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Some matrix equations

• Sylvester matrix equation

AX+XB +D = 0

Eigenvalue pbs, Control, MOR, Assignment pbs, Riccati eqn, (fract) PDEs

Lyapunov matrix equation

AX+XA⊤ +D = 0, D = D⊤

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

Algebraic Riccati equation

AX+XA⊤ −XBB⊤X+D = 0, D = D⊤

Control, Stochastic PDEs, non-self-adjoint PDEs, ...

Focus: All or some of the matrices are large (and possibly sparse)
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equation:

AX +XA⊤ +BB⊤ = 0

No preconditioning to preserve symmetry

X is a large, dense matrix ⇒ low rank approximation

X ≈ X̃ = ZZ⊤, Z tall
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equations:

AX +XA⊤ +BB⊤ = 0

Kronecker formulation:

(A⊗ I + I ⊗A)x = b x = vec(X)
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Projection-type methods

Given an approximation space K,

X ≈ Xm col(Xm) ∈ K

Galerkin condition: R := AXm +XmA⊤ +BB⊤ ⊥ K

V ⊤

mRVm = 0 K = Range(Vm)

————————————

Assume V ⊤
m Vm = Im and let Xm := VmYmV ⊤

m .

Projected Lyapunov equation:

V ⊤

m (AVmYmV ⊤

m + VmYmV ⊤

mA⊤ + BB⊤)Vm = 0

(V ⊤

mAVm)Ym + Ym(V ⊤

mA⊤Vm) + V ⊤

mBB⊤Vm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

K = Km(A,B) = Range([B,AB, . . . , Am−1B])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

K = Km(A,B) +Km(A−1, A−1B),

that is, K = Range([B,A−1B,AB,A−2B,A2, A−3B, . . . , ])

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

K = Range([B, (A− s1I)
−1B, . . . , (A− smI)−1B])

usually, {s1, . . . , sm} ⊂ C
+ chosen a-priori

In both cases, for Range(Vm) = K, projected Lyapunov equation:

(V⊤

mAVm)Ym + Ym(V⊤

mA⊤Vm) + V⊤

mBB⊤Vm = 0

Xm = VmYmV
⊤
m
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Rational Krylov Subspaces. A long tradition...

In general,

Km(A,B, s) = Range([(A−s1I)
−1B, (A−s2I)

−1B, . . . , (A−smI)−1B])

• Eigenvalue problems (Ruhe, 1984)

• Model Order Reduction (transfer function evaluation)

• In Alternating Direction Implicit iteration (ADI) for linear matrix

equations
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Other related matrix equations

More “exotic” linear matrix equations

• Sylvester-like

BX + f(X)A = C

typically (but not only!)

f(X) = X̄, f(X) = X⊤, or f(X) = X∗

(Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Guillery, Hall,

Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov,

Watkins, Wu, ...)
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The ⊤-Sylvester matrix equations

Solve for X:

AX +X⊤B = C, (∗)

⇒ A unique solution exists for any C ∈ R
n×n iff A− λB⊤ is regular

and spec(A,B⊤) \ {1} is reciprocal free (with 1 with at most

algebraic multiplicity 1)

⇒ Small scale: Bartel-Stewart type algorithm

(De Teran, Dopico, 2011)

⇒ If X0 is the unique solution to the Sylvester eqn

AXA⊤ −B⊤XB = C − C⊤A−1B

then X0 is the unique solution to (∗)
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The large scale ⊤-Sylvester matrix equations

AX +X⊤B = C1C
⊤

2 , C1, C2 ∈ R
n×r, r ≪ n

Find:

X ≈ Xm = VmYmW
⊤

m ∈ R
n×n

Orthogonality (Petrov-Galerkin) condition:

W⊤

m(AXm +X⊤

mB − C1C
⊤

2 )Wm = 0

(the orthogonality space is different from the approximation space)

Reduced T-Sylvester equation:

(W⊤

mAVm)Ym + Y ⊤

m (V⊤

mBWm) = (W⊤

mC1)(W
⊤

mC2)
⊤

Key issue: Choice of Vm,Wm
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The selection of Vm,Wm

Exploit the generalized Schur decomposition:

A = WTAV
⊤ and B⊤ = WTBV

⊤

(W , V orthogonal) from which

B−⊤A = V T−1

B TA V ⊤ and B⊤V = WTB

B−⊤AV = V T−1

B TA and B⊤V = WTB

Therefore:

Range(Vm) ← good approx to invariant subspaces of B−⊤A

Range(Wm) = B⊤Range(Vm)

Range(Vm) = Km(B−TA,B−T [C1, C2]) Range(Wm) = B⊤Range(Vm)
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The selection of Vm,Wm

Range(Vm) = Km(B−⊤A,B−⊤ [C1, C2]), Range(Wm) = B⊤Range(Vm)

Algorithmic considerations:

• Range(Wm) = Km(AB−⊤, [C1, C2]) so that

Range(C1) ∪ Range(C2) ⊂ Range(Wm)

• If C1 = C2 then

Range(Vm) = Km(B−⊤A ,B−⊤ C1)

• The role of A and B can be reversed

(A → B⊤, B → A⊤, C1 ↔ C2)

Remark: Enriched spaces can be used...
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Computational considerations

n = 104. A and B: finite difference discretizations in [0, 1]2 of

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γ u

b(u) = −uxx − uyy, γ = 5 · 104

tol = 10−10 EK BK BK-TR EK-SYLV

iterations 8 83 8 8

dim. approx. space 32 166 16 32

time (seconds) 1.7 58.1 0.7 2.4

BK-TR: Standard Krylov subspace, roles of A and B reversed

All eigenvalues of B−⊤A are well outside the unit circle
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Computational considerations

n = 104. A and B: finite difference discretizations in [0, 1]2 of

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γu ,

b(u) = −uxx − uyy + 100xux , γ = 5 · 104

tol = 10−10 EK BK* BK-TR* EK-SYLV*

iterations 29 100 100 100

dim. approx. space 116 200 200 400

time (seconds) 10.9 70.7 63.8 521.2

eigenvalues of B−⊤A are now located inside and outside the unit circle
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Conclusions

• Significant advances in solving large linear matrix equations

• Multiterm equations require additional efforts
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