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Some matrix equations

e Sylvester matrix equation
AX+XB+ D=0

Eigenvalue pbs, Control, MOR, Assignment pbs, Riccati eqn, (fract) PDEs

e Lyapunov matrix equation
AX +XA"+ D=0, D=D"

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations, linear PDEs
e Generalized linear equations

A1XBy + AsXBy + ...+ A, XB, + D =0

Control, Stochastic PDEs, non-self-adjoint PDEs, ...
Focus: All or some of the matrices are large (and possibly sparse)



Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
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e No preconditioning - to preserve symmetry

e X is a large, dense matrix = low rank approximation
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Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 12 = b r =P 17
Is easier and fast to solve

Large linear matrix equations:

AX + XAT + BBT =0

Kronecker formulation:

(ARI+1I®A)xr=>b  x=vec(X)
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Projection-type methods

Given an approximation space K,
X~ X, col(X,,) € K
Galerkin condition: R := AX,, + X,,A' + BB' 1 K
V'RV, =0 IC = Range(V,,)

Assume VTIVm — 1,, and let X,,, := VmYmVTI.

Projected Lyapunov equation:

VAV Y V. + V.Y, VAT + BBV, = 0
(V.y AV, ) Yo + Yo (VN ATV, )+ V.V BBTV,, = 0

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K = Km(A, B) = Range(|B, AB,...,A™~1B])
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace

K=Kn(AB)+Kn(A A 'B),

that is, K = Range([B,A"'B,AB,A~2B,A* A=°B, ...

(Druskin & Knizhnerman '98, Simoncini '07)
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=KnA B)+ KA AB),

that is, K = Range([B,A"'B,AB,A 2B, A*, A=5B,...,])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K = Range([B, (A —s1)"'B,...,(A—s,1)"'B])
usually, {s1,...,8m} C CT chosen a-priori
In both cases, for Range(V,,,) = K, projected Lyapunov equation:
(Vo AV ) Yo + Yo (Vs ATV, + V) BBV, = 0
X =V Y Vi)
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Rational Krylov Subspaces. A long tradition...

In general,

K,,(A, B,s) = Range([(A—s11) " 'B,(A—s3I) B, ..., (A—s,1)" ' B])

e Eigenvalue problems (Ruhe, 1984)
e Model Order Reduction (transfer function evaluation)

e In Alternating Direction Implicit iteration (ADI) for linear matrix
equations
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Other related matrix equations

More “exotic” linear matrix equations

e Sylvester-like
BX + f(X)A=C
typically (but not only!)

fX)=X, f(X)=X", o f(X)=X"

(Bevis, Braden, Byers, Chiang, De Terdn, Dopico, Duan, Feng, Guillery, Hall,

Hartwig, lkramov, Kressner, Montealegre, Reyes, Schroder, Vorntsov,

Watkins, Wu, ...)
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The T-Sylvester matrix equations

Solve for X:
AX+X'B=cC, (%)

= A unique solution exists for any C € R™*" iff A — AB "' is regular

and spec(A, B")\ {1} is reciprocal free (with 1 with at most
algebraic multiplicity 1)

= Small scale: Bartel-Stewart type algorithm
(De Teran, Dopico, 2011)

= |f X is the unique solution to the Sylvester eqn
AXA' -B'XB=C-C"A™'B

then Xy is the unique solution to (x)
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The large scale T-Sylvester matrix equations

AX+X'"B=C\C), C,C e R r<n

Find:
X~ Xy =V Yo, W € R

Orthogonality (Petrov-Galerkin) condition:

W (AX,, + X! B —C,Cy W,, =0

(the orthogonality space is different from the approximation space)

Reduced T-Sylvester equation:

WAV, )Y + Y,V (VI BW,,) = W, CrYOW,] Co)T

Key issue: Choice of V,,, W,
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The selection of V,,,, W,,

Exploit the generalized Schur decomposition:
A=WTsV' and B' =WIgV'
(W, V orthogonal) from which
B '"A=VTZ'T4V' and B'V=WTg
B 'AV =V Tz'Ta and B'V =WTg

Therefore:

Range(Vi,) + good approx to invariant subspaces of B~ A

Range(W,,) = B'Range(V,,)
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The selection of V,,,, W,,

Exploit the generalized Schur decomposition:
A=WTsV' and B' =WIgV'
(W, V orthogonal) from which
B '"A=VTZ'T4V' and B'V=WTg
B 'AV =V Tz'Ta and B'V =WTg

Therefore:

Range(Vi,) + good approx to invariant subspaces of B~ A

Range(W,,) = B'Range(V,,)

Range(Vim) = Km (B~ " A, B~ " [C1,C3)), Range(Wp,) = B Range(Vi)
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The selection of V,,,, W,,

Range(Vm) = K (B~ T A, B~ [C1,C3)), Range(Wp,) = B ' Range(Vyn)

Algorithmic considerations:

e RangeW,,) = Kn,(AB~", [C1,C5]) so that
Range(C7) U Range(Cy) C Range(W.,)
o If C'7 = (5 then
Range(Vm) = Kn(B~"A, B~ C)

e The role of A and B can be reversed

(A= B'", B— A", C1 < (02)

Remark: Enriched spaces can be used...
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Computational considerations

n = 10%. A and B: finite difference discretizations in [0, 1]* of

a(u) = (—exp(—xy) uz)s + (—exp(xy) uy)y + 1002 uy + vy u
b(u) = —Upy — Uyy, v =5-10

tol =10"1Y | EK | BK | BK-TR | EK-SYLV
iterations | 8 33 3 3
dim. approx. space | 32 | 166 16 32
time (seconds) | 1.7 | 58.1 0.7 2.4

BK-TR: Standard Krylov subspace, roles of A and B reversed

All eigenvalues of B~ A are well outside the unit circle
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Computational considerations

n = 10%*. A and B: finite difference discretizations in [0, 1]* of

a(u) = (—exp(—2y) uz)z + (—exp(zy) uy)y + 100 2 uy + yu,

b(u) = —Ugy — Uyy + 1002 U, , v =5-10"
tol =10"1Y | EK | BK* | BK-TR* | EK-SYLV*
iterations | 29 100 100 100
dim. approx. space | 116 | 200 200 400
time (seconds) | 10.9 | 70.7 63.8 521.2

eigenvalues of B~ ' A are now located inside and outside the unit circle
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Conclusions

e Significant advances in solving large linear matrix equations

e Multiterm equations require additional efforts
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