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The problem

Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)

Elasticity problems

Mixed (FE) formulations of Il and IV order elliptic PDEs
Linearly Constrained Programs

Linear Regression in Statistics

Image restoration

... Survey: Benzi, Golub and Liesen, Acta Num 2005




The problem. The setting

A Bt
B -C

e [terative solution by means of Krylov subspace methods

e Structural properties. Focus for this talk:

* A symmetric positive (semi)definite

x B' tall (possibly rank deficient) or square nonsing.

* C' symmetric positive (semi)definite




Spectral properties

A BT
B -C

O< A, <--- <\ eigs of A

O=0,, <--- <0y sing. vals of B

Amax(C) >0, BBT +C full rank

spec(M) C [—a,—b]U[c,d], a,b,c,d >0

= A large variety of results on spec(M), also for indefinite and
singular A
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O< A, <--- <\ eigs of A

O=0,, <--- <0y sing. vals of B

Amax(C) >0, BBT +C full rank

spec(M) C [—a,—b]U[c,d], a,b,c,d >0

= A large variety of results on spec(M), also for indefinite and
singular A

= CG method not applicable (in general) = MINRES

= Search for good preconditioning strategies...




General preconditioning strategy
e Find P such that
MPlo=b a="Pu
is easier (faster) to solve than Mu = b
e A look at efficiency:

- Dealing with P should be cheap
- Storage requirements for P should be low

- Properties (algebraic/functional) should be exploited

Mesh /parameter independence

Structure preserving preconditioners




Block diagonal Preconditioner

* A nonsing., C = 0:

A 0
0 BA BT

I
(BA=1BT)"2BA~ 2
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MINRES converges in at most 3 iterations.  spec(P, > MP, ?) =




Block diagonal Preconditioner

* A nonsing., C = 0:

A 0
0 BA BT

I
(BA='BT)"2BA™ 2

MINRES converges in at most 3 iterations. spec(PO_E./\/lPO_E)

A more practical choice:

A0 1 o —1pT
~ spd. A~ A S~ BA "B
0 S

eigs of MP~1in [—a, —b] U [c,d], a,b,c,d >0

Still an Indefinite Problem




Giving up symmetry ...

e Change the preconditioner: Mimic the LU factors
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Giving up symmetry ...

e Change the preconditioner: Mimzic the LU factors

I O [A BT lA BT

M = = P =
BA-1 T O BA1BT (O O BA1BT +(C

e Change the preconditioner: Mimzic the Structure

_A BT_
M = =P~ M
B -C

e Change the matrix: Eliminate indef. M_ =

e Change the matrix: Regularize (C = 0)

MiMfy[

A BT A+ 1BTw—-1p BT
or Mfy — v
B AW B O




... But recovering symmetry in disguise

Nonstandard inner product:

Let W be any of MP~1 M_

For spec(W) in RT, find symmetric matrix H such that

WH = HW7T

(that is, W is H-symmetric)




... But recovering symmetry in disguise

Nonstandard inner product:

Let W be any of MP~1 M_

For spec(W) in R, find symmetric matrix H such that

WH = HW7T

(that is, W is H-symmetric)

If H is spd then

e VV is diagonalizable
e Use PCG on W with H-inner product



Constraint (Indefinite) Preconditioner

MP~! =

with II = B(BA=1BT 4+ C)~1BA—!

e Constraint equation satisfied at each iteration

e If C' nonsing = all eigs real and positive

o If B'C =0 and BB + C > 0 = all eigs real and positive

~

= More general cases, B




The Stokes problem

Minimize

J(u):%/Q|Vu|2dx—/Qf-udx

subject to V-u =0 in

Lagrangian: L(u,p) =J(u)+ JopV -udx

Optimality condition on discretized Lagrangian leads to:

A BT x
B -C Y

A second-order operator, B first-order operator, C' zero-order operator




A standard choice: block diagonal preconditioning

A 1 3 —1pT
spd. A~ A S~BA B
0

= if Z,A and g, BA~'B7T spectrally equivalent, e.g.,

Jaj,as >0 : Va #0, aral Ax < 2T Az < angZx,

then interval containing spec(M7P 1) is independent of mesh
parameter

= Krylov subspace solver MINRES will converge in a number of
iterations bounded independently of mesh parameter




An example. Stokes problem

IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

—A —grad —A
div

In algebraic terms:

I — mass matrix
~A = Algebraic MG

(spectrally equivalent matrix)

(cf. K.-A. Mardal & R. Winther
JNLAA 2011)




An example. Stokes problem

IFISS 3.1 (Elman, Ramage, Silvester): Lid driven cavity; Q2-Q1 approximation

—A —grad —A
div
i i size(M) | its | Time (secs)
In algebraic terms:

578 | 26 0.04

I — mass matrix 2178 | 26 0.14
— A — Algebraic MG 8450 | 26 0.50

(spectrally equivalent matrix) 132098 | 26 11.17

2D. Final residual norm < 10~°

(cf. K.-A. Mardal & R. Winther
JNLAA 2011)




The Stokes problem. Contraint preconditioning

| In 0ol |A
BA-' I.| 1o

with S ~ BA—1BT + C' spd




The Stokes problem. Contraint preconditioning

b A BT I I I
B BA-1BT _g§ BA-' 1.|ll0 =5

with S ~ BA—1BT + C spd

~

Selection of A, S: A = aMc(A), S = Q (pressure mass matrix)

IFISS 3.1 (Elman, Ramage, Silvester):
Flow over a backward facing step
Stable Q2-Q1 approximation n
(C'=0,BeR™™M) 1538
stopping tolerance: 107°

5890
23042
91138

362498

non-symmetric solver




Distributed optimal control for time-periodic parabolic equations

Joint work with W. Zulehner and W. Krendl

Problem: Find the state y(x,t) and the control u(x,t) that minimize

the cost functional

J(y,u) = / / ly(z,t) — yq(z, t)|? de dt + — / / lu(z,t)|? do dt

subject to the time-periodic parabolic problem

%y(fc,t) —Ay(z,t) = ulz,t) wmQx(0,T),
y(xz,t) = 0 on 02 x (0,T
y(x,0) y(z, T) in 2,

u(z,0) = u(x,T) in Q.

Here y4(x,t) is a given target (or desired) state and v > 0 is a cost or

regularization parameter.




Time-harmonic solution

Assume that y, is time-harmonic:  y4(x,t) = ya(z)e™?, w = 22E

Then there exists a time-periodic solution
y(x,t) = y(x)e™?t, u(x,t) = u(z)e™?, where y(x),u(x) solve:

Minimaize

5 [ 0@ = w@P do+ 5 [ Ju(@)? do

subject to

wy(z) — Ay(z) = u(z) in,
y(x) 0 on 0f)

Discrete version:

1

§(y —ya) My —yq) + gu*Mu, subject to wwMy + Ky = Mu

M, K real mass and stiffness matrices.




Solution of the discrete problem

Solution using Lagrange multipliers gives

M 0 K —iwM)
0 v M —M
0

Elimination of the control (vMwu = Mp) yields:

M K —wM
K+iwM  —i1M

Zulehner, 2011 (for w = 0); Kolmbauer and Kollmann, tr2011




Solving the saddle point linear system

After simple scaling,

[ M ¢MKWM1[y
VU (K +iw M) —M

|deal (Real) Block diagonal Preconditioner:

75D

P =

M+ v/ (K + w M) 0 ]

0 M+ v(K+wM)

e Performance. Accurate estimates for the spectral intervals:

spec(P 1 A) C [—1,—%] U [%1]

e Robustness. Convergence of MINRES bounded independently of
the mesh, frequency and regularization parameters (h, w, )




Distributed optimal control for the time-periodic Stokes equations.

The problem.

Find the velocity u(x,t), the pressure p(x,t), and the force f(x,t) that
minimaize the cost functional

T U T
I, f) = %/O /Q|u<x,t>—ud<x,t>|2 d dt+§/0 /QIf(a:,t)|2 do dt

subject to the time-periodic Stokes problem

%u(w, t) — Au(x,t) + Vp(z,t) f(x,t) in Q x (0,T),

V-u(z,t) 0 in Q x (0,T),
u(z,t) 0 on 02 x (0,T),
u(z,0) = in €2,

p(x,0) = in €2,
f(z,0) = in €.




Distributed optimal control for the time-periodic Stokes equations. |l

Similar solution strategy (time-harmonic solution, Lagrange
multipliers, scaling) leads to a familiar structure:

(new setting for w # 0)




Optimal preconditioning technique

M 0 V(K —iwM) —/vDT
0 0 0
VYK +iwM) —/vDT -M 0
—/vD 0 0 0

Ideal real Block diagonal preconditioner:

P
P=M+ /v(K+wM),
S=vD(M +v(K +wM))~" DT

S

e Performance. Accurate estimates for the spectral intervals:

spec(P~1A) C —%(1 +V5), —gb] U [qb, %(1 + \/3)} . ¢ =0.306...

e Robustness. Convergence of MINRES bounded independently of the mesh,
frequency and regularization parameters (h,w,v)




An example for the time-periodic Stokes constraint

w\v 102 109 102 10* 10°
102 48 32 22 20 20
109 48 36 32 32 32
102 62 62 62 62 62
104 60 60 60 60 60
106 30 30 30 30 30
108 16 16 16 16 16

(Taylor-Hood pair of FE spaces (P2-P1))

final tolerance: tol=10"12




Practical block diagonal preconditioning

|deal real Block diagonal preconditioner:

P=M+ \/v(K+wM),
S=vD(M +v(K +wM))" DT

Practical case:

S (1 +w\/;)Mp_1 —i—w\/ﬂKp_l

(Cahout-Charbard preconditioner)

with M, K, the mass matrix and the discretized negative Laplacian
in the finite element space for the pressure

= M), K, also replaced by, e.g., Multigrid versions

(Mardal, Winther, Bramble, Pasciak, Olshanskii, Peters, Reusken, ...)
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Convergence history. Staircase behavior

block diagonal precond

6 8
number of iterations




Explanation of the Staircase behavior

Both matrices have the form:

.A: A B* ECQTLXQTL
B —-A

with:

A € R™*™ symmetric and semidefinite

B € C™*™ complex symmetric (i.e., B = BT)

THEOREM: Assume that B is nonsingular. Then the eigenvalues 1 of
A come in pairs, (u, —p), with p € R.

(cf. Hamiltonian matrices)

Consequence: spec(.A) is symmetric with respect to the origin,
and spec(A) C [-b, —a] U [a, D]




Symmetric spectrum. Consequences.

A classical result (e.g., Greenbaum 1997): Consider the linear system Az = rg

Let A be a Hermitian matriz, with spectrum in [—a,—b] U [c,d], a,b,c,d > 0.
Assume that |b — a| = |d — ¢.

Then after m iterations, the MINRES residual ry, satisfies

Iroll <¢|—d ¢|b_> "

I7oll

Vad] + +/]bc]

For equal intervals (our case):
[rmll _ (d/c— 1>[m/2]
[roll = \d/c+1
= MINRES roughly behaves like CG on a matrix having only the squared (!)

positive eigenvalues




Attempts to bypass quasi-stagnation. The time-periodic parabolic case

M VUK —iwM)
VV(K +iwlM) —M

An alternative (indefinite) preconditioner - work in progress:

M+ /v(K —iwM)
M + /v(K + iwM) —M '

P =
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M VUK —iwM)
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An alternative (indefinite) preconditioner - work in progress:
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P =

Spectral independence wrto parameters: It holds that

spec(AP™1) C [21) x[-1,1]eCT

The actual rectangle may be much smaller, depending on v, w, h




Attempts to bypass quasi-stagnation. The time-periodic parabolic case

M VUK —iwM)
VV(K +iwlM) —M

An alternative (indefinite) preconditioner - work in progress:

M+ /v(K —iwM)
M + /v(K + iwM) —M '

P =

Spectral independence wrto parameters: It holds that

spec(AP™1) C [21) x[-1,1]eCT

The actual rectangle may be much smaller, depending on v, w, h
e Preconditioner not sensitive to K £ iwwM

e No results on eigenvectors




(Very) Preliminary numerical evidence. Time-periodic parabolic pb.

1072, n = 1741

— block diag precond

—e— indef.precond
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number of iterations

MINRES vs GMRES




(Very) Preliminary numerical evidence. Time-periodic parabolic pb.
Block diagonal preconditioner: MINRES # its

w\v 109 102 10* 10°
10—2 10 8 8 8
1070 14 14 14 14
102 30 30 30 30
106 30 30 30 30
108 10 10 10 10




(Very) Preliminary numerical evidence. Time-periodic parabolic pb.
Block diagonal preconditioner: MINRES # its

w\v 109 102 10* 10°
10—2 10 8 8 8
100 14 14 14 14
102 30 30 30 30
106 30 30 30 30
108 10 10 10 10

Block indefinite preconditioner: GMRES # its

w\r | 1078 1076 10=* 1072
102 42 32 15

10° 42 32 15

102 42 29 11

10% 11 5 4

106 3 3 2

Similar results with CGSTAB(¥)




A side consideration

Is the complex matrix formulation needed?

M V(K —iwM)
_\/E(K + iwM) —M

I 0 M VVK
iwyvl I |VvK —(1+vw?)M| |0

(similar transformation in the Stokes case)

Az =b < A2=5b

= Convergence estimates (and expected performance) for real

matrices




Final remarks

e Much is known about the behavior of structured preconditioners for well
established problems and formulations

e New problems provide new challenges

e Understanding the underlying Linear Algebra may be key
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