables ♣ S: time/parameter variables
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Identity/Property-preserving algebraic formulations

Avoid the mixing

⇓

AX + XG = F , x = vec(X ), f = vec(F ), X ∈ RnA×nG

Among the various solvers, Projection-type methods:
Assume F = F1F

T
2 . Given low dim. approx spaces KA, KG , and Vm,Wm their bases

let Xm := VmYmW
T
m , Xm ≈ X

Galerkin condition: R := AXm + XmG
T − F1F

T
2 ⊥ KA ⊗KG

V⊤
m RWm = 0

Note: KA, KG tiny wrto K(A, f )

The hard-to-find space is Vm ⇒ Krylov space based
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Pausing on pros and cons

Current full-orth based Krylov subspaces may be “expensive”

▶ “expensive” in different ways: Memory, computation, communication, etc.

▶ General concern :
linear systems, eigenvalue problems, matrix function evaluations, etc.

Imperative

Keep the Krylov recurrence short and cheap!
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Several steps back. Short-term recurrences

Main ingredient: Krylov decomposition (Stewart, ’01)

AUk = UkBk + uk+1b
∗
k+1

with

- Bk is k × k, Rayleigh quotient

- [Uk , uk+1] are linearly independent, build a Krylov space (here, bk+1 = βk+1ek )

Procedures fitting this framework:

- Full orth Arnoldi (*)

- Truncated Arnoldi, restarted Arnoldi

- Chebyshev, Newton, ... iterations

- Nonsymmetric Lanczos

Except for (*), all methods suffer from lack/loss of orthogonality properties!

(Rich literature from the 1990s and early 2000s)
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Towards stabilized procedures

AUk = UkBk + uk+1b
∗
k

⋆ Let J : Rn×(k+1) → Rs×(k+1) be a row selection operator with s > k + 1

⋆ Let J (U) = QR be the reduced QR decomposition of the subsampled matrix
(see, e.g., Woodruff, ’14)

Ideal low-cost stabilization problem

Given Uk+1 = [Uk , uk+1], for some s with k + 1 < s ≪ n, find J giving the best
conditioned matrix

Ûk+1 := Uk+1R
−1

where J (Uk+1) = QR

Unrealistic:

▶ Solving this problem is expensive

▶ Columns of Uk+1 are assumed not to be available simultaneously!

First practical compromise:

Select J a priori ⇒ random subsampling, with row selection probability pi
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A randomly subsampled Krylov decomposition

Let Ûk = UkR
−1
k

Randomized Krylov decomposition v.1 (Palitta, Schweitzer, Simoncini, ’23)

It holds that

J (AÛk) = J (Ûk)(B̂k + dke
∗
k ) + qk+1χke

∗
k , qk+1 ⊥ J (Ûk)

1. B̂k + dke
∗
k rank-one modification (last column) of B̂k = R−1

k BkRk

2. Randomized Krylov decomposition corresponds to J ∗J -orthogonalization of original
Krylov decomposition

V. Simoncini - Advances in space-time Krylov methods 7 / 15



A simple example. Matrix function evaluation.

exp(A)v ≈ Ûk exp(B̂k + dke
∗
k )e1χ0

n = 4900, s = 200 – similar results for s = 80 (kmax=40)

Nonsymmetric Lanczos iteration:
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Carrying on

Why non-symmetric Lanczos iterations?

▶ Pros: Inherently short-term recurrence (no truncation parameter!)

▶ Pros: Builds same Krylov subspace as all Arnoldi-type methods

▶ Cons: Requires AT

▶ Cons: Breakdown possible

Is row subsampling enough?

▶ Row sampling cheap and easy fix

▶ Row sampling is often not enough as stabilizer

▶ Conditioning not necessarily low

⇓

Sketching strategies: Subspace embedding
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Sketching strategies. Subspace embedding.

A (1± ε) ℓ2-subspace embedding for V ∈ Rn×k is an operator S such that

(1− ε)∥Vx∥22 ≤ ∥S(Vx)∥22 ≤ (1 + ε)∥Vx∥22, ∀x ∈ Rk

The Subsampled Randomized Hadamard Transform

A convenient such choice (Rademacher operator)

S(v) := 1√
sn

PCDv , S(·) is an s × n matrix

with
D “rotation” (diagonal matrix from random distr. in {−1, 1})
C fast cosine transform
P coordinate sampling

See, e.g., David Woodruff (2014), Martinsson and Tropp, Acta Num. (2020)
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Subspace embedding in Krylov decomposition

S(AÛk) = S(Ûk)(B̂k + dke
∗
k ) + qk+1χke

∗
k , qk+1 ⊥ S(Ûk)

with

κ2(Ûk) ≤
√

1 + ε

1− ε
Contributions within the “Krylov world”, Balabanov, Cortinovis, Grigori, Guettel, Kressner, Nakatsukasa,

Nouy, Palitta, Schweitzer, Timsit, Tropp, etc.

Paradigm: Stabilize while constructing

At each iteration k

▶ Compute next Lanczos vectors uk ,wk

▶ Compute embedded vector S(uk )
▶ Update QR of embedded basis (i.e. stabilization matrix Rk )

▶ Update and use B̂k + dke
∗
k

Enhanced stabilitization within non-sym Lanczos:

♣ Weak biorthogonality in Um,Vm (no parameters)

♣ Strong subsampled orthogonality in Um

Shared step: Two-pass strategy to recover problem solution (quick basis recostruction)
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Another example with nonsymmetric Lanczos

FD discretization of the operator

L(u) = −(exp(−xy)ux)x − (exp(xy)uy )y − 100(x + y)uy + 500u,

such that n = 4900, v = randn (norm’d), s = 200

exp(A− 1
2 )v ≈ Ûk exp((B̂k + dke

∗
k )

− 1
2 )e1χ0
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Conclusions (so far)

▶ Randomized subsampling is a good compromise

▶ Sketching as pure stabilization procedure, for the more skeptical practitioners ;)

▶ Still many open issues to make sketching robust beyond “expectation”
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