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Abstract. Given the square matrices A,B,D,E and the matrix C of conforming dimensions, we
consider the linear matrix equation AXE + DXB = C in the unknown matrix X. Our
aim is to provide an overview of the major algorithmic developments that have taken
place over the past few decades in the numerical solution of this and related problems,
which are producing reliable numerical tools in the formulation and solution of advanced
mathematical models in engineering and scientific computing.
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1. Introduction. Given the real or complex square matrices A,D,E,B and the
matrix C of conforming dimensions, we consider the linear matrix equation

(1) AXE +DXB = C

in the unknown matrix1 X, and its various generalizations. If E and D are identity
matrices, then (1) is called the Sylvester equation, as its first appearance is usually
associated with the work of J. J. Sylvester [240]; if in addition B = A∗, where A∗

is the conjugate transpose of A, then the equation is called the Lyapunov equation
in honor of A. M. Lyapunov and his early contributions to the stability problem of
motion; see [14] and the entire issue of the same journal. We shall mainly consider
the generic case, thus assuming that all the matrices involved are nonzero.

Under certain conditions on the coefficient matrices, (1) has a unique solution
with available elegant and explicit closed forms. These are usually inappropriate
as computational devices, either because they involve estimations of integrals, or
because their computation can be polluted with numerical instabilities of various
sorts. Nevertheless, closed forms and other properties of the solution matrix have
strongly influenced the computational strategies that have led to most algorithms
used today for numerically solving (1), in the case of small or large dimensions of the
coefficient matrices. Due to the availability of robust and reliable core algorithms, (1)
now arises in an increasingly larger number of scientific computations, from statistics
to dynamical systems analysis, with a major role in control applications and also as
a workhorse of more computationally intensive methods. In section 3 we will briefly
review this broad range of numerical and application problems.

Our aim is to provide an overview of the major algorithmic developments that
have taken place in the past few decades in the numerical solution of (1) and of
related problems, both in the small and large scale cases. A distinctive feature in
the large scale setting is that although the coefficient matrices may be sparse, the
solution matrix is usually dense and thus impossible to store in memory. Therefore,
ad hoc strategies need to be devised to approximate the exact solution in an affordable
manner.

Functions related to the solution matrix X, such as the spectrum, the trace, and
the determinant, also have important roles in stability analysis and other applica-
tions. Although we shall not discuss in detail the computational aspects associated

1Here and in what follows we shall use boldface letters to denote the unknown solution matrices.
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with these functions, we shall occasionally point to relevant results and appropriate
references.

Linear matrix equations have received considerable attention since the early 1900s
and were the topic of many elegant and thorough studies in the 1950s and 1960s,
which used deep tools of matrix theory and functional analysis. The field continues
to prosper with the analysis of new challenging extensions of the main equation (1),
very often stimulated by application problems. Our contribution is intended to focus
on the computational methods for solving these equations. For this reason, in our
presentation we will mostly sacrifice the theoretical results, for which we refer the
interested reader to, e.g., [90], [165], [131], [40].

The literature on the Lyapunov equation is particularly rich, due to the promi-
nent role of this matrix equation in control theory. In particular, many authors have
focused on numerical strategies specifically associated to this equation. As a conse-
quence, the Sylvester and Lyapunov equations have somehow evolved differently. For
these reasons, and to account for the literature in a homogeneous way, we shall first
discuss numerical strategies for the Sylvester equation, and then treat in detail the
Lyapunov problem. For A and B of size up to a few thousand, the Schur decompo-
sition based algorithm by Bartels and Stewart [15] has since its appearance become
the main numerical solution tool. In the large scale case, various directions have been
taken and a selection of effective algorithms is available, from projection methods to
sparse format iterations. Despite a lot of intense work in the past 15–20 years, the
community has not entirely agreed upon the best approaches for all settings, hence
the need for an overview that aims to analyze where the field stands at this point.

For A and B of the order of 104 or larger, the solution X cannot be stored
explicitly; current memory-effective strategies rely on factored low-rank or sparse
approximations. The possibility of computing a memory conserving good approximate
solution in the large scale case depends highly on the data. In particular, for C full
rank, accurate low-rank approximations may be hard, if not impossible, to find. For
instance, the equation AX+XA∗ = I with A nonsingular and symmetric admits the
unique solution X = 1

2A
−1, which is obviously full rank, with not necessarily quickly

decreasing eigenvalues, so that a good low-rank approximation cannot be determined.
The distinction between small, moderate, and large size is clearly architecture-

dependent. In what follows we shall refer to “small” and “medium” problem sizes
when the coefficient matrices have dimensions of a few thousand at most; on high per-
formance computers these dimensions can be considerably larger. Small and medium
size linear equations can be solved with decomposition-based methods on laptops with
moderate computational effort. The target for current large scale research is matrices
of dimensions O(106) or larger, with a variety of sparsity patterns.

Throughout the article we shall assume either that E,D are the identity or that
at least one of them is nonsingular. Singular E,D have great relevance in control
applications associated with differential-algebraic equations and descriptor systems
but require a specialized treatment, which can be found, for instance, in [164].

Equation (1) is a particular case of the linear matrix equation

A1XB1 +A2XB2 + · · ·+AkXBk = C,(2)

with Ai, Bi, i = 1, . . . , k, square matrices and C of dimension n ×m. While up to
15–20 years ago this multiterm equation could be rightly considered to be of mainly
theoretical interest, the recent developments associated with problems stemming from
applications with parameters or a dominant stochastic component have brought mul-
titerm linear matrix equations forward to play a fundamental role; see sections 3 and
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7.2 for applications and references. Equation (2) is very difficult to analyze in its full
generality, and necessary and sufficient conditions for the existence and uniqueness
of the solution X explicitly based on {Ai}, {Bi} are hard to find, except for some
very special cases [165], [157]. While from a theoretical viewpoint the importance of
taking into account the structure of the problem has been acknowledged [157], this
has not been so for computational strategies, especially for large scale problems. The
algorithmic device most commonly used for (2) consists in transforming the matrix
equation above into a vector form by means of the Kronecker product (defined below).
The problem of the efficient numerical solution of (2), with a target complexity of at
most O(n3 + m3) operations, has only recently started to be addressed. The need
for a low complexity method is particularly compelling whenever either or both Ai

and Bi have large dimensions. Approaches based on the Kronecker formulations were
abandoned for (1) as core methods, since algorithms with a complexity of a modest
power of the coefficient matrices’ dimension had become available. The efficient nu-
merical solution to (2) thus represents the next frontier for linear matrix equations,
to assist the rapidly developing application models.

Various generalizations of (1) have also been tackled in the literature, as they
are more and more often encountered in applications. This is the case, for instance,
for bilinear equations (in two unknown matrices) and for systems of bilinear equa-
tions. These are an open computational challenge, especially in the large scale case,
and their efficient numerical solution would provide a great advantage for emerging
mathematical models; we discuss these generalizations in section 7.

A very common situation arises when B = 0 and C is tall in (1), so that the
matrix equation reduces to a standard linear system with multiple right-hand sides,
the columns of C. This is an important problem in applications, and a significant
body of literature is available, with a vast number of contributions made in the past
thirty years, in particular in the large scale case, for which we refer the reader to [214]
and to the more recent list of references in [113].

After a brief account in section 3 of the numerous application problems where
linear matrix equations arise, we recall the main properties of these equations, to-
gether with possible explicit forms for their solution matrix. The rest of this article
describes many approaches that have been proposed in the recent literature: we first
treat the Sylvester equation when A and B are small, when one of the two is large,
and when both are large. Indeed, rather different approaches can be employed de-
pending on the size of the two matrices. We then focus on the Lyapunov equation:
due to its relevance in control, many developments have specifically focused on this
equation, therefore the problem deserves a separate treatment. We describe the algo-
rithms that were specifically designed to take advantage of the symmetry, while only
mentioning the solution methods that are common to the Sylvester equation. The
small scale problem is computationally well understood, whereas the large scale case
has seen quite significant developments made in the past ten years. Later sections
report on the computational devices associated with the numerical solution of various
generalizations of (1), which have been developed over the past few years.

2. Notation and Preliminary Definitions. Unless stated otherwise, throughout
the paper we shall assume that the coefficient matrices are real. Moreover, spec(A)
denotes the set of eigenvalues of A, and A�, A∗ denote the transpose and conjugate
transpose of A, respectively. For z ∈ C, z̄ is the complex conjugate of z.

A matrix A is stable if all its eigenvalues have negative real part, and negative
definite if for all unit 2-norm complex vectors x, the quantity x∗Ax has negative real
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part, namely, the field of values W (A) = {z ∈ C : z = x∗Ax, x ∈ Cn, ‖x‖ = 1} is
contained in the open left half complex plane. The notation A�0 (A�0) states that
A is a Hermitian and positive definite (semidefinite) matrix.

The vector ei denotes the ith column of the identity matrix, whose dimension
will be clear from the context; In denotes the identity matrix of size n, and the
subscript will be omitted when clear from the context. Throughout, given x ∈ Cn,
‖x‖ denotes the 2-norm of x, ‖A‖ or ‖A‖2 denotes the matrix norm induced by the
vector 2-norm, while ‖A‖F denotes the Frobenius norm of A = (ai,j)i=1,...,n,j=1,...,m,
that is, ‖A‖2F =

∑
i,j |ai,j |2. For the matrix 2-norm the condition number of a square

nonsingular matrix is defined as κ(A) = ‖A‖ ‖A−1‖, and analogously for the Frobenius
norm. The notation [A;B] will be often used to express the matrix obtained by
stacking the matrix B below the matrix A, both having conforming dimensions.

For given matrices A ∈ CnA×mA , A = (aij)i=1,...,nA,j=1,...,mA , and B ∈ CnB×mB ,
the Kronecker product is defined as

A⊗ B =

⎡⎢⎢⎢⎣
a11B a12B · · · a1mAB
a21B a22B · · · a2mAB
...

...
anA1B anA2B · · · anAmAB

⎤⎥⎥⎥⎦ ∈ C
nAnB×mAmB ;(3)

the vec operator stacks the columns of a matrix X = [x1, . . . , xm] ∈ Cn×m one after
another as

vec(X) =

⎡⎢⎣x1...
xm

⎤⎥⎦ ∈ C
nm×1.

We summarize some well-known properties of the Kronecker product in the following
lemma; see, e.g., [131].

Lemma 1. Some properties:
(i) vec(AXB) = (B� ⊗A)vec(X);2

(ii) If A ∈ Rn×n and B ∈ Rm×m, and λA ∈ spec(A), λB ∈ spec(B), then λAλB ∈
spec(A⊗B) (and every eigenvalue of A⊗B is the product of eigenvalues of
A and B);

(iii) With the notation of (ii), λA + λB ∈ spec(Im ⊗ A + B ⊗ In) (and every
eigenvalue of Im ⊗A+B ⊗ In is the sum of eigenvalues of A and B).

3. Applications. Matrix equations are ubiquitous in signal processing, control,
and systems theory; see, e.g., [4], [247], [90], [64], [32], [218], [60] and references therein.
Most time-dependent models accounting for the prediction, simulation, and control of
real world phenomena may be represented as linear or nonlinear dynamical systems.
Therefore, the relevance of matrix equations within engineering applications largely
explains the great effort put forth by the scientific community into their numerical
solution.

Linear matrix equations have an important role in the stability analysis of linear
dynamical systems and also take part in the theoretical developments of nonlinear

2Note the transposition without conjugation for B. For real matrices we shall not make this
distinction in what follows.
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systems. Consider the continuous-time linear system3

ẋ = Ax+B1u, y = B∗
2x,(4)

where x is the model state, u is the input, y is the output, and the matrices A,B1,
and B2 are time-invariant. Assuming A is stable, that is, its eigenvalues have negative
real part, then the solutions P and Q to the Lyapunov equations

AP+PA∗ +B1B
∗
1 = 0, A∗Q+QA+B2B

∗
2 = 0

are called the controllability and observability Gramians, respectively, and they are
used, for instance, to measure the energy transfers in the system (4); see [4, sec. 4.3.1].
Under certain additional hypotheses it may be shown that the symmetric matrices P
and Q are positive definite. These latter two matrices are key when one is interested
in reducing the original system into one of much smaller dimension, while essentially
preserving the main dynamical system properties. Indeed, balanced reduction, which
was originally used to improve the sensitivity to round-off propagation in filter design
[188], determines an appropriate representation basis for the system such that the
Gramians are equal and diagonal [4], so that the reduction of that basis will maintain
this property of the Gramians. The diagonal Gramians then contain information on
the output error induced by the reduced model.

Alternatively, if B1 and B2 have the same number of columns, one can solve the
Sylvester equation

AW +WA+B1B
∗
2 = 0,

thus obtaining the cross-Gramian W [86], which contains information on controlla-
bility and observability of the system. For B1, B2 with a single column, or for A
symmetric and B1, B2 such that B∗

2(zI −A)−1B1 is symmetric, it is possible to show
that W2 = PQ, so that the eigenvalues of W coincide with the square root of the
eigenvalues of PQ [87], [234]. In general, the latter are called the Hankel singular
values of the system, and they satisfy important invariance properties; see [4] for a
detailed discussion of these quantities and their role in model order reduction. A
different Sylvester equation was used in [91] to derive a numerical algorithm that
couples the two Gramians P and Q. Similar results can be stated for the case of the
discrete-time time-invariant linear systems

x(k + 1) = Ax(k) +B1u(k),(5)

y(k) = B∗
2x(k),

which are associated, for instance, with the discrete-time Lyapunov equation

AXA∗ −X+B1B
∗
1 = 0.

As a particular case of the linear equation in (1), the generalized Lyapunov equa-
tion

AXE∗ + EXA∗ = C(6)

has a special interest in control; see also recent applications in Hopf bifurcation iden-

3In the control literature, B1, B2 are usually denoted by B and C∗, respectively; we opted for a
slightly different notation because here B and C have a different meaning.
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tification in linear stability analysis [82], [184]. The case E �= I may arise in a control
problem, for instance, when a second- or higher-order ordinary differential equation
is discretized. Consider the linear time-invariant second-order system

Mq′′(t) +Dq′(t) +Kq(t) = B2u(t),

C2q
′(t) + C1q(t) = y(t),

where q(t) ∈ Rn is the displacement and u(t) ∈ Rm, y(t) ∈ Rp are the control input
and output, respectively. Then, by defining the matrices

E =

[
I

M

]
, A =

[
0 I

−K −D
]
, B =

[
0
B2

]
, and C = [C1, C2],

the second-order system can be rewritten as a first-order linear system

Ex′(t) = Ax(t) +Bu(t), y(t) = Cx(t),

with x(t) = [q(t); q′(t)], whose stability analysis gives rise to (6).
The Sylvester equation is classically employed for the design of Luenberger ob-

servers [182]; we refer the reader to section 7 for a more detailed discussion. Linear
matrix equations are also used in control theory as a technical tool for solving other
problems (see, e.g., [270], [90], [170], [193]) and for the reduction of nonlinear models;
see, e.g., [218], [32] and references therein.

The Sylvester equation often occurs in linear and generalized eigenvalue problems
for the computation of invariant subspaces by means of the Riccati equation [238],
[229], [68]. In fact, the algebraic Riccati equation itself, defined in the symmetric case
as

A∗X+XA−XFX+G = 0(7)

with F and G symmetric, provides a formidable setting for linear matrix equa-
tions: this quadratic equation is sometimes dealt with by solving a sequence of linear
Sylvester or Lyapunov equations with possibly varying known term and coefficient
matrices. The following Newton–Kleinman iteration is one of the leading methods for
solving (7) in the large scale case, whenever F = BB∗ and G = C∗C have low rank:

Algorithm 1. Given X0 ∈ R
n×n such that X0 = X∗

0, A
∗ −X0BB

∗ is stable:
1. For k = 0, 1, . . . until convergence:
2. Set A∗

k = A∗ −XkBB
∗.

3. Set C∗
k = [XkB, C

∗].
4. Solve A∗

kXk+1 +Xk+1Ak + C∗
kCk = 0.

At each iteration the most computationally intensive operation is step 4, which re-
quires the solution of a Lyapunov equation whose data changes at each iteration [42].

With the aim of controlling resonance modes in vibrating structures, Sylvester
equations also arise in solving quadratic eigenvalue assignment problems; see, e.g.,
[48]. Large eigenvalue problems are also a key step in the detection of a Hopf bifur-
cation in large scale dynamical systems that depend on some physical parameters.
However, it is possible to compute these parameters without actually computing the
relevant eigenvalues. In [184], it was shown that this can be performed by means of a
matrix inverse iteration procedure, which involves approximately solving a sequence of
large scale Lyapunov equations; see also [82]. Lyapunov equations are also a theoret-
ical and computational tool in the hydrodynamic stability theory of time-dependent
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problems, which is emerging as an attractive alternative to classical modal analysis in
the quantitative description of short-term disturbance behaviors [219]. A large list of
references on application problems where the Lyapunov equation plays an important
role is available in the last chapter of [90].

Different application areas have emerged that can take advantage of an efficient
solution of linear matrix equations. Problems associated with image processing seem
to provide a rich source. For instance, Sylvester equations can be used to formulate
the problem of restoration of images affected by noise [53]. The degraded image can
be written as g = f + η, where η is the Gaussian noise vector. A linear operator
(filter) L is applied to g to determine an estimate f̂ := Lg of the original image.
A possible choice for L is the Wiener filter L = Φf (Φf + Φη)

−1, where Φη is the
covariance matrix of the noise, while Φf = Φy ⊗ Φx is the covariance of f , assuming
that the variability in the vertical (y) and horizontal (x) directions are unrelated. The
minimum mean square error estimate f̂ of f can be computed by solving the linear
system (I +ΦηΦ

−1
f )̂f = g. For Φη = σ2

ηI, corresponding to white and Gaussian noise

η with variance σ2
η, the system is given by

(I + σ2
ηΦ

−1
y ⊗ Φ−1

x )̂f = g,

which is nothing more than the Kronecker formulation of a Sylvester equation.
A similar optimization model can be used in adaptive optics, a technology devel-

oped for the compensation of aberrations in optical systems or due to atmospheric
turbulence, which is mainly used in high quality astronomical observations and mea-
surements [208]. Within the image processing application, the problem of estimating
a three-dimensional object’s pose obtained from two-dimensional image sequences can
be stated as a constrained optimization problem [57]. This leads to the solution of
a sequence of small Sylvester equations. In fact, depending on the number of poses,
these linear matrix equations have more than two terms and can be formulated as in
(2); see [57].

The Sylvester equation was highlighted as a model problem in the solution of el-
liptic boundary value problems governed by the two-dimensional differential operator

L(u) = −∇ · (κ∇u)
by Ellner and Wachspress [80], who devised a matrix algorithmic version of the (differ-
ential) alternating-direction-implicit (ADI) algorithm of Peaceman and Rachford, and
this became the foundation of ADI-type methods for linear matrix equations. Wach-
spress showed that the constant coefficient second-order differential equation can be
used as a preconditioner for the original operator, and that the application of the pre-
conditioner amounts to solving a Lyapunov equation [254]. Sylvester equations can
also be used in the implementation of implicit Runge–Kutta integration formulae and
block multistep formulae for the numerical solution of ordinary differential equations
[84].

Discrete-time Sylvester and Lyapunov equations (see section 6) also arise, for
instance, in statistics and probability [152], [151], [150], [10], and as a building block
for solving the discrete-time algebraic Riccati equation [42].

Similarly to the Sylvester equation, the multiterm matrix equation (2) may be
viewed as a model problem for certain convection-diffusion partial differential equa-
tions. For instance, let us consider the following two-dimensional problem with sepa-
rable coefficients:

−εuxx − εuyy + φ1(x)ψ1(y)ux + φ2(x)ψ2(y)uy = f, (x, y) ∈ Ω,(8)
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with ε > 0 and, for the sake of simplicity, Ω = (0, 1) × (0, 1) with zero Dirichlet
boundary conditions. Using standard centered finite difference discretization for each
term and setting Uij := u(xi, yj), where (xi, yj) are interior grid nodes, i, j = 1, . . . , n,
we obtain

TU+UT +Φ1BUΨ∗
1 +Ψ2U(Φ2B)∗ = F, F = (f(xi, yj));(9)

here

T = − ε

h2
tridiag(1,−2, 1), B =

1

2h
tridiag(−1, 0, 1),

and

Φk = diag(φk(x1), . . . , φk(xn)), Ψk = diag(ψk(y1), . . . , ψk(yn)), k = 1, 2,

where h is the mesh size. Equation (9) is a four-term linear matrix equation in U and
was used in the early literature on difference equations; we refer the reader to, e.g.,
[41] for similar derivations. Common strategies then transform the problem above into
the following standard real nonsymmetric linear system by means of the Kronecker
product:(
I ⊗ T + T ⊗ I +Ψ1 ⊗ (Φ1B) + (Φ2B)⊗Ψ2

)
u = f̃ , u := vec(U), f̃ = vec(F ),

for whose solution a vast literature is available. We are unaware of any recent strate-
gies that exploit the matrix equation formulation of the problem for its numerical
solution, although the matrix structure may suggest particular preconditioning strate-
gies.

In the context of dynamical system analysis, multiterm matrix equations of the
type (2) arise in the numerical treatment of bilinear systems in the form (see, e.g.,
[118], [217])

ẋ(t) = (A+ u(t)N)x(t) +Bu(t), x(0) = x0, y(t) = Cx(t),(10)

which occur when the model accounts for a stochastic component by means of the
term involving N . Other generalizations of Gramians can thus be considered, which
can be written as the solution X to the multiterm linear matrix equation

AX+XA∗ +NXN∗ +BB∗ = 0,

together with its counterpart with respect to C∗C; note that extra terms of the form
NiXN

∗
i can be included in the sum; see [23] and references therein. The solution

X carries information on the reachability and observability properties of the state
vectors [107]. The one above is an example of linear jump systems (see [183]), in
which the linear coefficient matrices depend on a Markovian random process, giving
rise to systems of matrix equations with an extra term, accounting for the probabilistic
nature of the problem.

Another typical emerging setting where the multiterm matrix equation in (2)
arises is the analysis of uncertainty quantification in data modeling. For instance,
the stochastic steady state diffusion equation with homogeneous Dirichlet boundary
conditions is given by

(11)

{ −∇ · (c∇p) = f in D × Ω,
p = 0 on ∂D × Ω,
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where D is a sufficiently regular spatial domain and Ω is a probability sample space.
Both the forcing term f and the diffusion coefficient c have a stochastic component.
By properly discretizing the weak formulation of (11), and under certain assumptions
on the stochastic discretized space, one obtains the algebraic linear system (see, e.g.,
[85] and references therein)

Ap = f, A = G0 ⊗K0 +

m∑
r=1

√
λrGr ⊗Kr.(12)

By passing to the matrix formulation and introducing the matrix X of coefficients in
p, (12) can be rewritten as

K0XG
∗
0 +

m∑
r=1

√
λrKrXG

∗
r = F,(13)

where F contains the components of f and each column of F corresponds to a different
basis element in the probability space. In many simulations, while the underlying
mathematical formulation is still (11), the quantity of interest is c∇p, rather than p.
Using, for instance, the derivation in [89], a direct approximation to c∇p is obtained
by introducing the variable (flux) 
u = c∇p, which gives

(14)

{
c−1
u−∇p = 0 in D × Ω,
−∇ · 
u = f in D × Ω, p = 0 on ∂D × Ω.

By means of a discretization with proper (tensor products of) finite element spaces
of the weak formulation of (14) (see, e.g., [89], [85], [203]), one obtains the following
saddle point algebraic linear system:[

A B∗

B 0

] [
u
p

]
=

[
0
f

]
, A = G0 ⊗K0 +

m∑
r=1

√
λrGr ⊗Kr, B = G0 ⊗B0.(15)

The solution vectors u and p contain the two-dimensional coefficients of the (discrete)
expansions of 
u and p column by column. Once again, a closer look at the two equa-
tions above reveals that the matrix formulation could replace the Kronecker products.
Indeed, if U is the matrix such that u = vec(U), whose coefficients are (uj�), and
similarly for P, then the linear system above reads

K0UG
∗
0 +

m∑
r=1

√
λrKrUG

∗
r +B∗

0PG0 = 0,(16)

B0UG
∗
0 = F,(17)

with obvious meaning for F . This system is a natural generalization of the case in
(13) and may be thought of as a saddle point generalized matrix system. Such systems
of linear matrix equations will be discussed in section 7.2.

4. Continuous-Time Sylvester Equation. The continuous-time Sylvester equa-
tion is possibly the most broadly employed linear matrix equation and is given as

AX+XB = C,(18)

with A ∈ Rn×n, B ∈ Rm×m, and C ∈ Rn×m. In general, the dimensions of A and
B may be orders of magnitude different, and this fact is key in selecting the most
appropriate numerical solution strategy.
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A general result on the consistency of the Sylvester equation was given by Roth
in 1952 in [211] and reads: equation (18) admits a solution if and only if the matrices[

A −C
0 −B

]
and

[
A 0
0 −B

]
(19)

are similar; the similarity transformation matrix is given by[
I X
0 I

]
,

where X is the solution to (18).
Using the Kronecker product, the matrix equation in (18) can be rewritten as the

standard (vector) linear system

Ax = c, with
A = Im ⊗A+B∗ ⊗ In,
x = vec(X), c = vec(C),

(20)

from which we can deduce that the system admits a solution for any c, and this
is unique if and only if the matrix A is nonsingular. Taking into account Lemma
1(iii), this is equivalent to requiring that spec(A) ∩ spec(−B) = ∅ (see, e.g., [131,
Thm. 4.4.6]). In what follows we shall thus always assume that this latter condition
is satisfied, so that the solution to (18) exists and is unique; standard matrix analysis
books describe the case when this spectral condition is not satisfied (see, e.g., [131],
[168]). The homogeneous case, namely, when C = 0, can be handled correspondingly:
the matrix equation has only the trivial solution X = 0 if and only if spec(A) ∩
spec(−B) = ∅ [97, sec. 17.8].

The solutionX of (18) may be written in closed form in a number of different ways.
These forms were derived in different references throughout the 1950s and 1960s, with
contributions by E. Heinz, A. Jameson, M. G. Krein, E. C. Ma, M. Rosenblum, and
W. E. Roth, among others. A beautiful account of these early contributions can be
found in the survey by P. Lancaster [165], to which we also refer the reader for the
bibliographic references. Here we report the main closed forms:

(a) Integral of resolvents. The following representation, due to Krein, exploits
spectral theory arguments:

X = − 1

4π2

∫
Γ1

∫
Γ2

(λIn −A)−1C(μIm −B)−1

λ+ μ
dμdλ,(21)

where Γ1,Γ2 are contours containing and sufficiently close to the spectra of
A and B, respectively.

(b) Integral of exponentials. This representation, due to Heinz, is tightly con-
nected to the previous one:

X = −
∫ ∞

0

eAtCeBtdt,(22)

where eHt is the matrix exponential of Ht. Here the spectra of A and B are
assumed to be separated by a vertical line.

(c) Finite power sum. Let C = CAC
∗
B. Let am of degree m be the minimal

polynomial of A with respect to CA, namely, the smallest degree monic poly-
nomial such that am(A)CA = 0. Analogously, let bk of degree k be the
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minimal polynomial of B with respect to CB . Then

X =
m−1∑
i=0

k−1∑
j=0

γijA
iCBj

= [CA, ACA, . . . , A
m−1CA](γ ⊗ I)

⎡⎢⎢⎢⎣
C∗

B

C∗
BB
...

C∗
BB

k−1

⎤⎥⎥⎥⎦ ,(23)

where γ is the solution of the Sylvester equation with coefficient matrices
given by the companion matrices of am and bk and right-hand side given
by the matrix [1; 0; . . . ; 0][1, 0, . . . , 0] [69]; a block version of this result using
minimal matrix polynomials can also be derived [225].

(d) Similarity transformations. Strictly related to (c), in addition this form as-
sumes that A and B can be diagonalized, U−1AU = diag(λ1, . . . , λn) and

V −1BV = diag(μ1, . . . , μm). Let C̃ = U−1CV . Then

X = UX̃V −1, with x̃ij =
c̃ij

λi + μj
.

Other representations can be found in [165] and, for more general equations of
the same type, in [262]. We also mention that the columns of [X; I] span an invariant
subspace for the left matrix in (19), that is,[

A −C
0 −B

] [
X
I

]
=

[
X
I

]
S,(24)

where it holds that S = −B. Equation (24) has been used both to derive matrix
properties of the solution X and also to construct solution devices.

In [69] the closed form in (c) is used to derive results on the solution rank; results
on the nonsingularity of the solution based on the same conditions are also given
in [119]. For more general equations, corresponding nonsingularity conditions can
be found, e.g., in [261]. In [69], the controllability (resp., observability) of the pair
(A,CA) (resp., (B

∗, CB)) plays a crucial role.4

Early computational methods relied on one of the analytic expressions above; see
the account of early computational methods in [90]. Although these closed forms are
no longer used to solve the Sylvester equation numerically, they have motivated several
successful methods and they represent an important starting point for theoretical
investigations of numerical approaches.

4.1. Stability and Sensitivity Issues of the Sylvester Equation. In this section
we provide a brief account of the sensitivity issues encountered when solving the
Sylvester equation. The topic is broad, and it also involves the solution of related
matrix equations; we refer to the thorough treatment in [157] for a full account of the
perturbation theory of this and other important equations in control.

The sensitivity to perturbations of the solution X to (18) is inversely proportional
to the separation between A and −B, where the separation function of two matrices
A1 and A2 is defined as

sepp(A1, A2) = min
‖P‖p=1

‖A1P − PA2‖p,

4A pair (M,C) is controllable if the matrix [C,MC, . . . ,Mn−1C] has full row rank n, equal to
the row dimension of M ; (M,C∗) is observable if (M∗, C) is controllable.
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with p = 2, F ; see, e.g., [238]. This can be seen by recalling that the columns of
[X; I] are a basis for an invariant subspace for the first block matrix in (24). We refer
the reader to, e.g., [98, sec. 7.6.3], where the role of ‖X‖F in the conditioning of the
associated eigenvalues is emphasized. More specifically, it holds that

‖X‖F≤ ‖C‖F
sepF (A,−B)

.(25)

For nonnormal matrices, the bound above suggests that a good spectral distance
between A and−B might not be sufficient to limit the size of ‖X‖F , since sepF (A,−B)
can be much smaller than the distance between the spectra of A and−B. The function
sep plays the role of a condition number for the Sylvester operator

S : Rn×m → R
n×m, S(X) = AX +XB;(26)

numerical estimates for the sep function can be obtained by carefully adapting classical
strategies [49]. The occurrence of the sep function in the bound (25) suggests that
for small scale equations, algorithms that rely on orthogonal reduction should be
preferred for numerical stability. Methods that rely on more general transformations
X̃ = UXV −1 may transfer the ill-conditioning of the transformation matrices U and
V onto large errors in the obtained solution; moreover (see, e.g., [238, Exercise V.2.1]),

sep(A,B)

κ(U)κ(V )
≤ sep(UAU−1, V BV −1) ≤ κ(U)κ(V )sep(A,B).

A major difference between matrix equations and standard linear systems lies in
their stability properties. In particular, a small Sylvester equation residual does not
necessarily imply a small backward error [124, sec. 15.2]. Define the backward error
for an approximation X as

η(X) := min{ε : (A+ΔA)X +X(B +ΔB) = C +ΔC,

‖ΔA‖F ≤ ε‖A‖F , ‖ΔB‖F ≤ ε‖B‖F , ‖ΔC‖F ≤ ε‖C‖F },
and the residual as R = C − (AX+XB). Then [123]

η(X) ≤ μ
‖R‖F

(‖A‖F + ‖B‖F )‖X‖F + ‖C‖F ,(27)

where μ is an amplification factor depending on the data norms and on the singular
values of X. For instance, for n = m this factor has the expression

μ =
(‖A‖F + ‖B‖F )‖X‖F + ‖C‖F

((‖A‖2F + ‖B‖2F )σmin(X)2 + ‖C‖2F )
1
2

,

making the dependence on the norm and ill-conditioning of X more apparent. A
more complex situation occurs for n �= m; we refer the reader to [124, sec. 15.2]
for more details, and to [157] for a more thorough perturbation analysis. We also
mention that in [243] bounds for the norm of the solution X and of its perturbation
are obtained that emphasize the influence of the possibly low-rank right-hand side
on the sensitivity of the solution itself. The distribution of the singular values of
X plays a crucial role in the stability analysis of dynamical systems and also in the
quality of low-rank approximations. In section 4.4 we recall some available estimates
for the singular values that also motivate the development of low-rank approximation
methods.
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4.2. Sylvester Equation. Small Scale Computation. A robust and efficient
method for numerically solving Sylvester equations of small and moderate size was
introduced in 1972 by Bartels and Stewart [15], and with some modifications is still
the state of the art; in section 8 we give an account of current software, much of
which relies on this method. The idea is to compute the Schur decomposition of the
two coefficient matrices and then transform the given equation into an equivalent one
that uses the quasi-lower/upper triangular structure of the Schur matrices. This last
equation can then be explicitly solved element by element. To introduce the algorithm,
let us first consider the general case of complex A and B. Then the following steps
are performed (see, e.g., [98]):

Algorithm 2.
1. Compute the Schur forms A∗ = URU∗, B = V SV ∗ with R,S upper triangu-

lar.
2. Solve R∗Y +YS = U∗CV for Y.
3. Compute X = UYV ∗.

The Schur forms in the first step are obtained by the QR iteration [98], while the
third step is a simple product. It remains to explain how to solve the new structured
Sylvester equation in the second step. Since R∗ is lower triangular and S is upper
triangular, the (1,1) element of Y can be readily obtained. From there the next
elements of the first row in Y can also be obtained sequentially. Similar reasoning
can be used for the subsequent rows.

In the case of real A and B, the real Schur form may be exploited, where R
and S are now quasi-triangular, that is, the diagonals have 2 × 2 and 1 × 1 blocks
corresponding to complex and real eigenvalues, respectively. The solution process
can then use the equivalence between a 2 × 2 Sylvester equation and the associated
Kronecker form in (20); see, e.g., [223, sec. 2.3.1]. The same sequential process as
in the complex case can be employed to compute the elements of Y, as long as the
diagonal blocks can be made conforming; for nonconforming dimensions, a sequence
of small shifted linear systems needs to be solved; the details can be found in [15], [98,
sec. 7.6.3], [223, sec. 2.3.1]. The method outlined above is at the core of most linear
matrix equation solvers in software packages such as LAPACK5 and SLICOT [246],
[232], [27]. The leading computational cost is given by the Schur forms in the first
step, which for real matrices are nowadays performed in real arithmetic. Explicitly
computing the Schur form costs at least 10n3 floating point operations for a matrix
of size n [98]; to limit costs, the Bartels–Stewart algorithm is commonly employed
only if either A or B is already in Schur or upper Hessenberg form; see, e.g., [232].
For general matrices A and B, the method proposed by Golub, Nash, and Van Loan
in 1979 [99] can be considerably faster, especially if either m or n is significantly
smaller than the other. This latter method replaces the Schur decomposition of the
larger matrix, say, B, with the Hessenberg decomposition of the same matrix whose
computational cost is 5/3m3, which should be compared with 10m3 for the Schur
form [99]. We refer the reader to [223, sec. 2.3.1] for a more detailed comparison
of the computational costs. In [236], a variant of the Bartels–Stewart algorithm is
proposed: the forward-backward substitution in step 2 is performed by a columnwise
block scheme, which seems to be better suited for modern computer architectures
than the original complex version. In [143], [144], the authors propose an even more
effective implementation based on splitting the matrices, already in block triangular

5http://www.netlib.org/lapack/.
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form, and then recursively solving for each block. For instance, if A is much larger
than B (n ≥ 2m), then the original equation can be written as[

A11 A12

A22

] [
X1

X2

]
+

[
X1

X2

]
B =

[
C1

C2

]
,

with obvious meaning for the blocks. The second block equation gives the smaller size
Sylvester equation A22X2 +X2B = C2, which can again be split by using the block
triangular form of A22, and the solution is obtained in a recursive manner. Once
X2 is fully recovered, X1 can be computed by recursively solving with the updated
right-hand side in the first block equation above. Different size cases and different
triangular structures can be handled and are described in [143]. These advanced
strategies have been included in the software package RECSY6 and in LAPACK; see
section 8.

Iterative solution strategies for small size matrices have also been proposed: given
an initial guess X0, they determine a sequence of matrices X1, . . . ,Xk, . . . that con-
verge to X. These are related to a basic Newton iteration for approximating the
matrix sign function. In section 5.2.3 we will give more details in relation to the Lya-
punov equation, although the procedure can be used for stable Sylvester equations
as well [36]. These approaches are easier to parallelize than QR-based methods. For
instance, it is shown in [36] that they provide high efficiency and scalability on clusters
of processors.

To conclude, a special mention should be made of the Sylvester equation with
B = −A, yielding the so-called displacement equation

AX−XA = C,(28)

which measures how far A and X are from commuting; see, e.g., [96] for typical
applications in the context of structured matrices such as Cauchy-like and Toeplitz
matrices.

4.3. Sylvester Equation. Large A and Small B. When either n or m is large,
Schur factorization may require a prohibitive amount of space, due to the dense nature
of the corresponding large matrix. Selecting the most appropriate solver still depends
on whether the smaller matrix has very small dimension. Different approaches can
then be used when decomposing the small matrix is feasible.7 To fix ideas, and
without loss of generality, we shall assume that B is small (size less than 1000) and
A is large (size much bigger than 1000), so that m� n.

In this section we thus consider that the equation can be visualized as⎡⎣ A

⎤⎦⎡⎣X
⎤⎦+

⎡⎣X
⎤⎦ [B] =

⎡⎣C
⎤⎦ ,(29)

so that the large dimension of Amakes the methods discussed in section 4.2 unfeasible.
This situation arises, for instance, in the solution of eigenvalue problems [258, sec. 2.4,
sec. 6.6] and in (separable) boundary value problems [254], [256], [41]. We immediately
notice that for very small m, the transformation with the Kronecker product (20)
might be appealing, since the dimension of the linear system might be just a few (m)

6http://www8.cs.umu.se/˜isak/recsy/.
7Feasibility is machine architecture dependent; nonetheless, a matrix of dimension much less

than 1000 should be considered small.
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times that of A. However, projection methods acting on the original matrix equation
turn out to be extremely effective in this case, possibly explaining the sparsity of
attempts to pursue the Kronecker formulation. We next describe some of the standard
approaches currently employed in the literature and in applications.

Assume that B can be spectrally decomposed cheaply and stably. Then by writing
B =WSW−1 with S = diag(s1, . . . , sm), we obtain

AX̂+ X̂S = Ĉ, X̂ = XW, Ĉ = CW.(30)

For B Hermitian, W−1 =W ∗. Each column of X̂ can be obtained by solving a shifted
linear system (A + siI)(X̂)i = (Ĉ)i, where (X̂)i denotes the ith column of X̂. The
main steps can be summarized in the following algorithm:

Algorithm 3.
1. Compute the decomposition B =WSW−1.
2. Set Ĉ = CW .
3. For i = 1, . . . ,m solve (A+ siI)(X̂)i = (Ĉ)i.

4. Compute X = X̂W−1.

The shifted systems in step 3 can be solved simultaneously by using standard
solvers for algebraic linear systems, either direct or iterative; see, e.g., [214], [230] and
their references. We also note that step 3 is “embarrassingly parallel” when different
systems can be distributed on a multiprocessor machine.

If the eigendecomposition ofB is not appealing, then one can resort to a (complex)
Schur decomposition B = QRBQ

∗, giving AXQ +XQRB = CQ. Since RB is upper
triangular, these systems can still be solved using the shifted form, but this time in
sequence: letting rij be the (i, j) entry of RB and Ĉ = CQ, we have

(31) for i = 1, . . . ,m, (A+ riiI)(X̂)i = (Ĉ)i −
i−1∑
k=1

rki(X̂)k, X̂ = XQ.

Such an approach has been used in different contexts; see, e.g., [110], [234], [26], where
the Sylvester equation considered is occasionally called a sparse-dense equation.

For moderate n, the use of direct methods in (30) and (31) may entail the use of
complex arithmetic if the shifts si (eigenvalues) are complex, significantly increasing
the computational cost; the alternative of solving two real systems also leads to higher
computational costs. In addition, when the use of sparse direct methods appears to be
competitive, it should be noted that only the sparsity analysis step can be done once,
whereas the actual decomposition needs to be performed again for each distinct shift.

Major computational savings may be obtained if C is low rank, namely, C = C0R,
with C0 ∈ Rn×m̄ and m̄ < m. Indeed, the m shifted systems can be solved more
efficiently by working only with the common matrix C0. For the rest of this section
we assume that C is full rank and postpone the treatment of the low-rank case to
later, when we discuss the occurrence of large B. Indeed, the rank of C is key in
developing general projection methods, as is explained next.

Projection Methods. Let V be a subspace8 of Cn of dimension k, and let the
columns of Vk ∈ Cn×k span V . An approximate solution Xk with range(Xk) ⊂ V is

8We use complex arithmetic for V to allow for complex spaces also for real data, which may occur
when using rational Krylov subspaces with complex shifts. A careful implementation can construct
a real space if conjugate shifts are used. For the sake of generality we stick to complex arithmetic
for V .
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sought such that
Rk := AXk +XkB − C ≈ 0.

Several options arise, depending on the choice of V and the strategy to determine Xk

within the space V . For a given V , thus let Xk = VkYk ≈ X for some Yk ∈ Ck×m to
be determined. Recalling the operator S defined in (26), we observe that S generalizes
to the “block” B the concept of shifted matrices, namely,

x �→ (A+ βI)x = Ax+ xβ.

Therefore, it is very natural to extend the algorithmic strategies of linear systems
to the case of S. Extensions of the linear system solvers CG (FOM) and MINRES
(GMRES) can be thought of for A Hermitian (non-Hermitian), although the actual
implementation differs. All these solvers are derived by imposing some orthogonality
condition on the system residual. If we require that the columns of the matrix Rk be
orthogonal to the approximation space V in the Euclidean inner product, then we are
imposing the following Galerkin condition (see also (40)):

V ∗
k Rk = 0 ⇔ (I ⊗ Vk)

∗vec(Rk) = 0.

For simplicity, let us assume that V ∗
k Vk = I. Then

0 = V ∗
k Rk = V ∗

k AVkYk +YkB − V ∗
k C.(32)

The condition thus gives a new Sylvester equation of reduced size. Under the hy-
pothesis that spec(V ∗

k AVk) ∩ spec(−B) = ∅, (32) can be solved efficiently by one of
the methods discussed in section 4.2. The procedure above holds for any space V
and associated full-rank matrix Vk. Therefore, the effectiveness of the approximation
process depends on the actual selection of V . A well-exercised choice is given by the
block Krylov subspace

K�
k (A,C) = range([C,AC, . . . , Ak−1C]).(33)

The following result proved in [209, Lem. 2.1], [225] generalizes the well-known shift
invariance property of vector Krylov subspaces to the case of blocks, where the m×m
matrix B plays the role of the shift; the operator S is as defined in (26).

Proposition 2. Define Sj(C) = S(Sj−1(C)), j > 0, and S0(C) = C. Then

K�
k (A,C) = K�

k (S, C) := range([C,S(C), . . . ,Sk−1(C)]).

For the space in (33), the procedure outlined above is the complete analogue
of that giving rise to the full orthogonalization method (FOM) for m = 1 or for
B = 0. However, due to possible loss of rank in the basis, it was suggested in [209]
to generate the subspace with A rather than with S. As an example, Algorithm 4
describes an implementation of the projection method with the generation of the
block Krylov subspace and the determination of the approximation by imposing the
Galerkin orthogonality condition.

Algorithm 4. Given A,B,C:
1. Orthogonalize the columns of C to find v1 = V1.
2. k = 1, 2, . . .
3. Compute Yk, solution to (V ∗

k AVk)Y +YB − V ∗
k C = 0.



394 V. SIMONCINI

4. If converged, Xk = VkYk and stop.
5. Arnoldi procedure for the next basis block:

v̂ = Avk.
Make v̂ orthogonal wrt {v1, . . . , vk}.
Orthogonalize (wrt 2-norm) the columns of v̂ to get vk+1.
Update: Vk+1 = [Vk, vk+1].

For future reference, we remark that the Arnoldi procedure used in Algorithm 4
generates a matrix recurrence that can be written as

AVk = VkHk + v̂e∗k,(34)

where v̂ is the new block of basis vectors, prior to orthogonalization, and Hk contains
the orthogonality coefficients with Hk = V ∗

k AVk.
One could consider constraint spaces different from the approximation spaces; in

this case, a so-called Petrov–Galerkin condition is imposed on the residual. To this
end, let us consider the matrix inner product defined as

(35) 〈Y,X〉F = trace(Y ∗X), X, Y ∈ R
n×m.

Following the standard linear system case with m = 1 and using, e.g., the space
spanned by the columns of AVk, one might be tempted to impose the condition
(AVk)

∗Rk = 0 in the Euclidean inner product, giving

V ∗
k A

∗AVkYk + V ∗
k A

∗VkYkB − V ∗
k A

∗C = 0.(36)

In the standard (B = 0) linear system setting, this condition is equivalent to mini-
mizing the residual Rk in the Frobenius norm, that is,

min
Yk∈Rk×m

‖Rk‖F .(37)

However, for B �= 0, such equivalence does not hold, that is, the solution to (36)
is not a residual minimizing approximation. To attain a residual minimization, the
orthogonality condition should be applied to the operator S in (26) in the Frobenius
inner product (35); to this end, we note that the adjoint operator S∗ with respect to
the inner product in (35) is given by S∗(X) = A∗X +XB∗.

Proposition 3 (see [209, sec. 3]). Let Yk ∈ Rk×m and let Rk = AVkYk +
VkYkB − C be the associated residual. Then

Yk = arg min
Yk∈Rk×m

‖Rk‖F if and only if Rk ⊥F S(Km(S, V1)).

For the choice V = K�
k (A,C), the minimization process in (37) is the matrix

analogue of GMRES (for m = 1 or B = 0) (see [214, sec. 6.12]). Similar results are
discussed independently in [110]. Inspired by the “block shift” invariance of Propo-
sition 2, the authors of [209] provide a detailed description of the parallels that can
be drawn between solving (29) for m � n with Galerkin and residual minimizing
procedures and solving linear systems AX = C by means of block methods. Up-
per bounds for the residual norm of Galerkin and residual minimizing methods with
V = K�

k (A,C) are also provided in [209], together with numerical experiments on the
performance of the approaches.
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Preconditioned global Krylov subspaces have also been proposed as approximation
spaces [46], which, however, simply amount to a convenient implementation of a
subspace method for the Kronecker formulation of the problem; see also section 4.4.1.

An alternative choice of approximation space V has recently shown great poten-
tial compared with the block Krylov subspace and is given by the extended Krylov
subspace, defined as

EKk(A,C) := K�
k (A,C) +K�

k (A−1, A−1C).(38)

Since the spaces are nested, namely, EKk(A,C) ⊆ EKk+1(A,C), the space can be
generated iteratively, allowing one to improve the approximate solution as the recur-
rence proceeds. For A large and sparse, experiments in [227] show that the good
performance of the derived method seems to fully compensate for the high costs of
solving linear systems with A at each iteration.

4.4. Sylvester Equation. Large A and Large B. In the most general case, both
A and B have large dimensions. This setting arises in many situations, such as in
the discretization of separable PDEs [80] or in the computation of the cross-Gramian
in control [4]. A particularly important observation is that the dimensions of A and
B determine that of X, and that although A and B may be sparse, X is dense, in
general. In this context, the distribution of the singular values of X plays a key role
in the development and convergence analysis of iterative solution methods. Indeed, a
Sylvester equation having solution with exponentially decaying singular values can be
well approximated by a low-rank matrix. The possibility of writing C = C1C

∗
2 with

C1, C2 with low column rank is crucial to obtaining good low-rank approximations
to X, thus avoiding the storage of the whole matrix, which is in general prohibitive.
We recall here the result described by Sabino in [215, Thm. 2.1.1], while Sabino’s
Ph.D. thesis contains further discussion related to this bound. Here K and K ′ are
the complete elliptic integrals of the first kind9 [1]. Additional considerations and
results are postponed to the Lyapunov equation case considered in section 5.

Theorem 4. Let A and B be stable and real symmetric, with spectra contained
in [a, b] and [c, d], respectively. Define η = 2(b− a)(d− c)/((a+ c)(b+ d)). Assume C
is of rank p. Then the singular values σ1 ≥ · · · ≥ σmin{m,n} of the solution X to (18)
satisfy

σpr+1

σ1
≤
(
1−√k′r
1 +
√
k′r

)2

, 1 ≤ pr < n,

where k′r = 1/(1+η+
√
η(η + 2)) is the complementary elliptic modulus corresponding

to the nome qr, q := exp(−πK ′/K).

A more accessible and practical estimate for B = A(= A∗) and small condition
number κ(A)= ‖A‖ ‖A−1‖ may be obtained as [215]

σpr+1

σ1
� 4exp(−π2r/ log(4κ(A))).(39)

A rule of thumb suggested in [215, Rule of Thumb 2.1.4] is that if κ(A) is on the order
of 10q, then the ratios of σj/σ1 decrease by a factor of 10 for every increase in j by
p(q + 1)/2.

9They are defined as K = K(k) =
∫ 1
0 [(1− t2)(1 − kt2)]−1/2dt and K ′ = K(1− k), with k being

the modulus, k =
√

1− (k′)2, while the complementary elliptic modulus k′ is given.
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Easy-to-use variants of (39) in [215] are favorably compared with earlier estimates
in [199]. Results for A and B nonsymmetric are scarce; nonnormality can strongly
influence the solution numerical rank and the singular value decay, so that results de-
part significantly from the bound above. A satisfactory understanding of the singular
value decay for nonnormal coefficient matrices is still lacking.

From a numerical analysis viewpoint, we notice that the main rational approxi-
mation ingredients used for results of the type above are the same as those obtained
for rational space projections and ADI-type iterations (see sections 4.4.1 and 4.4.2),
which also rely on minimax rational approximations; in fact, the result above is inti-
mately related to similar estimates for ADI by Ellner and Wachspress in [80], [81].

Numerical methods in the literature have mainly proceeded in three directions:
projection-type approaches (mostly based on the Krylov subspace family), matrix
updating sequences (such as ADI iterations), and sparse data format recurrences.
Combinations of these approaches have also been explored.

The convergence rates of the strategies in the first two categories above strongly
depend on the spectral properties of the coefficient matrices (eigenvalues or field of
values). For those problems with unfavorable spectral properties, for instance, with
fields of values of A and −B close to each other, the most efficient available methods
rely on iterations that involve solving linear systems at each step, either with A or
with A + σI for some appropriately chosen σ. For A large but very sparse, these
solves can be conveniently carried out by means of direct methods. On the other
hand, if the direct solution with A becomes prohibitively expensive, in terms of CPU
time or memory requirements, an (inner) iterative solution of the linear systems with
A + σI is performed at each step, giving rise to an inner-outer procedure. In this
case, one usually talks about “inexact solves,” unless the iterative process allows one
to reach machine precision accuracy. Such a consideration noticeably influences the
evaluation of the computational costs of these methods, whose performance is thus
problem dependent.

Due to the important role the Lyapunov equation has in control problems, many
authors have developed numerical procedures specifically for that equation, and not
for the Sylvester equation, although in many cases they could be extended to the latter
in a natural manner. For historical reasons, and also to avoid constant reference to the
equation context, we will refer to the literature in the way the methods were originally
presented. In particular, it will be apparent that the literature on Lyapunov equations
is richer than that for the Sylvester equation, especially in the large scale case.

We also notice that, as a major distinction from linear vector equations, the
numerical solution of matrix equations cannot directly rely on preconditioning strate-
gies, unless the Kronecker formulation is employed. Indeed, preconditioning methods
would necessarily destroy the symmetry properties of the problem, which allows one
to deal with computational costs that depend on powers of n and m, but not on
powers of n ·m. As an example, let us assume that a nonsingular matrix P exists10

such that P−1A and P−1B∗ have better spectral properties than the original matri-
ces; for A,B symmetric, this requirement corresponds to a better clustering of the
eigenvalues. Then we could consider applying P as follows:

P−1AXP−∗ + P−1XBP−∗ = P−1CP−∗.

To be able to rewrite such an equation in terms of a single unknown matrix, one could

10One could also consider the existence of two matrices, one for A and one for B∗.
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premultiply and postmultiply X by P−1 and P−∗, that is,

(P−1AP )P−1XP−∗ + P−1XP−∗(P ∗BP−∗) = P−1CP−∗.

Unfortunately, this transformation yields coefficient matrices that are similar to the
original ones, thus the eigenvalues are unchanged. This simple example shows that
different acceleration strategies need to be developed for the Sylvester equation; re-
search has thus focused on constructing information-rich approximation spaces by
using spectral transformations, rather than preconditioning as is done in eigenvalue
computations.

4.4.1. Projection Methods. When both n and m are large, the dense solution
matrix X of (18) cannot be stored, therefore the determination of a memory sav-
ing approximation becomes mandatory. Whenever C = C1C

∗
2 has low rank, the

results discussed in section 4.4 suggest that a low-rank approximate solution can be
determined, so that projection strategies are very appealing. Indeed, these methods
compute low-rank approximations X̃ = VkYW

∗
j ≈ X, with Vk and Wj that have far

fewer columns than n and m, respectively, and are generalizations of the procedure
seen in section 4.3.

Let V and W be two subspaces of Cn, in principle not necessarily of the same
dimension, and let the k (j) columns of Vk (of Wj) be orthonormal bases for V (for
W), with k � n, j � m, such that V is not orthogonal to range(C1) and W is not

orthogonal to range(C2). We look for an approximation X̃ = VkYW
∗
j ≈ X, and we

let R := C1C
∗
2 − AX̃ − X̃B be the associated residual. Then we have x̃ = vec(X̃) =

(Wj ⊗ Vk)vec(Y), where x̃ is an approximate solution of (20). Imposing a Galerkin
(orthogonality) condition to the vector residual c − Ax̃ in (20) with respect to the
space spanned by Wj ⊗ Vk corresponds to writing

(Wj ⊗ Vk)
∗(c−Ax̃) = 0 ⇔ V ∗

k RWj = 0.(40)

Other conditions could be considered, such as the minimization of the residual in some
norm, or the orthogonality of the residual with respect to some other space; see, e.g.,
[132], [130], [179].

If the columns of Vk and Wj span the spaces K�
k (A,C1) and Kj

�(B∗, C2), re-

spectively, as in (33), then the obtained approximate solution X̃ = VkYW
∗
j may also

be written as

X̃ = [C1, AC1, . . . , A
k−1C1]G[C2, B

∗C2, . . . , (B
∗)j−1C2]

∗

for some matrixG, showing that projection methods yield a polynomial approximation
to X, which may be viewed as particular truncations of the finite sum closed form of
the solution in (23); see [225] for more details on this formulation.

Substituting the residual matrix in the equation V ∗
k RWj = 0 gives the following

small size Sylvester equation:

V ∗
k AVkY +YW ∗

j BWj = V ∗
k C1(W

∗
j C2)

∗.(41)

If V ∗
k AVk and −W ∗

j BWj have disjoint spectra, then this equation admits a unique
solution for any right-hand side. By assuming that the fields of values of A and −B are
disjoint, one can ensure that V ∗

k AVk and −W ∗
j BWj have disjoint spectra. Though

restrictive, such an assumption is welcome also for stability purposes, to monitor
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that the solution X has moderate norm. A typical implementation which proceeds
simultaneously with both spaces is depicted in Algorithm 5.

Algorithm 5. Given A,B,C1, C2:
1. Orthogonalize columns of C1 to get v1 = V1.
2. Orthogonalize columns of C2 to get w1 =W1.
3. For k = 1, 2, . . .
4. Compute Yk, solution to (V ∗

k AVk)Y +Y(W ∗
kBWk)− V ∗

k C1C
∗
2Wk = 0.

5. If converged, return Vk,Yk,Wk s.t. Xk = VkYkW
∗
k and stop.

6. Compute next bases block:
Compute v̂ and ŵ for the chosen approximate space.
Make v̂ orthogonal wrt {v1, . . . , vk} and ŵ orthogonal wrt {w1, . . . , wk}.
Orthogonalize columns of v̂ to get vk+1 and columns of ŵ to get wk+1.
Update: Vk+1 = [Vk, vk+1], Wk+1 = [Wk, wk+1].

The process outlined in Algorithm 5 is very similar to that of Algorithm 4, the
only difference being that here the space for B∗ also needs to be generated. For C1, C2

with p columns and n and m rows, respectively (with, say,m > n), the computational
cost at each iteration k can be summarized as follows:

(i) Solution of the projected problem: O((kp)3) flops (see section 4.2).
(ii) Orthogonalization of the new basis vectors with respect to the older vectors:

O(mkp2).
(iii) Orthogonalization of the new block: O(mp2).
We also recall that in the case when the generated basis experiences loss of rank,

standard deflation procedures can be applied to remove redundant columns, ensuring a
reduction in the number of columns of the current basis block in subsequent iterations.
Loss of rank may occur independently of the presence of an invariant subspace of the
coefficient matrix, simply due to the redundancy of some of the generated information;
see [113] for a discussion in the context of linear systems with multiple right-hand
sides.

The computational cost of generating the next basis vectors v̂ and ŵ and the
quality of the approximation both depend on the choice of V and W . This choice is
usually based on similar arguments for each of the two spaces. We thus discuss the
choice of V , while the choice ofW can be made analogously. In his seminal article [213],
Saad proposed Krylov subspaces for determining a low-rank approximate solution
to the Lyapunov equation by projection (the extension to the Sylvester equation
is straightforward); the motivation was that Krylov subspaces tend to approximate
well the action of the matrix exponential to a vector, so that the solution in the
integral form (22) can take advantage of this property (see also section 5 for an explicit
derivation). A major problem with this approach is that both bases Vk and Wj need
to be stored to compute the final approximate solution. Since both matrices are full,
this places a severe limitation on the maximum affordable size of the two Krylov
subspaces when A and B are large. In the quest for small but more effective spaces,
several alternatives have been investigated. The impressive performance results of
these enriched spaces have led to a resurgence of projection-type methods for linear
matrix equations. In addition to the standard Krylov subspace, we list here a couple
of recently explored selections for V with A and C1; similar choices can be made for
W using B∗ and C2.

(a) Standard (block) Krylov subspace:

V = range([C1, AC1, A
2C1, . . .]).
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(b) Rational (block) Krylov subspace:

V = range([(A+ σ1I)
−1C1, (A+ σ2I)

−1(A+ σ1I)
−1C1, . . .])

for a specifically chosen sequence {σj}, j = 1, 2, . . . , that ensures nonsingu-
larity of the shifted matrix.

(c) Global Krylov subspace:

V =

⎧⎨⎩∑
i≥0

AiC1γi, γi ∈ R

⎫⎬⎭ = span{C1, AC1, A
2C1, . . .},

where the linear combination is performed blockwise.
In all instances the least number of powers is computed so as to reach the dimension
k. The subspaces listed above are somewhat related. For instance, the standard
Krylov subspace can be formally obtained from the rational Krylov subspace for
σj = ∞ for all j. Moreover, the rational block Krylov subspace also includes the
special choice of fixed poles at zero and infinity, which corresponds to the extended
Krylov subspace in (38), namely, K�

j (A,C1) +K�
k (A−1, A−1C1), where j and k can

in principle be different [75]. In addition, one can impose that C1 belongs to the
rational Krylov subspace with the choice σ1 = ∞. The global Krylov subspace in
(c) is a subspace of the block Krylov subspace; it was first proposed to solve linear
systems with multiple right-hand sides [141], and was then adapted to the Sylvester
equation in [138]. Global spaces may be viewed as simplified versions of block Krylov
spaces, where the polynomial coefficients are chosen to be multiples of the identity
matrix, therefore lowering the number of degrees of freedom.

The criterion for stopping the iterative procedure in Algorithm 5, and thus the
approximation space expansion, is usually based on the Frobenius or 2-norm of the
residual matrix R = AX̃ + X̃B − C1C2

∗. In general, R is dense and should not
be computed explicitly if it has large dimensions. Its norm can be computed more
cheaply if the generated spaces satisfy certain relations. Hence, assume that v̂k, ŵj ,
Hk, and Kj exist such that AVk = [Vk, v̂k]Hk and B∗Wj = [Wj , ŵj ]Kj , where [Vk, v̂k]

and [Wj , ŵj ] have orthonormal columns. If C1 and C2 satisfy C1 = [Vk, v̂k]C
(k)
1 ,

C2 = [Wj , ŵj ]C
(j)
2 for some C

(k)
1 , C

(j)
2 , then

‖R‖F = ‖AVkYW ∗
j + VkYW

∗
j B − V̂kC

(k)
1 (ŴjC

(j)
2 )∗‖F

= ‖[Vk, v̂k](HkY[I, 0] + [I; 0]YK∗
j − C

(k)
1 (C

(j)
2 )∗)[Wj , ŵj ]

∗‖F
= ‖HkY[I, 0] + [I; 0]YK∗

j − C
(k)
1 (C

(j)
2 )∗‖F .(42)

The last expression involves a small matrix if k and j are small, and thus its norm can
be cheaply evaluated. The spaces (a) to (c) above do satisfy the required conditions,
and thus the residual norm can be monitored as the iteration proceeds.

All spaces listed above are nested, so that an approximate solution can be derived
while each of them is expanded.

The implementation can allow for different space dimensions for A and B, es-
pecially if the two coefficient matrices have rather different spectral properties. The
idea of generating different approximation spaces—of the same dimension—for A and
B by means of standard Krylov subspaces was first developed in [132], where, how-
ever, the right-hand side C of the original problem was approximated by a rank-one
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matrix c1c
∗
2, with the aim of building the standard Krylov subspaces Kj(A, c1) and

Kj(B
∗, c2) as approximation spaces. The approach was then generalized to block

Krylov subspaces in [225], so as to exploit the low- (but possibly larger than one)
rank matrices C1, C2. Distinct Krylov subspaces for the right and left subspaces
should also be considered when B = A∗, as long as C1C

∗
2 is nonsymmetric. Nonethe-

less, in this case the generation of the two spaces can share some computationally
intensive work, such as shifted system solves with the same coefficient matrix. The
possibility of using nonsymmetric Lanczos processes which simultaneously generate
Kj(A,C1) and Kj(A,C2) was explored in [135].

In Figure 1 we report a typical convergence history for the norm of the residual
matrix, when the standard Krylov and extended Krylov subspaces are used for both
A and B. Here A is the finite difference discretization of the Laplace operator in
the unit square with homogeneous boundary conditions, and B is the same type of
discretization for the operator Lu = (exp(−4xy)ux)x + (exp(4xy)uy)y, leading to
matrices of the same size, 40,000× 40,000; C = c1c

∗
2, where c1, c2 are vectors with all

entries equal to one, normalized to have unit norm. We note that with a subspace
of dimension less than 120 for each matrix, the extended Krylov subspace is able
to reduce the norm of the residual matrix by more than eight orders of magnitude,
whereas the standard Krylov subspace of the same dimension shows almost no residual
norm reduction. In terms of computational costs of the extended procedure, the
matrices A and B are pretty sparse and systems involving them can be efficiently
solved by a sparse direct solver.
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Fig. 1 Typical convergence history of projection methods for the Sylvester equation with standard
and extended Krylov subspaces.

Rational Krylov subspaces have a rich history. First introduced by Ruhe in the
context of eigenvalue approximation [212], their relevance has spread significantly in
applied approximation theory and model order reduction frameworks due to their
functional approximation properties; see, e.g., [4], [108], [114] and references therein.

The effectiveness of general rational spaces strongly relies on the efficiency of
solving systems with A or its shifted variants. The reliability of recent direct sparse
and iterative linear system solvers has made it possible to use these richer approxi-
mation spaces for more complex problems like the ones we are addressing. The choice
of the shift is crucial to achieving fast convergence; this issue is postponed to the
corresponding discussion for the Lyapunov equation in section 5.2.1.

In the quest for memory savings, the possibility of restarting the process could
be considered: a maximum subspace dimension is allowed and the final approximate
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solution is obtained as X̃ = X̃(0) + X̃(1) + X̃(2) + · · · , where the superscripts indicate
a new restart. Strategies on how to generate the new approximations were proposed
in [132]. We mention that new restarting procedures were recently proposed in [3],
but their overall computational costs for large scale matrices have not clearly been
assessed. An alternative that could be considered in the symmetric case is to resort to
a two-pass strategy, inspired by a similar procedure in the eigenvalue context. Indeed,
for A and B symmetric and not necessarily equal, an orthogonal basis of each stan-
dard Krylov subspace together with the projected matrix could be generated without
storing the whole basis, but instead only the last three (block) vectors, because the
orthogonalization process reduces to the short-term Lanczos recurrence [214]. There-
fore, in a first pass only the projected solution Y could be determined while limiting
the storage for Vk and Wj ; at convergence the factors of the approximate solution

X̃ = VkYW
∗
j could be recovered by generating the two bases once again. An im-

plementation of such an approach can be found in [159] for B = A∗ and C1 = C2.
The same idea could be used for other situations where a short-term recurrence is
viable; the effectiveness of the overall method strongly depends on the affordability
of computing the two bases twice.

The convergence analysis of projection methods has long been overlooked. Fol-
lowing recent significant advances in the convergence study of projection methods for
the Lyapunov equation (see section 5.2.1), Beckermann in [20] provided a thorough
study: residual norm bounds are given for Galerkin projection methods when ratio-
nal Krylov subspaces, of possibly different dimensions, are used for A and B∗. The
proposed estimates rely on new residual matrix relations and highlight the role of the
field of values of the two coefficient matrices; we refer the reader to Proposition 5
below for further details on the results in [20]. Advances in the theoretical aspects
of projection methods have been made in close connection with the recent progress
in the understanding of polynomial and rational approximation methods for matrix
functions such as the matrix exponential. The interplay of numerical linear algebra,
approximation theory, and functional analysis has made this possible; see, e.g., [125],
[114] and their references.

4.4.2. ADI Iteration. The ADI iteration was first introduced in [194] in 1955 and
was proposed to solve large Sylvester equations by Ellner and Wachspress in [80].11

Since then, and with various computationally effective refinements, the approach has
been one of the leading methods for solving large scale Sylvester (and Lyapunov)
equations. In its original form discussed in [80] and summarized next, the ADI iter-
ation is derived for a full matrix X (see also Smith [233] for the derivation below).
A low memory factorized version is used in practice for large matrices, and will be
presented in what follows. In the following we assume that both real matrices A and
B have eigenvalues with positive real parts. We can equivalently rewrite (18) as

(qI +A)X(qI +B)− (qI −A)X(qI − B) = 2qC, q �= 0.

For q > 0, qI +A and qI + B are nonsingular and we can multiply by their inverses
to obtain the following equation:

X− (qI +A)−1(qI −A)X(qI −B)(qI +B)−1 = 2q(qI +A)−1C(qI +B)−1.

LetA = (qI+A)−1(qI−A), B = (qI−B)(qI+B)−1 , and C = 2q(qI+A)−1C(qI+B)−1.
With this notation, the matrix equation above has the form X − AXB = C and is

11The authors of [80] referred to these Sylvester equations as Lyapunov equations.
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called the Stein equation; see section 6. The matrixX =
∑∞

k=1 Ak−1CBk−1 is a formal
solution to the Stein equation, and since both A and B have spectral radius less than
one,12 the series is convergent. This consideration drives the implementation of the
following sequence of approximations:

X0 = C, Xk+1 = C +AXkB.(43)

The approach can be generalized to two parameters p, q > 0 for A and B, respectively,
giving the transformed equation

X−A(p, q)XB(p, q) = C(p, q),
with A(p, q) = (pI + A)−1(A − qI), B(p, q) = (B − pI)(qI + B)−1, and C(p, q) =
(p+ q)(pI +A)−1C(qI +B)−1. A recursion similar to the one for a single parameter
can be derived, and it is convergent if the spectral radii of A(p, q),B(p, q) are both
less than one. Therefore, the parameters p, q are selected so as to minimize these
spectral radii, and if A,B are both symmetric with spectral intervals [a, b] and [c, d],
respectively, this corresponds to solving the ADI minimax problem

min
p,q>0

max
s∈[a,b],t∈[c,d]

∣∣∣∣ (q − s)(p− t)

(p+ s)(q + t)

∣∣∣∣ .
The generalization of this concept allows one to choose different p, q at each iter-

ation, allowing for a sequence of parameters p1, p2, . . . and q1, q2, . . . . The associated
ADI minimax problem after J iterations thus becomes

min
pj ,qj>0

max
s∈[a,b],t∈[c,d]

J∏
j=1

∣∣∣∣ (qj − s)(pj − t)

(pj + s)(qj + t)

∣∣∣∣ ,
which, if solved exactly, provides optimal parameters for the convergence rate of the
ADI iteration; that is, theoretical convergence rates can be achieved for matrices
with real spectra [255]. In practice, a fixed number J of parameters is selected a
priori and then cyclically repeated until convergence. The choice of J is driven by
the quality of the computed parameters: fewer parameters may be better than many
badly distributed parameters. We will return to this issue in section 5.2.

Following a successful idea developed for the Lyapunov equation, the authors of
[31] proposed a factorized version of the ADI iteration, which allows one to write
the approximate solution as the product of three memory saving factors, as long as
C = C1C

∗
2 is low rank. We will expand on this and other implementation aspects such

as rank truncation in the case of the Lyapunov equation, since the changes occurring
when generalizing ADI to the Sylvester equation are mainly technical and due to the
presence of two distinct approximation spaces; we point here to the recent work of
Peter Benner and his collaborators for a comprehensive implementation investigation
of ADI for the Sylvester equation.

We conclude with a theoretical comparison recently made between ADI and the
Galerkin method (see section 4.4.1) in the rational Krylov subspaces

Km(A,C1) = range{C1, (A+ σ2I)
−1C1,

. . . , (A+ σmI)
−1C1},

Km(B∗, C2) = range{C2, (B
∗ + η2I)

−1C2,
. . . , (B∗ + ηmI)

−1C2},
12For a given matrix A with eigenvalues λ in C+ and q > 0, the eigenvalues of (qI−A)(qI+A)−1

are given by (q − λ)/(q + λ), with absolute values all less than one.
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where in both cases the first pole is taken to be at infinity, so that the columns of C1

and C2 belong to the corresponding spaces. In [88], Flagg and Gugercin showed that
ADI and the Galerkin approach are equivalent whenever the poles of both methods
coincide with the eigenvalues of the projections of A and B (Ritz values) in the two
spaces, respectively; the same result was earlier proved for the Lyapunov equation
with different techniques (see Theorem 11). Moreover, for general poles the following
result was proved by Beckermann for the error [20, Cor. 2.2].

Proposition 5. Let X be the exact solution to the Sylvester equation. Let
SA,B(X) = AX + XB, and let XG

k,k, XADI
k be the approximate solutions obtained

after k iterations of the Galerkin method in Kk(A,C1),Kk(B
∗, C2) and after k ADI

steps, respectively, with the two methods using the same poles. If the fields of values
W (A) and W (−B) have empty intersection, then

‖SA,B(X −XG
k,k)‖F ≤ γ0‖SA,B(X −XADI

k )‖F
with constant γ0 ≤ 3 + 2c0, with c0 = 2diam(W (A),W (−B))/dist(W (A),W (−B))
independent of the poles used to generate the space.

The constant γ0 is not optimal. As stated in [20], Proposition 5 shows that,
even for optimal poles, ADI cannot give much better results than rational Galerkin;
moreover, for poor poles ADI is known to give much larger residuals. Further results
will be discussed for the case of the Lyapunov equation.

4.4.3. Data Sparse and Other Methods. A variety of approaches relying on
the data sparsity structure has been analyzed. These methods may be particularly
appropriate in the large scale case when the right-hand side matrix C is sparse and
full rank.

The Kronecker formulation allows one to consider a wide range of linear system
solvers for (20); an early ad hoc implementation of the classical SOR was proposed
in [237], although the exploding dimensions of the problem significantly penalize the
method when compared with the approaches analyzed so far. We also recall from sec-
tion 4.4.1 that global Krylov subspace methods represent an implicit way to deal with
the Kronecker formulation. Other iterative solvers based on the Kronecker formula-
tion (20) have been explored specifically for the Lyapunov equation, and they will be
reviewed in section 5.2.3. These appear to be the main directions taken whenever C
is not numerically low rank.

For data sparse matrices A ∈ R
n×n and B ∈ Rm×m, namely, such that matrix-

vector multiplications for A and B can be performed with complexity O(n) and O(m),
respectively, an extension of the multigrid algorithm was more recently proposed in
[104], where A and B stem from the discretization of a class of partial differential
equations and their spectra are assumed to be separated by a line. A particular
computational caveat of this extension is the smoother (e.g., Jacobi), which in this
case requires approximately solving a diagonal Sylvester equation at each iteration.
This step is carefully discussed in [104], and a procedure for determining a cheap and
low-rank approximate solution is devised. Other crucial aspects include handling the
connection between the (independently generated) sequences of matrices for A and
B, which is accounted for during the smoothing procedure, and the imposition of
regularity constraints on the continuous operators associated with A and B. A ma-
jor issue arising when using these hierarchical methods is whether the approximate
solution X̃ is low rank, so that it can be stored cheaply by means of a (hierarchical)
sparse format, the H-matrix format. Such a format is a data sparse representation for
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a special class of matrices which appear to occur after the use of several discretiza-
tion methods, when partical differential equations or integral equations are treated
numerically [101]. The H-matrix format consists of partitioning a given matrix re-
cursively into submatrices admitting low-rank approximations. The definition of this
format requires the introduction of further arithmetic operations/approximations, in
order to be able to determine, e.g., an H-matrix after the approximate inversion of an
H-matrix, in order to make the class closed with respect to some important matrix
operations; see section 5.2.3 for further details.

A different though related approach consists in adapting small scale iterations to
the large setting, again under the condition that C is low rank. This can be performed,
for instance, within the sign function iteration, by using rank truncation of the iterates
and sparse format for the approximate solution. More details on the sign function
iteration will be given in section 5.2.3. Here we mention that such an approach is
investigated in [17] (see also [19]), where the sparse format chosen for the data and
for the approximate solution is the hierarchical H-matrix format also used in [102],
[104]. With this approach, sparse approximate solutions to a Sylvester equation of
size up to n = 262144 associated with a control problem for the two-dimensional heat
equation are reported in [17]. The accuracy and effectiveness of the method depend
on some thresholds used for maintaining sparsity and low rank during the iteration,
and are thus problem dependent.

5. Continuous-Time Lyapunov Equation. For B = A∗, from the Sylvester
equation we obtain the Lyapunov equation

AX+XA∗+C = 0,(44)

with C symmetric, and its generalized counterpart AXE∗ + EXA∗+C = 0, with E
nonsingular. Clearly, this latter equation can be transformed into the form (44) by
left and right multiplication by E−1 and E−∗, respectively. If E is symmetric and
positive definite, a Cholesky decomposition could be performed and its inverse factors
applied to the equation on the left and right sides, to maintain the problem structure.
These are called the continuous-time Lyapunov equations, to be distinguished from
the discrete-time equations which will be discussed in section 6. They arise in the
analysis of continuous-time and discrete-time linear dynamical systems, respectively.
A very detailed analysis of the Lyapunov equation, with computational developments
up to 1995 and many relevant connections in the control application area, can be
found in [90].

In the context of inertia theory, (44) with C � 0 relates the location of the
eigenvalues of A and X with respect to the imaginary axis. Since C is symmetric, the
solutionX is also symmetric. According to the Sylvester equation theory, the solution
to (44) exists and is unique if and only if λi+λ̄j �= 0 for all eigenvalues λi, λj of A [131].
If all eigenvalues of A have negative real part, namely, A is stable, then this condition
is satisfied, so that a unique solution is ensured. We remark that the stability of
A is an important property in the control setting, therefore it is not regarded as a
restriction for solving the Lyapunov equation, although not strictly required. We shall
see, however, that some of the large scale methods require additional restrictions on A,
namely, its negative definiteness, to ensure the existence of an approximate solution.
For A nonsymmetric, this extra condition may limit the applicability of the method,
since in general a stable matrix A is not necessarily negative definite.

It can be verified that if A is stable and C�0 (C�0), thenX�0 (X�0); in this case
the problem is called the stable Lyapunov equation. If C�0 and (A,C∗) is observable,
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then X�0. A detailed account of various relations between the inertia of A and that
of X can be found, e.g., in [168, sec. 13.1], [221], [222]. A specialized sensitivity bound
can be obtained for the stable Lyapunov equation. Assume that X+ΔX solves

(A+ΔA)(X +ΔX) + (X+ΔX)(A+ΔA)∗ + (C +ΔC) = 0;

then
‖ΔX‖

‖X+ΔX‖ ≤ 2‖A+ΔA‖ ‖H‖
[ ‖ΔA‖
‖A+ΔA‖ +

‖ΔC‖
‖C +ΔC‖

]
,

where H satisfies AH+HA∗+I = 0 and all denominators are assumed to be nonzero
[121]. Estimates for the backward error associated with the Lyapunov equation do
not differ from those in (27) for the Sylvester equation; therefore, except for the sub-
stitution B = A∗, the extra structure of the problem does not modify the sensitivity
properties of the solution [123].

The sensitivity of the solution to (44) can also be analyzed by looking at the
spectral properties of the solution matrix; this topic has attracted a lot of interest,
especially in light of its consequences for the stability analysis of dynamical systems.
Various authors have explored the spectral decomposition of the Lyapunov solution
to analyze the decay of its eigenvalues; see, e.g., [199], [235], [5], [155]. In [5], an error
estimate for a low-rank approximation to the solution of (44) was proved. For the
sake of simplicity we report here only the case when C is rank one. The result relies
on the fact that the solution matrix admits the following decomposition:

X = ZDZ∗, D = diag(δ1, . . . , δn), δk =
−1

2�(λk)
k−1∏
j=1

∣∣∣∣λk − λj

λ̄k + λj

∣∣∣∣2 ,
where λj are the eigenvalues of the diagonalizable matrix A.

Theorem 6. Assume A is diagonalizable with eigenvector matrix Q having all
unit norm columns, and let C = cc∗. Let X =

∑n
j=1 δjzjz

∗
j solve (44), with the non-

negative values δj sorted decreasingly, and for k ∈ {1, . . . , n} define Xk =
∑k

j=1 δjzjz
∗
j .

Then
‖X−Xk‖ ≤ (n− k)2δk+1(κ(Q)‖c‖2)2,

where ‖ ‖ is the matrix norm induced by the vector 2-norm.

The bound may not be sharp for highly nonnormal A, for which κ(Q) may be
large. A more specialized bound was earlier given by Penzl for A symmetric, which
depends only on the condition number of A [199].

Theorem 7 (see [199]). Let A be symmetric and negative definite, with condition
number κ(A), and let C = C1C

∗
1 with C1 of rank p. Let λi(X) with i = 1, . . . , n be

the nonincreasingly ordered eigenvalues of X. Then

λpk+1(X)

λ1(X)
≤
⎛⎝k−1∏

j=0

κ(2j+1)/(2k) − 1

κ(2j+1)/(2k) + 1

⎞⎠2

for 1 ≤ pk < n.

It was also shown in [199] that eigenvalues alone cannot predict the eigenvalue dis-
tribution of X in the non-Hermitian case; this is reminiscent of similar limitations of
nonnormal matrices in the convergence analysis of iterative methods for linear systems
[176, sec. 5.7.3].
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Bounds on the eigenvalue decay that attempt to cope with nonnormality were
obtained in [215, sec. 3.1.2], where the concept of pseudospectrum is used; there,
some interesting counterintuitive convergence behaviors are also described. Overall,
much remains to be understood about the decay of the solution spectrum in the
nonnormal case.

In addition to the application relevance, establishing conditions under which the
solution matrix has exponentially decaying eigenvalues provides theoretical grounds
for the good performance of low-rank methods in the large scale case.

5.1. Lyapunov Equation. Small Scale Computation. As for the Sylvester equa-
tion, the closed form solutions described in section 4 could be used in theory. A
detailed account of early methods can be found in [90], together with some ad hoc
algorithms appropriate when special forms of A—e.g., Schwarz, companion, or Jordan
forms—are available; see also [38], [120] for improved approaches for the companion
form.

The standard method for efficiently solving (44) when A has small dimensions
does not essentially differ from those for the Sylvester equation discussed in previous
sections. In fact, since B = A∗, the computational cost of the reduction to Schur
form is halved in the Bartels–Stewart method [223].

A specifically designed algorithm was proposed by Hammarling to exploit the case
when C is positive semidefinite. It was shown in [116] that if C = C1C

∗
1 � 0, it is

possible to determine the Cholesky factor L of the solution X = LL∗ without first de-
termining X. The computation of the Cholesky factor has some advantages whenX is
nonsingular but severely ill-conditioned, as it is the case when the singular values de-
cay rapidly, so that dealing with L significantly improves the accuracy and robustness
of computations with X; in [272] a comparison between Hammarling’s method and
the Bartels–Stewart method can be found. A block variant of Hammarling’s method
for the discrete-time Lyapunov equation is suggested in [158], which can dramatically
improve the performance of the original scalar (unpartitioned) algorithm on specific
machine architectures, while preserving the stability of the original method.

We also mention the possibility of preprocessing, in both the continuous- and the
discrete-time equations, in order to transform the original symmetric problem into a
skew-symmetric one, so that the solution will also be skew-symmetric (X = −X∗),
allowing for some memory savings; see [90, sec. 2.1.2] and references therein.

A completely different approach exploits the fact that the solution X may be
computed by means of matrix functions, in particular, by using the sign function.
Although less general than Schur-form-based algorithms, they allow one to handle
larger problems, especially if the right-hand side is low rank or structured, and can
be more easily adapted to a high performance computational environment. The idea
is to use well-established matrix iterations to obtain the matrix sign function in a
cheap manner by fully exploiting the possible sparse format of the matrix. The whole
procedure is actually more general, and it also applies to the symmetric algebraic
Riccati equation (see Algorithm 1). Here we will follow the derivation proposed in
[18] (see also [33]), although the main iteration was introduced by Larin and Aliev
in [169] for the generalized Lyapunov equation. Let A = Xblkdiag(J+, J−)X−1 be
the Jordan decomposition of a given matrix A, where J+, J− represent the Jordan
matrices associated with the eigenvalues in the open planes C+ and C−, respectively;
the decomposition thus assumes that A has no purely imaginary eigenvalues. Then
sign(A) = Xblkdiag(I,−I)X−1, where the dimensions of I and −I match those of J+
and J−, respectively. For A stable, the solution to the Lyapunov equation satisfies
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(see, e.g., [210])[
0 X
0 I

]
=

1

2

(
I + sign

([
A∗ C
0 −A

]))
=:

1

2
(I + sign (Z0)) .(45)

With this property, the following matrix iteration corresponds to applying the Newton
method to the nonlinear equation (signZ0)

2 = I:

Zk+1 =
1

2
(Zk + Z−1

k ), k = 0, 1, . . . .(46)

This yields

signZ0 = lim
k→∞

Zk =

[−I 2X
0 I

]
.

Although the iteration is globally and (asymptotically) quadratically convergent, the
basic iteration above may have slow initial convergence, so it is often accelerated using
a parameterized procedure, that is, Zk+1 = 1

2 (ckZk + (ckZk)
−1), k = 0, 1, . . . , for an

appropriate selection of the parameter ck > 0. A popular choice is ck = |det(Zk)|− 1
n

[50]; see, e.g., [7], [42, sec. 3.5.2] for a review of other choices and for additional
historical and computational considerations on the matrix sign function.

5.2. Lyapunov Equation. Large Scale Computation. Recalling the discussion
for the Sylvester equation in section 4.4, the solution of the Lyapunov equation for A of
large dimensions focuses on the determination of memory saving and computationally
appealing approximations. For the stable problem, this is achieved in most cases by
looking for a low-rank approximation X̃ = ZZ∗, so that only the tall matrix Z is
actually computed and stored. This can be possible if, for instance, the right-hand
side has low rank, since in that case we also have X � 0. Nonetheless, strategies to
approximate the general right-hand side by low-rank matrices have also been explored
in the literature; see, e.g., [132].

To help fully grasp the relevance of the topic, we notice that a number of recent
Ph.D. theses have been devoted to the theory and computational aspects of the large
scale Lyapunov matrix equation, and their results have significantly advanced knowl-
edge on the problem; among them, we note [197], [189], [185], [129], [272], [173], [215].
The list could be expanded if one were to also include closely related theses on model
order reduction of linear dynamical systems.

We conclude this section by noting that a systematic numerical comparison of
all iterative methods described in the following subsections on a variety of very large
problems (of size n� 104) is still lacking, although in our presentation some guidelines
are given about the settings in which each of the methods discussed is preferred.

5.2.1. Projection Methods. As in the case of the Sylvester equation, the deriva-
tion of a projection method can be determined by imposing, e.g., the Galerkin con-
dition on the residual with respect to some approximation space. In particular, from
(41) with k = j, Vk =Wj , and C2 = C1, we obtain the projected small size Lyapunov
equation

V ∗
k AVkYk +YkV

∗
k A

∗Vk+V ∗
k C1(V

∗
k C1)

∗ = 0,(47)

whose solution matrix Yk gives Xk = VkYkV
∗
k ≈ X. Since Yk is positive semi-

definite and numerically singular, it is possible to perform a truncated decomposition
of Yk as Yk = LL∗, so that only the slim factor Zk = VkL of the solution Xk = ZkZ

∗
k
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needs to be stored. To ensure that (47) admits a unique solution, the matrix V ∗
k AVk

is assumed to be stable. Such a sufficient condition is met by requiring that A be
negative definite, which is the usual hypothesis when using projection methods. This
condition represents a limitation of projection methods, since the original problem
admits a unique solution even in case of a stable13 but not necessarily negative definite
A. On the other hand, these are sufficient conditions: projection methods can work
in practice without this assumption, although they may break down or show some
erratic convergence behavior; see [179] for an analysis.

An apparently different (functional) approach, based on the approximation to the
matrix exponential and on (21), leads to exactly the same approximation procedure
as Galerkin. Indeed, the action of the matrix exponential on C1, exp(tA)C1, can be
approximated in the space V as Vk exp(tHk)(V

∗
k C1), where Hk = V ∗

k AVk, so that the
analytic expression in (21) for the solution can be approximated explicitly; this is the
way the Galerkin approximate solution was originally obtained in [213] for a rank-one
matrix C1.

Proposition 8 (see [213]). Let V be a subspace of Rn, and let V have orthonor-
mal columns and be such that V = range(V ). Let H be the projection and restriction
of A onto V, and y(t) = exp(tH)(V ∗C1). Then the matrix VYV ∗ with

Y =

∫ ∞

0

y(t)y(t)∗dt

is the Galerkin approximate solution to the Lyapunov equation in V.
The procedure above is very general, and the success of the approach, in terms of

computational cost, depends on the choice of the approximation space V . All choices
discussed in section 4.3 have been explored. For instance, the block Krylov subspace
K�

k (A,C1) was exploited in [137] and was referred to as the Arnoldi method, after the
procedure used to build the block Krylov subspace. The following computationally
convenient relation for the residual Rk = AXk +XkA

∗ +C1C
∗
1 can be deduced from

(42) [137, Thm. 2.1]:

‖Rk‖F =
√
2‖(v∗k+1Avk)E

∗
kYk‖F , E∗

k = [0m, . . . , 0m, Im],

where vk+1 contains the next block of basis vectors.
Finally, the solution Xk is the exact solution to the nearby problem [137]

(A−Δ)X+X(A−Δ)∗+C1C
∗
1 = 0,

with Δ = Vk+1(V
∗
k+1AVk)V

∗
k , ‖Δ‖F = ‖V ∗

k+1AVk‖F .
The asymptotic convergence of the Arnoldi method was recently analyzed in [228].

Here we give an example of such analysis, which applies to A symmetric and positive
definite and C1 of rank one and unit norm; the derived bound was shown in [228] to
provide an accurate worst-case convergence rate of the method.

Theorem 9. Let A be symmetric and positive definite, and let λmin be the small-
est eigenvalue of A. Let λ̂min, λ̂max be the extreme eigenvalues of A + λminI and
κ̂ = λ̂max/λ̂min. Let Xk be the Galerkin approximate solution to X in a Krylov

13As said before, even stability of A is not strictly necessary for the solvability of the Lyapunov
equation, only that I ⊗ A+ A⊗ I is nonsingular.
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subspace of dimension k. Then

‖X−Xk‖ ≤
√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)k

,(48)

where the matrix norm is that induced by the vector 2-norm.

This result shows that the error norm is bounded by the same asymptotic quan-
tity as for the conjugate gradient method applied to a standard linear system with
coefficient matrix A+ λminI.

As mentioned above, the algorithmic steps to computing an approximate solution
by projection remain unchanged when a different approximation space is used. In
[226] an efficient method based on the extended Krylov subspace in (38), namely,
K�

k (A,C1) + K�
k (A−1, A−1C1), was introduced for C1 of low rank. In [226] the

method was shown experimentally to be highly superior to the Arnoldi method for
sparse and large coefficient matrices, allowing the computation of an equally accurate
solution with a significantly smaller dimensional subspace, at lower computation costs
for sparse A; convergence plots are typically similar to that in Figure 1. According
to the experiments in [226], the method also compares well with respect to ADI. A
recent asymptotic analysis in [153] theoretically confirmed these results, showing that
the extended Krylov subspace method is expected to have higher convergence rate
than the Arnoldi method and than ADI with a single pole.

More recently, rational Krylov subspaces have been introduced as approximation
spaces in the solution of the Lyapunov equation, showing the great potential of projec-
tion methods when solving shifted systems with A is affordable [77]. In [76] estimates
for the error norm were derived, assuming that the field of values W (A) of A and
the set of parameters {σi}i=1,2,... are both contained in the same half-plane. We first
report on an error bound that emphasizes the connection with ADI.

Theorem 10. Let C1 ∈ Rn, and let Xk be the approximation obtained by a
Galerkin method in range ( [(A + σ1I)

−1C1, . . . , (A + σkI)
−1C1]). Let γ1 > 0 be

the Crouzeix constant (with γ1 ≤ 11.08) and γ2 = 1
2dist(0,W (A)) . Then

(49) ‖X−Xk‖F ≤ 2γ1
2γ2 max

z∈W (A)

∏
i |z − σ̄i|2∏
i |z + σi|2 ‖C1‖2,

where ‖ · ‖F is the Frobenius norm.

The maximization problem appearing in the upper bound is the same as that
characterizing the convergence rate in the ADI method (see section 5.2.2). We also
note that the ADI bound is reachable, in terms of convergence rate, therefore it
may be viewed as a worst-case scenario for ADI. Therefore, the result of Theorem 10
provides a realistic picture of the performance of the rational Krylov subspace method
compared with that of ADI, whose implementation for the Lyapunov equation is
described in detail in section 5.2.2. The superiority of the rational Krylov subspace
method for the same shifts can be easily appreciated in practical cases; we refer the
reader to, for instance, Examples 4.3–4.4 and Figure 4.5 in [76]. Beckermann in [20]
expanded this type of result to the more general setting of the Sylvester problem (see
Proposition 5). Nonetheless, if close to optimal poles can be selected, ADI may still
provide a competitive alternative to rational Krylov subspace methods.

Asymptotic error bounds for the Galerkin method in the rational Krylov subspace
were derived in [76]. The reported numerical experiments on worst-case spectral
distributions show that these bounds are indeed sharp for certain classes of data.
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The general rational Krylov subspace requires the selection of a series of shifts
(poles), which can either be computed a priori or during the generation of the space.
The a priori pole computation may possibly incur high computational costs, following
the same procedure as that used for other parameter-dependent methods such as ADI
(see below). On the other hand, it was shown in [77] that it is possible to employ a
greedy algorithm to compute the next pole on the fly, while the iteration proceeds,
with computational costs of a modest power of the order of the space dimension, which
is usually significantly smaller than the problem dimension. This is done by exploiting
approximate spectral information generated within the current approximation space.
More precisely, for C1 = c1 ∈ Rn, we first observe that an element of the rational
Krylov subspace of dimension k can be written as x = pk−1(A)qk(A)

−1c1 with pk−1

and qk polynomials of degree k − 1 and k, respectively, where the roots of qk are the
parameters σ1, . . . , σk. For the sake of the derivation, assume that the linear system
(A + sI)x = c1 for some parameter s > 0 is to be solved. Then the residual of an
approximate solution xk obtained by imposing the Galerkin condition with respect to
the space can be written as

c1 − (A+ sI)xk =
rk(A)c1
rk(s)

, rk(z) =

k∏
j=1

z+λj
z+σj

,

where λ1, . . . , λj are the eigenvalues of the projection of A onto the space (Ritz val-
ues). The adaptive procedure amounts to determining the next parameter σk+1 by
capturing the parameter σ for which the current rational function is largest:

σk+1 = arg

(
max
σ∈∂Sk

1

|rk(σ)|
)
,

where Sk ⊂ C
+ approximates the spectral region of A and ∂Sk is its border. The

actual computational procedure requires an initial rough estimate of ∂Sk, which for
real A can be taken to be the approximate extreme values of the interval Sk ∩ R.
These can be easily obtained by a few iterations of an eigenvalue solver [77].

Numerical experiments reported in [77] show that the method is superior to the
extended Krylov subspace when, for instance, the field of values of A is very close to
the imaginary axis. The computational cost of the general rational Krylov subspace
method may be much higher than for the extended space, since a group of new shifted
linear systems with the same right-hand side needs to be solved at each iteration, with
a different shift at each one. On the other hand, the extended method only requires
system solves with A: ifA is such that an efficient LU decomposition can be performed,
then this is done once at the beginning of the computation and only the backward
solves are required while expanding the space. The numerical experiments reported in
[77] suggest that the rational approximation space dimension usually remains very low,
so that only a few systems have to be solved. The difference in computational costs
per iteration is less significant if an iterative solver is used to solve the inner systems;
in that case, the extended method can possibly still reuse the same preconditioner,
but the computation with the iterative method still needs to be performed anew.

The rational function idea is particularly appealing when C = C1C
∗
1 has rank

p larger than one. In that case, the extended Krylov subspace increases its dimen-
sion by 2p vectors per iteration, making the whole procedure memory consuming if
convergence is not fast.

In general, memory requirements may become a serious concern when C1 has
rank much larger, say a few dozen, since the approximation space dimension increases
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proportionally with that rank. In [78] a tangential procedure is proposed to expand the
rational Krylov subspace at each iteration in a way that ensures only the most relevant
directions are retained.14 More precisely, small tall matrices d1, . . . , dk are determined
so that the space is expanded only with the linear combinations C1d1, . . . , C1dk, giving

range([(A+ σ1I)
−1C1d1, (A+ σ2I)

−1C1d2, . . . , (A+ σkI)
−1C1dk]).

The actual column dimension of each dj , between 1 and p, may vary as the iteration
proceeds. The next pair (dk+1, σk+1) is obtained on the fly by an optimization pro-
cedure. Numerical experiments reported in [78] show that this strategy is capable of
successfully handling the presence of many columns in C1 and provides a performance
that is largely superior to that of the block rational Krylov subspace.

The global Krylov subspace method for the Sylvester equation was applied to
the Lyapunov equation in [142], with natural simplifications due to the fact that a
single space needs to be generated; numerical experiments in [142] showed better
performance than the standard block Krylov subspace methods. No numerical com-
parisons seem to be available for global and rational Krylov subspace methods. We
also mention [122] for a generalization to the simultaneous solution of a coupled pair
of Lyapunov equations, corresponding to the two Gramians of a dynamical system.
This last problem was also considered in [135]: the coupled block Arnoldi method
and the nonsymmetric block Lanczos recurrence were analyzed as candidates for si-
multaneously approximating both Gramians in order to obtain approximations to the
linear transfer function of the system; see also [136] for enhancements of the proposed
approaches.

The Galerkin condition for the Lyapunov equation residual can be replaced by a
Petrov–Galerkin condition; see the discussion around Proposition 3 for the Sylvester
equation. If the constraint space is AV , then the resulting algorithm minimizes the
residual in the Frobenius norm and the problem admits the following formulation:
Find Xk = VkYkV

∗
k such that Yk satisfies

Yk = arg min
Yk∈Rpk×pk

‖AVkYkV ∗
k + VkYkV

∗
k A

∗ + C1C
∗
1‖F ,(50)

where the columns of Vk form a basis for the approximation space V . Assume once
again that for the space V a relation of the type AVk = V̂k+1Hk is available, with

V̂ ∗
k+1V̂k+1 = I and Hk of size p(k + 1) × pk. Then (50) can be rewritten in smaller

dimension as the following matrix least squares problem (see, e.g., [179]):

Yk = arg min
Y ∈Rpk×pk

∥∥∥∥HkY
[
I, 0
]
+

[
I
0

]
Y H∗

k +

[
γ20 0
0 0

]∥∥∥∥
F

,(51)

where C1 = Vkγ0. This approach was explored in [137] for the standard block Krylov
subspace and in [132] for the rank-one case. The projected problem entails the solution
of (51) for which expensive (order O((pk)4)) procedures have been proposed [137],
[132]. More recently, the minimal residual method was revisited in [179] for a generic
low-rank C1, and a more effective (order O((pk)3)) solver for the inner problem (51)
was proposed.

14The term “tangential” comes from first-order tangential interpolation properties of these spaces
in the context of model order reduction [78].
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5.2.2. ADI Method. For B = A∗, the ADI method of section 4.4.2 for the
Sylvester equations is simplified, leading to the following recursion for the whole
matrix Xj with two half steps (see [255]):

X0 = 0,

(A+ sjI)Xj− 1
2
= −C1C

∗
1 −Xj−1(A

∗ − sjI),

(A+ sjI)Xj = −C1C
∗
1 − (Xj− 1

2
)∗(A∗ − sjI), j = 1, . . . , k.

Here the shifts {sj} are complex and are employed cyclically. If both A and C1

are real, then the approximate solution will be real and symmetric as long as both
complex conjugates shifts are used [181]. A key idea to make the recursion amenable
to large dimension matrices is to keep the solution iterate in factored form. This idea
was successfully explored by Penzl in 2000 in [198] and was the basis for the software
package Lyapack [200]; see also [30]. The resulting low-rank ADI (LR-ADI) method
thus determines a recurrence for the factor Zj of Xj = ZjZ

∗
j as

Zj+1 = [(A∗ − sjI)(A
∗ + sjI)

−1Zj ,
√−2sj(A

∗ + sjI)
−1C1],(52)

with Z1 =
√−2s1(A

∗+s1I)−1C1: the number of columns in the factor Zj is enlarged
by rank(C1) columns at each iteration. The success of LR-ADI is related to what
Penzl called the low-rank phenomenon in the solution X: namely, the previously
mentioned fact that the eigenvalues of X tend to decay very quickly toward machine
precision, so that a low-rank approximation is possible (see section 4.1).

The iteration matrix Zj is complex during the whole iteration, whenever some
of the shifts are complex. A way to overcome this problem and to maintain real
arithmetic throughout whenever A and C1 are real is discussed in [198]; see also the
more recent contribution [28].

The iteration in (52) requires solving systems with right-hand sides Zj and C1

at each step j. A computational improvement to decrease the number of solves per
iteration was suggested in [174] (where the LR-ADI method was called CF-ADI, in
which CF stands for Cholesky Factor). There, the columns were reordered so that only
the previous iterate requires solves with a shifted matrix. The resulting recurrence is
given in the following algorithm (see [174, Alg. 2]):

Algorithm 6. Given A,C1, and {sj}, j = 1, . . . , jmax:
1. Set z1 =

√−2s1(A+ s1I)
−1C1, Z1 = z1.

2. For j = 2, . . . , jmax

2.1. zj =

√
−2sj√

−2sj−1
(I − (sj−1 + sj)(A+ sjI)

−1)zj−1.

2.2. Zj = [Zj−1, zj ].
If converged, stop.

At each iteration, the recurrence in Algorithm 6 thus requires system solves with
a fixed number of right-hand sides corresponding to the number of columns of C1.
As for the generation of the rational Krylov subspace, a new block of linear systems
needs to be solved as the shift varies. For a very sparse A and a small number of
precomputed shifts, one could consider factorizing each of the matrices A + sjI by
means of a sparse solver, and then back solving at each ADI iteration. The feasibility
of this procedure is clearly problem and architecture dependent.

In [28], [29] some key relations are used to show that the residual norm can be
computed efficiently. More precisely, it holds that AZjZ

∗
j +ZjZ

∗
jA

∗+C1C
∗
1 =WjW

∗
j ,
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where Wj is a matrix of rank p (the rank of C1) defined as (here with real poles)

Wj :=Wj−1 − 2sjQj , W0 = C1,

where Q1 = (A + s1)
−1C1 and Qj = (I − (sj + sj−1)(A + sjI)

−1)Qj−1, j ≥ 2. This
way,

‖AZjZ
∗
j + ZjZ

∗
jA

∗ + C1C
∗
1‖� = ‖WjW

∗
j ‖� = ‖W ∗

j Wj‖�,
� = 2, F , where the last norm is cheap to compute and memory efficient.

Other recent contributions are devoted to further improving the computational
cost per iteration. A strategy for reducing the number of solves was proposed under
the name of “modified” low-rank Smith method in [112]. The idea is to compute the
singular value decomposition (SVD) of the iterate at each step and, given a dropping
tolerance, to replace the iterate with its best low-rank approximation. A main aspect
is that the SVD is not recomputed from scratch; instead, it is updated after each
step to include the new information and then truncated to retain only those singular
values that lie above the specified tolerance. The use of the SVD exploits the fact that
if Z ≈ VΣU∗ is a truncated SVD of Z, then X = ZZ∗ ≈ V Σ2V ∗ is the truncated
spectral decomposition of X, so that the low-rank factor can be readily maintained.
In general, the procedure reduces the number of system solves per iteration in a way
that depends on the linear independence of the new iterate columns with respect to
those of previous steps. Since X belongs to a rational Krylov subspace, the SVD
computation determines an orthogonal basis—the columns of V associated with nu-
merically nonzero singular values—for the generated rational space. This fact makes
the truncated ADI method even closer to projection methods based on the rational
Krylov space: the only difference is the way the reduced solution matrix is computed;
see [76] for a formalization of this relation by means of the skeleton approximation.

A bound for the difference between the traces of the solution X of the Lyapunov
equation and its ADI approximation is proposed in [244], which shows that the right-
hand side of the Lyapunov equation can sometimes greatly influence the eigenvalue
decay rate of the solution.

Computation of the Shifts. The selection of the ADI parameters and their num-
ber has been a major topic of research for many years, since the performance of the
method, in terms of number of iterations, heavily depends on those parameters.

Let A be stable. Assuming a zero starting approximate solution, from the general
ADI recurrence it follows that the error matrix associated with the ADI approximation
XADI

k after k full iterations is given by (see also [198])

X−XADI
k = (r̄k(A)rk(−A)−1)Xr̄k(A)

∗rk(−A)−∗,(53)

rk(z) =

k∏
i=1

(si − z), r̄k(z) =

k∏
i=1

(s̄i − z).

This expression shows that for A normal, for a fixed k optimal parameters can be
obtained by solving the minimax problem

min
s1,...,sk∈C−

max
λ∈Λ(A)

k∏
j=1

∣∣∣∣λ− sj
λ+ sj

∣∣∣∣ .(54)

The value of k is adjusted so that the set {s1, . . . , sk} is closed under conjugation
in the case that A is real. It is worth mentioning that it can be computationally
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advantageous to repeatedly apply a modest number of poles, rather than use a larger
set of poles that gives a marginally faster convergence rate for the scalar rational
approximation problem, if the cost of applying these poles is significant. For instance,
ad hoc implementations may consider applying the same pole multiple times in a row,
so that the costly factorization of the shifted matrix is only performed periodically.
For A with real spectrum, the minimax problem in (54) was solved by Zolotaryov
with the discrete point set replaced by a real finite interval; if A is also symmetric,
this leads to an asymptotically optimal linear convergence rate for the approximation.
The optimal parameters are then given as (see, e.g., [81])

sj = dn

[
(2j − 1)K

2k
,m

]
, j = 1, . . . , k,

where dn is a Jacobian elliptic function, and K is the complete elliptic integral of the
first kind, of modulus m [1]. Generalizations to the case when the complex spectrum
lies in certain specified complex regions Ω were discussed in [81]. However, it was
only with the heuristic approach of Penzl in [198] that the computation of suboptimal
ADI parameters became a more manageable procedure. The proposed strategy is
performed as a preprocessing of the actual ADI computation: consider the Krylov
subspaces KkA(A, c), KkA−1 (A

−1, c) for some vector c, and let V , W be such that
their orthonormal columns span the two spaces, respectively. Let Ω+,Ω− be the
regions containing the eigenvalues of V ∗AV and of W ∗AW (the Ritz values). The
key idea in [198] is to replace the spectrum of A with the region Ω := Ω+ ∪ Ω− and
then solve the minimax problem (54) in Ω. The set Ω may be regarded as a reasonable
approximation to the region of interest, the convex hull of the spectrum of A, and
it can be more cheaply computed, especially for small kA, kA−1 ; see [198] and the
package [200] for more technical details. An adverse effect of this preprocessing is
its computational cost: for rank-one C the cost induced by the generation of both
KkA(A, c), KkA−1 (A

−1, c) for some vector c to determine the suboptimal poles is
comparable to that of, e.g., the construction of the extended Krylov subspace of
corresponding dimension; however, by the time good suboptimal poles are determined,
the extended Krylov approach has also computed an approximate solution to the
Lyapunov equation.

In spite of the significant improvements in the ADI parameter estimation, how-
ever, the method remains quite sensitive to the choice of these shifts, and performance
can vary dramatically even for small changes in kA, kA−1 ; see, e.g., the experiments
in [226]. Adaptive strategies for pole selection such as those derived for the rational
Krylov subspace in [77] are hard to obtain, since a basis for the generated space is
not readily available. Nonetheless, these considerations have led to the investigation
of hybrid approaches, which are described later in this section.

It was observed in [174] that the ADI method actually generates a (block) rational
Krylov subspace for the given vector of shifts sk = [s1, . . . , sk]. The connection
between the ADI method and the Galerkin method with the rational Krylov subspace
Kk(A,C1, sk) = range([(A+s1I)

−1C1, . . . , (A+skI)
−1C1]) can be made more precise

when the two methods are used with the same parameters.

Theorem 11 (see [76, Thm. 3.4]). Assume that the field of values of A and sj,
j = 1, . . . , k, lie in the same half complex plane, and that C1 has rank one. Let the
columns of V form an orthonormal basis of Kk(A,C1, sk), and let λj, j = 1, . . . , k, be
the Ritz values of A onto Kk(A,C1, sk), that is, λj are the eigenvalues of V

∗AV . Then
the ADI approximation coincides with the Galerkin approximate solution Xk with
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Kk(A,C1, sk) if and only if sj = λj, j = 1, . . . , k (under a suitable index permutation
for the λj’s).

The condition sj = λj , j = 1, . . . , k, is seldom satisfied when the shifts are ob-
tained by either an adaptive procedure or a Penzl-style preprocessing (however, see
[111] for an iterative process that approximates such a set of parameters in the con-
text of optimal model order reduction). We also recall that the bound of Proposition
5 shows that ADI cannot give much better results than the Galerkin approach with
the rational space, while it is known that for poor poles ADI may give much larger
residuals than in the optimal case [20]. Moreover, the lack of some form of opti-
mality condition, e.g., orthogonality, seems to penalize the ADI idea; this problem
was explored in recent work summarized in the next paragraph. Selected numerical
experiments comparing the adaptive rational Krylov subspace method and ADI can
be found in [76].

Hybrid ADI Methods. It was observed in [37] that

The most criticized property of the ADI iteration for solving Lyapunov
equations is its demand for a set of good shift parameters to ensure fast
convergence. [...] Most of the [computationally cheap parameters] are sub-
optimal in many cases and thus fast convergence can indeed not be guar-
anteed. Additionally, if the convergence is slow, the low-rank Cholesky
factors may grow without adding essential information in subsequent iter-
ation steps.

In [37] it was thus suggested to combine the subspace projection idea with the
ADI recurrence. The projection is performed onto the space spanned by the columns
of the current ADI factor, the idea being motivated by the fact the ADI solution factor
belongs to the rational Krylov subspace with the same shifts as ADI. The projection
is performed every k̂ ADI iterations by computing an orthonormal basis spanning
the range of the current factor, and the small size projected equation is solved by
means of a Schur-type method (see section 5.1). Since the number of columns grows
at each iteration, the cost of computing the orthonormal basis significantly increases.
To overcome this problem, the authors suggest truncating the obtained projected
solution so that a small-rank factor is retained for the next ADI iteration. More
technical implementation details can be found in [37]. The idea is very reminiscent
of a restarting process in the standard linear system framework, although here the
truncation is performed in a different fashion. To complete the parallel with linear
system solves, this procedure may be viewed as a hybrid restarted process, where a
rational function (here the ADI single step) is applied to the solution before restart;
see, e.g., [230] for a review of polynomial acceleration procedures of restarted methods
in the linear system setting. The resulting process is called the Galerkin projection
accelerated LRCF-ADI (LRCF-ADI-GP). Note that although ADI does not require
that A be either positive or negative definite, the extra projection step is ensured to
not break down only under the additional definiteness constraint. It is also interesting
to observe that, without the truncation of the projected solution, the procedure might
be mathematically equivalent to the Galerkin method in the rational Krylov subspace
obtained with the same shift parameters; a formal proof still needs to be carried out.
Selected numerical experiments comparing the adaptive tangential rational Krylov
subspace method and projected ADI can be found in [78].

We also mention the procedure proposed in [139], where the continuous Lyapunov
equation is first transformed into a discrete (Smith) Lyapunov equation with rational
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matrix functions as coefficient matrices, and is then solved by means of the global
Krylov subspace method. This may be viewed as a preconditioning strategy.

5.2.3. Spectral, Sparse Format, and Other Methods. As for the Sylvester
equation, the Kronecker formulation can be used to restate the matrix equation as
the very large linear system

Ax := (In ⊗A+A∗ ⊗ In)x = c, x = vec(X), c = vec(C),(55)

of size n2, where n is the size of A; see, e.g., [126] for an early attempt to solve
the system by exploiting the structure of A. For A symmetric and positive definite,
the convergence rate of CG applied to the Kronecker formulation is influenced by
the condition number κ(A) = κ(A), whereas the convergence rate of the Galerkin
procedure directly applied to the original Lyapunov equation is influenced by κ(A+
λminI) (see Theorem 9), which can be significantly smaller than κ(A). This analysis
justifies the better performance of projection methods applied to the matrix equation.
A second possibly stronger argument is given by memory requirements: the Kronecker
formulation requires n2-length vectors. Nonetheless, it was recently shown in [185]
that when solving (55) floating point operations can be carried out so as to lower
memory storage from O(n2) to O(n). Moreover, a standard Krylov subspace method
for (55) can take full advantage of the structure, since matrix-vector multiplications
can be rewritten as matrix-matrix operations.

A possible way to overcome slow convergence is to choose an effective precondi-
tioning strategy that can improve the spectral properties of the coefficient matrix A.
Hochbruck and Starke used a Krylov subspace solver for the system (55), and they
investigated SSOR and ADI iteration (with a fixed number of iterations) as operator-
based preconditioners; see also [185] for some implementation aspects of precondi-
tioning strategies. More recently, a flexible GMRES approach was proposed in [44],
which allowed for a variable ADI preconditioning step. Very preliminary numerical
results report promising performance of the Kronecker formulation, while taking into
account the matrix structure. These approaches may have broader applications for
more general matrix equations; see the discussion in section 7.2.

A rather different approach consists of using an appropriately modified version of
the sign function iteration depicted in (45). As memory requirements are excessive in
its original form for large scale problems, two major amendments have been explored
(see, e.g., [16]): (i) a sparsified version of A, so as to substantially reduce the compu-
tation and storage of Z−1

k ; (ii) for C = C1C
∗
1 , a factored version of the approximation

X̃, so that only a tall factor need be iterated. The latter problem was addressed in
[33], where the following coupled iteration was proposed:

A0 = A, B0 = C1, Ak+1 =
1

2
(Ak +A−1

k ), Bk+1 =
1√
2
[Bk, A

−1
k Bk], k = 0, 1, . . . ,

giving Y = 1√
2
limk→∞Bk, with YY∗ = X. Note that the number of columns of Bk

is doubled at each iteration, therefore a rank reduction is suggested in [33]. A recent
extensive investigation of the performance of this type of approach can be found in
[224]; the discussion in [224] in fact addresses the generalized Sylvester equation.

Item (i), namely, reducing the cost of dealing with the explicit inverse of large
matrices, may be addressed by exploiting data sparse matrix representations and ap-
proximate arithmetic. In [18], but also in previous related works for the algebraic



COMPUTATIONAL METHODS FOR LINEAR MATRIX EQUATIONS 417

Riccati equation, the H-matrix format was used (see section 4.4.3). If InvH(A) de-
notes the inverse in the H-matrix format, then the coupled recurrence above can be
performed as

Ak+1 =
1

2
(Ak + InvH(Ak)), Bk+1 =

1√
2
[Bk, InvH(Ak)Bk], k = 0, 1, . . . ,

where the sum to obtain Ak+1 is intended in H-matrix format. More implementation
details can be found in [18]. According to the analysis performed there, the error
induced by the new format can be controlled while performing the rank reduction of
Bk+1, so that the format errors do not grow unboundedly with k; these results are
in agreement with the general theory of H-matrices for Riccati equations developed
in [105]. In [18], the derivation with the H-matrix format is extended to the case
of the generalized Lyapunov equation (see section 7). Numerical experiments show
that the H-format allows the sign function iteration to be employed for medium
size problems (O(10000)), for which the dense algorithm requires excessive memory
allocation. Finally, an example comparing a linear multigrid solver using H-format
matrices with ADI is reported in [103, sec. 7.6], showing that for that specific example
the multigrid approach is about ten times faster than ADI (implemented in the same
framework), although both methods scale linearly with the number of multigrid levels.

We conclude this section with strategies that are more explicitly based on in-
variant subspaces. All methods considered assume that the maximum rank of a suffi-
ciently accurate approximate solution is either known or given. Therefore, the context
in which these approaches are used is different from that of previous methods.

The integral representation of X in (22) and the decay of the singular values
of X suggest various eigenvalue-based strategies. One such method focuses on ap-
proximating the leading invariant subspace of X. In [127] and [128] an approximate
power iteration (API) approach was proposed, which aims to approximate the domi-
nant eigenvectors of X. The method is closely related to the power iteration and the
Lanczos method for computing the extremal eigenpairs of a positive definite symmet-
ric matrix, and the authors report good convergence properties when the eigenvalues
associated with the sought-after eigenvectors are away from zero and well separated
from the others, so that a good low-rank approximation of X can be determined. The
method works under the assumption that A is negative definite, as with projection
methods. The API method applies the power method to X, which is only known
implicitly and approximately by means of products of the type Y = Xv through the
solution of the auxiliary “tall” Sylvester equation

AY +YΘ+ q = 0,(56)

where Θ = v∗Av is a small square matrix and q = C1C
∗
1v (see section 4.3). The

numerical experiments reported in [128] for small problems seem to imply that API is
a promising method for the approximation of the leading eigenvectors of X, without
the computation of X itself. The approach is reminiscent of the implicitly restarted
Arnoldi method [171], although each iteration requires the solution of a Sylvester
equation. A variant of this approach was proposed in [252] to overcome misconver-
gence caused by the omission of the term X(I − vv∗)A∗v in (56). Motivated by [128],
an algorithm combining the power method and (implicitly) the ADI iteration was
proposed in [190]; see [189] for a more thorough presentation of these approaches.

With the same aim of approximating the leading invariant subspace of X of given
dimension, the procedure explored in [109] performs a refined numerical approxima-
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tion by repeatedly integrating the dynamical system associated with the Lyapunov
equation as the basis for an orthogonal power iteration.

A somewhat related approach was proposed in [231], which exploits the popular
proper orthogonal decomposition (POD) approach employed in reduced order modeling
of large scale dynamical systems [32]. The idea is to collect a sample ofm approximate
solutions to a sequence of associated linear time-dependent differential equations with
different starting data and, for a chosen k, form a rank-k approximate Lyapunov
solution. The approach relies on the integral representation of the Lyapunov solution
and, according to the author, it is particularly appropriate for infinite-dimensional
problems.

Finally, a novel and very different approach was recently proposed by Vanderey-
cken and Vandewalle in [250] for A symmetric and positive definite: the method finds
a low-rank approximation to X by minimizing the function

f : Mk → R, X �→ trace(XAX)− trace(XC)

on the manifold Mk of symmetric and positive semidefinite matrices of rank k in
Rn×n, namely,

min
X∈Mk

f(X).

When X� is the true solution to the Lyapunov equation, it was proved in [250] that
‖vec(X−X�)‖2A = 2f(X)+2trace(X�AX�) for all X ∈ Mk, with A as in (55), so that
the minimization of f corresponds to the minimization of the error in the energy norm,
which is defined as ‖x‖2A = x∗Ax. By using the smoothness of Mk the problem is
solved within a Riemann optimization framework, which allows one to embed the rank
constraint in the space and solve an unconstrained minimization problem by means
of a Riemann trust-region method, a second-order model based on the Hessian [2]. At
convergence of the minimization process, if the current solution rank is not sufficiently
accurate, the process is restarted basically from scratch. As a result, the method may
be appealing when the optimal rank is approximately known a priori; otherwise, the
approach may not be competitive with respect to other strategies discussed so far.

6. The Stein and Discrete Lyapunov Equations. The Stein and the discrete
Sylvester equations are the discrete-time counterpart of the (continuous-time) equa-
tions discussed in the previous sections, and they naturally stem from a discrete-time
system; see (5) and, e.g., [4, sec. 4.3]. Other relevant applications include, for instance,
statistics [152], [151], probability [10], and spectral analysis [133]. These equations are
also a computational tool in the design of control systems [156], and in the coprime
matrix fraction description of linear systems [269].

The Stein equation may be written as

X+AXB = C,(57)

where it is assumed that the eigenvalues of A and B are contained in the open unit
disk. The discrete-time Lyapunov equation is obtained by choosing B = −A∗, in
which case, if C is symmetric and if a solution X exists, then X has to be symmetric.
In the context of inertia theory, for C � 0 the discrete-time Lyapunov equation
allows one to analyze the proximity of spec(A) to the unit circle and the proximity of
spec(X) to the imaginary axis; see, [168, sec. 13.2] and also, e.g., [260], [172] for more
specialized results.

Under the condition that λi(A)λj(B) �= −1 for all i, j, the solution X exists and
is unique for any C (see, e.g., [167]), and this is highlighted by the Kronecker form of
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(57), given as (I + B∗ ⊗ A)x = c, where x = vec(X) and c = vec(C). Necessary and
sufficient conditions for the existence and uniqueness of the solution X were obtained
in [259] as a generalization of the property (19) for the Sylvester equation. Inertia and
other transformation-based results for B = −A∗ can be derived in a natural manner
from those for the Lyapunov equation; see, e.g., [221], [222]. We also refer the reader
to [166] for a solution expressed in terms of the companion form of the given matrices,
and to [38] for related computational considerations.

To numerically solve the equation for, say, B nonsingular, one could work with
XB−1 + AX = CB−1, which is a standard Sylvester equation, and then adopt one
of the solution methods from previous sections. In fact, (57) is nothing more than a
generalized Sylvester equation as in (1) with special choices of the first two coefficient
matrices. For large B, the matrix B−1 should not be formed explicitly, but instead
its action used within iterative methods.

Forming B−1 explicitly is also not recommended in the small size case, whenever
B is ill-conditioned. Alternative transformations that bring the discrete equation to
standard form are given by (for B = −A∗; see [204])

ÃX̃+ X̃Ã∗ = C, with Ã = (A− I)−1(A+ I), X =
1

2
(Ã− I)∗X̃(Ã− I),

and (see [12], [201], [148])

ÃX+XÃ∗ = C̃, with Ã = (A− I)(A+ I)−1, C̃ = 2(A∗ + I)−1C(A+ I)−1,

where it is assumed that the inversions are well defined. In general, however, the same
stability considerations as for methods using A−1 apply.

All these difficulties encourage solving the discrete equations (57) directly. A
Schur-form type method for small size coefficient matrices that directly deals with (57)
can be found, e.g., in [13], while a generalization of the “continuous-time” Hammarling
method was proposed by Hammarling himself in [115].

In [251], Varga established a rank-two updating formula for the Cholesky factors
in Hammarling’s algorithm for solving the real, nonnegative definite Stein equation.
As a generalization of his algorithm for the Lyapunov equation, a block variant of
Hammarling’s method for the discrete-time Lyapunov equation is suggested in [158].

In spite of the strong similarity with the standard equation, directly attacking (57)
is an interesting problem in its own right, especially for A and B of large dimensions
and with either of the two matrices singular. For a low-rank C, projection methods are
applicable to solve (57) and an approximate solution X̃ = VkYW

∗
k can be determined,

where the columns of Vk and Wk span approximation spaces associated with A and
B∗, respectively. For instance, a global Krylov subspace approach was proposed in
[138, sec. 5], [140], and its implementation is a natural modification of that used
for the standard Sylvester equation. Similar derivations can be obtained for other
Krylov-based methods.

The discrete-time Lyapunov equation motivated the development of the Smith
method [233], which is at the basis of the modern ADI iteration for the Lyapunov
equation. For A d-stable (i.e., with eigenvalues inside the unit circle), the unique
solution to (57) with B = −A∗ can be written as X =

∑∞
j=0 A

jC(Aj)∗, and it is
real symmetric and positive semidefinite if C is. The (convergent) Smith iteration is
defined as

X0 = 0, Xk+1 = C +AXkA
∗,

with a closed form given by Xk =
∑k

j=1 A
j−1C(Aj−1)∗. Faster (quadratic) conver-
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gence can be achieved with the squared Smith method, which becomes of interest in
the large scale case precisely for C of small rank [198]. The iteration is generically
given as

X = A2k+1

X(A2k+1

)∗ +
2k+1−1∑
i=0

AiC(Ai)∗, X = lim
k→∞

2k+1−1∑
i=0

AiC(Ai)∗.

The resulting recursion is given byHk+1 = Hk+AkHkA
∗
k, H0 = C, where Ak+1 = A2

k,
so that Ck → X as k → ∞. By exploiting the low rank of C = C0C

∗
0 , Hk+1 =

Ck+1C
∗
k+1 with Ck+1 = [Ck, AkCk]. Therefore, the number of columns of Ck+1 dou-

bles at each iteration, and Ck+1 is contained in a block Krylov subspace generated by
A and C0. Recent advances to make this recurrence more effective in terms of both
computational costs and memory requirements include compressions, truncations, and
restarts, with a tricky use of the underlying Krylov subspace [175], [216], [25]. In these
references, estimates for the residual and error norms are also derived. Finally, we
point out an ADI acceleration strategy in [216] (for B = −A∗) and in [25], which signif-
icantly improves the convergence speed. In fact, a major breakthrough for the Smith
method consisted in combining its recurrence with the ADI idea, as developed in [198].

All these approaches rely on the fact that often the solution X has (numerical)
rank much lower than n; indeed, in [25] it is shown for the Stein equation that if the
eigenvalues of A and B lie inside the open unit disk and C has rank p,

σkp+1(X)

σ1(X)
≤ ‖Ak‖‖Bk‖,

indicating that the solution rank might indeed be small if the powers of A and B
decrease rapidly in norm. In [216] the following estimate was derived for B = −A∗

and ‖A‖ < 1:

σkp+1(X)

σ1(X)
≤ ‖A‖2k

1− ‖A‖2 .

In general, a computational comparison of various variants of the approaches based
on the Smith iteration is still lacking, though highly desirable.

A related matrix equation is the �-Stein equation, given by X = AX�B + C,
whose solvability conditions have been recently analyzed in [177]. More generally,
a broader class of matrix equations can be written as X = Af(X)B + C, where
f(X) = X�, f(X) = X̄ , or f(X) = X∗, whose analysis and numerical solution can
be recast in terms of the Stein matrix equation [271]. This and more general forms of
linear equations are discussed in the next section.

7. Generalized Linear Equations.

7.1. The Generalized Sylvester and Lyapunov Equations. The term general-
ized refers to a very wide class of equations, which includes systems of matrix equa-
tions, bilinear equations, and problems where the coefficient matrices are rectangular.
We start with the most common form of the generalized Sylvester equation, namely,

AXD + EXB = C,(58)

which differs from (18) in the occurrence of coefficient matrices on both sides of the
unknown solution X.
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If D and E are both nonsingular, left multiplication by E−1 and right multipli-
cation by D−1 lead to a standard Sylvester equation, with the same solution matrix
X. If either E or D is ill-conditioned, such a transformation may lead to severe in-
stabilities. This problem is common to other generalized equations we will encounter
later in this section, and it justifies the development of solution methods that stick
to the original form (58). The case of singular D and E, especially for D = E∗ and
B = A∗, has an important role in the solution of differential-algebraic equations and
descriptor systems [164]. The solution of (58) for E and D singular requires knowl-
edge of the spectral projectors onto the right and left deflating subspaces of the stable
pencils λE − A and λD − B, associated with the finite eigenvalues, along with the
right and left deflating subspaces associated with the eigenvalue at infinity. In such a
setting, the right-hand side matrix is also projected onto the corresponding deflating
subspaces and the equation is called the projected Sylvester equation. The numerical
treatment of this matrix equation necessitates ad hoc procedures that appropriately
and stably take into account the Weierstrass canonical form of the pencils λE − A,
λD−B, from which the spectral projectors can be derived; we refer the reader to, e.g.,
[239], [178] and their references for further details on projected Sylvester equations.

The following result ensures the existence of a unique solution X to (58).

Theorem 12 (see [58]). The matrix equation AXD + EXB = C has a unique
solution if and only if

(i) the pairs (A,E) and (D,−B) are regular pencils;
(ii) the spectra of (A,E) and (B,−D) are disjoint.15

Under the hypotheses of Theorem 12, uniqueness is thus still ensured if one of the
matrices A,B,D, or E is singular, as long as the corresponding pencil is nonsingular.

A natural extension of the Bartels–Stewart method can be implemented for nu-
merically solving (58) when dimensions are small, and this was discussed in [93], [94],
[196], where the starting point is a QZ decomposition of the pencils (A,E) and (B,D)
followed by the solution of a sequence of small (1-by-1 or 2-by-2) generalized Sylvester
equations, which is performed using their Kronecker form. For C positive semidef-
inite and (A,E) stable, in [196] a generalization of the Hammarling method is also
proposed. The algorithm developed in [93], [94] is also able to treat the case in which
some specifically selected coefficient matrices are singular.

The large scale setting does not significantly differ from previous cases, as long as
E,D are not too ill-conditioned. The problem can be recast as a standard Sylvester
equation in E−1A and BD−1. In the case of rational Krylov subspace and ADI
methods, shifted systems can be solved with the coefficient matrix (E−1A + sI) =
E−1(A+ sE), and analogously for systems with BD−1. In the case of ill-conditioned
E,D, one could consider using a specifically selected α ∈ R (or α ∈ C) such that the
two matrices E+αA and D−αB are better conditioned and the solution uniqueness
is ensured, and rewrite (58) as the equivalent generalized Sylvester matrix equation
AX(D − αB) + (E + αA)XB = C.

We mention the specific application of global Krylov subspace methods (see sec-
tion 4.4), which are obtained by using the mapping M(X) = AXD+EXB; therefore,
they can be applied in general to the equation

∑q
i=1AiXBi = C, as is done in [46].

Note that this kind of approach can only be applied to medium size problems, as the
matrix formulation involves dense matrices. We recall once again that there is a tight

15Here the notion of disjoint spectra [58, formula (7)] should be understood in light of the definition
of “spectral set” in generalized eigenvalue problems, as defined, for instance, in [238, Def. VI.1.1].
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relation between global methods and the Kronecker form, which provides a good basis
for the theoretical understanding of global methods.

A unique solution to the generalized Lyapunov equation

AXE∗ + EXA∗ = C(59)

is ensured if and only if Theorem 12 applies, that is, all eigenvalues of the pencil
(A,E) are finite and they do not have pairwise zero sum. As a consequence, a unique
solution is only obtained if one of the matrices A, E is nonsingular. In this case one
can recast (6) as a standard Lyapunov equation.

To avoid stability problems caused by a possibly ill-conditioned E or A, it is
usually preferred to work with E and A implicitly. This is realized by performing
a simultaneous Schur decomposition of E and A, E = QSZ∗ and A = QTZ∗, with
S and T (complex) upper triangular [186]. Plugging in this transformation, (59)
becomes QTZ∗XZS∗Q∗ +QSZ∗XZ∗T ∗Q∗ = C, that is,

T X̂S∗ + SX̂T ∗ = Q∗CQ, X̂ = Z∗XZ.

The elements of X̂ can then be obtained by exploiting the structure of T and S [116].
A different approach adapts the matrix sign function iteration in (46) to this more

general context, and it is shown in [33] that it is applicable under the hypothesis that
the Lyapunov equation is stable. In the case of C in factorized form in (59), a recur-
rence is proposed in [33] to generate an approximation to the Cholesky-type factor of
the resulting semidefinite solution X. Comparisons in terms of memory requirements
and floating point operations with respect to the generalized Hammarling method (see
[196]) are also reported in [33]. We also refer the reader to [196] for some estimates
of the separation16 and the condition number of the operator associated with (59),
which is important to assessing the accuracy of the computed solution.

7.2. Bilinear, Constrained, and Other Linear Equations. Other generalizations
of the Sylvester equation have attracted the attention of many researchers. In some
cases the standard procedure for their solution consists in solving a (sequence of) re-
lated standard Sylvester equation(s), so that the computational core is the numerical
solution of the latter by means of some of the procedures discussed in previous sec-
tions. We thus list here some of the possible generalizations more often encountered
and employed in real applications. We start by considering the case when the two
coefficient matrices can be rectangular. This gives the equation

AX+YB = C,(60)

where X, Y are both unknown, and A, B, and C are all rectangular matrices of
conforming dimensions. Equations of this type arise in control theory, for instance,
in output regulation with internal stability, where the matrices are in fact polynomial
matrices (see, e.g., [263] and references therein). The following theorem is a first result
on the existence and uniqueness of the pair X, Y and is reported as originally stated
in [211]; see also more recent advanced developments in [83].

Theorem 13 (see [211]). The necessary and sufficient condition that the equation
AX−YB = C, where A,B, and C are m×r, s×n, and m×n matrices, respectively,

16Defined as sepp(A,E) = min‖X‖p=1 ‖A∗XE +E∗XA‖p, with p = 2, F .
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with elements in a field F , has a solution X,Y of order r×n and m× s, respectively,
and with elements in F , is that the matrices[

A C
0 B

]
and

[
A 0
0 B

]
be equivalent.17

The matrix equivalence in the theorem can be explicitly obtained as[
I Y
0 I

] [
A C
0 B

] [
I −X
0 I

]
=

[
A 0
0 B

]
,

where Y and X are the solution matrices to the matrix equation (60). Solvability
conditions of this equation can be derived from [238, Chap. VI]; the result is stated
next.

Proposition 14 (see [238]). Assume A and B are nonsingular. Then the prob-
lem AX+YB = C has a unique solution when the spectra of A and B are disjoint.

These are extensions of the analogous result for the standard Sylvester equation;
see (19) and [211], [131]. Note that by setting, for instance, U = [X,Y], (60) can be
rewritten as

AU

[
In
0

]
+U

[
0
B

]
= C

in the single unknown matrix U [157].
The two-sided version of (60) is given by

AXD + EYB = C,

and this is an example of the more complex bilinear equations with several left-hand
side terms considered in the literature; see, e.g., [269] and references therein.

A typical generalization is given by the bilinear equation

AXD + EXB = CY + F,(61)

where the pair (X,Y) is to be determined, and X occurs in two different terms.
Theoretical aspects are collected in [266] and also in [267], where closed forms for
(X,Y) are given. In [268] general parametric expressions for the solution matrices X
and Y are also obtained, under the hypothesis that D is full rank and F is the zero
matrix.

The main objective in the aforementioned papers is in fact the solution of systems
of bilinear matrix equations

(62)

{
A1X+YB1 = C1,
A2X+YB2 = C2

(see, e.g., [147], [79]), for which a recent perturbation analysis can be found in [180].
These systems can arise, for instance, in the numerical treatment of systems of stochas-
tic partial differential equations, giving rise to large and sparse coefficient matrices;
see, e.g., (16) and [85]. The system (62) is an important step in deflating subspace

17Two n×m matrices A and B are called equivalent if B = Q−1AP for some invertible matrices
P and Q of matching dimensions.
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computations for pencils [145], [238, Chap. VI], [58]. Indeed, the system can be for-
mulated in terms of a transformation P−1(M− λN )Q onto a block diagonal form of
the matrix pencil

M− λN =

[
A1 −C1

0 −B1

]
− λ

[
A2 −C2

0 −B2

]
.

The pair (X,Y) is sought such that

P−1(M− λN )Q :=

[
I −Y
0 I

]
(M− λN )

[
I X
0 I

]
=

[
A1 0
0 −B1

]
− λ

[
A2 0
0 −B2

]
.

Setting
L : (X,Y) �→ (A1X+YB1, A2X+YB2),

the problem of solvability of (62) corresponds to that of determining when the operator
L is nonsingular. It turns out that for (Ai, Bi), i = 1, 2 regular pairs, L is nonsingular
if and only if the spectra of (A1, B1) and (A2, B2) are disjoint [238, Thm. VI.1.11];
this result also leads to the one in Proposition 14. The operator L is a generalization
of the corresponding operator for the Sylvester equation; its sensitivity in terms of
distance to singularity can be defined analogously to the sep operator; see, e.g., [147],
[238, sec. VI.2.4].

From a numerical standpoint, the most reliable approach for small scale compu-
tations was proposed in [147] and further developed in [146] and is based on the stable
generalized Schur method, which applies the QZ algorithm to the pairs of coefficient
matrices; a perturbation analysis is also included. Few other alternatives have yet
been explored that go beyond a cleverly implemented Kronecker formulation. The
idea suggested in [79] amounts to “expanding” the two equations into a single equa-
tion of larger size, whose solution contains both X and Y, but requires the Jordan
decomposition of some of the coefficient matrices. A similar framework is used in [73]
where more than two unknown matrices are allowed, and an approximate solution
is obtained by means of a least squares approach. It is not clear how any of these
procedures can be adapted to the large scale setting.

The number of linear matrix equations and unknown matrices can in fact be
quite large, as is discussed, for instance, in [45]. Necessary and sufficient conditions
for the resulting systems to have a solution pair are studied in [257]. Computation-
ally speaking, this general case has so far only been treated by using the Kronecker
formulation, so that only very small problems have been tackled; however, see [269],
where the problem of solving the set of matrix equations is recast as an optimization
problem.

A special class of nonlinear problems is given by the following Sylvester-observer
equation, which stems from the problem of determining a reduced-order observer model
[248], [182]. Find matrices X,Y, and Z such that

XA−YX = ZC,

[
X
C

]
invertible,(63)

where A and C are known matrices with C having few rows. A solution to (63) exists
for any choice of spectrum of Y, and therefore this spectrum can be predetermined;
a choice that makes Y a stable matrix also ensures convergence of the reduced-order
observer; we refer the reader to [182] for more details on these aspects. A possible
way to address the solution of (63) is to choose Y and Z arbitrarily and then solve the
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resulting Sylvester equation for X. Early approaches in this direction did not lead to a
numerically stable method. For small size matrices, the reduction to Hessenberg form
proposed by Van Dooren in [248] is still one of the most effective methods for solving
(63). The algorithm is based on a reduction to “staircase form” of the pair (A,C)
and on the determination of the solution X with a particular structure in a different
coordinate system. We also refer the reader to [249] for a more detailed survey on
methods for dense matrices. More recently, other approaches have been proposed: for
instance, a block generalization of the method in [248] was proposed in [54]; moreover,
in [55] the authors proposed a block algorithm for determining a full-rank solution,
and which seems to be most appropriate for large scale problems with sparse A. In
this latter setting, a successful early method was proposed in [67]. The approach first
assumes that ZC is rank one and then exploits the resemblance between the Sylvester-
observer equation and the Arnoldi relation (34). As a by-product of the method, the
authors in [67] also derive an algorithm for solving the partial pole assignment problem
for large and sparse A, which is generalized in [66] to higher rank of ZC. The authors
in [52] propose a new strategy for a priori choosing the eigenvalues ofY that makes the
algorithm in [67] more efficient. From a control theory point of view, the possibility
of determining a reduced-order model is also important in the derivation of stable
closed-loop systems, giving rise to a well-exercised eigenvalue assignment problem.
We refer the reader to, e.g., [64] for a brief survey on this and other related problems.

Within the Sylvester-observer equation, we can formulate the problem in a slightly
different manner, namely, by means of a constraint (see, e.g., [241], [245], [187]), and
it can be stated as follows (see, e.g., [11]): Given A ∈ R

n×n stable, B ∈ Rn×p,
C ∈ Rm×n, and F ∈ R(n−m)×(n−m), find Y ∈ R(n−m)×m and X ∈ R(n−m)×n such
that

XA− FX = YC, with XB = 0,(64)

so that [X;C] is full rank.
The problem may be viewed as a homogeneous system of linear matrix equations,

a generalization of (62), with two terms in X as in (61) and C1 = 0, C2 = 0; however,
there is no need to expand it by means of the Kronecker product. In [11] the authors
provide necessary and sufficient conditions for a solution to (64) to exist, and propose
an algorithm for its computation in the small scale case. The main ingredients are a
QR factorization and the solution of a standard Sylvester equation. In [95] a modi-
fication of this method was presented to handle the case of almost singular Sylvester
equations. The large scale case has been recently addressed in [220] by generalizing
the method in [11]. We also point to [56] for an approach that handles a “regional
pole-placement constraint” on F in (64) for a descriptor system, and to [63] and its
references for further theoretical properties.

Going back to a single unknown matrix, other “generalized” Lyapunov equations
more in the spirit of (2) include extra linear terms,

AX+XA∗ +NXN∗ + C1C
∗
1 = 0,(65)

and they stem, for instance, from complex dynamical systems like the one in (10). We
refer the reader to [107] for sufficient conditions on the existence of the controllability
and observability Gramians; more complex forms involve more structured matrices N ;
see, e.g., [22], [59]. In fact, more terms of the type NjXN

∗
j , j = 1, 2, . . . , could arise to

fulfill more general model requests. Polynomial and infinite-dimensional systems are
also of interest; see, e.g., [264] and [61], respectively, and their references. In addition
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to a robust Kronecker-form based iteration reviewed in [62, secs. 3.1–4], Damm in [62]
proposed a regular splitting for the numerical solution of (65), yielding the iterative
scheme

AXk+1 +Xk+1A
∗ = −NXkN

∗ − C1C
∗
1 , X0 = 0,

which entails the solution of a sequence of standard Lyapunov equations. Convergence
to X is obtained if the spectrum of A is sufficiently far away from the imaginary axis.
In [62, sec. 4] the generalized case of the Lyapunov operator is also treated. In the
recent article [23] a thorough discussion and contextualization of the algebraic problem
in stochastic model order reduction can be found. In [21], various methods for the
Lyapunov equation, such as ADI and projection techniques, are adapted to the setting
of (65), including sparse format approaches for the Kronecker formulation; reported
experimental results on large problems seem to favor this sparse format approach, with
the caveat that the sparsity and accuracy parameters must be tuned, as described in
section 5.2.3.

An approach that may be appropriate for large scale problems is implicitly sug-
gested in [8]. In the context of model order reduction, the following approximation
space is introduced:

(66) range(V ) = span

{
r⋃

k=1

range{V (k)}
}
,

with range(V (1)) := Kq(A
−1, A−1C1) and

range(V (k)) := Kq(A
−1, A−1NV (k−1)), k = 2, . . . , r.

Using a Galerkin approximation onto range(V ), (65) can be reduced and solved with a
direct procedure; a possible implementation of this idea was recently proposed in [21].
Another approach for solving multilinear systems in Kronecker form was analyzed
in [163], in which a tensor-based form for the approximate solution is considered.
Such a strategy is well suited to the approximation of parameterized linear systems,
which arise, for instance, in certain discretization strategies for the numerical solution
of stochastic partial differential equations [6]. Data sparse methods associated with
the Kronecker formulation may provide a possibly successful avenue for attacking
the general linear multiterm matrix equation (2); to the best of our knowledge, no
attempts have been made in this direction so far for really large problems.

7.3. Sylvester-like and Lyapunov-like Equations. Sylvester- and Lyapunov-like
linear matrix equations of the form [47], [39]

(67) BX+ f(X)A = C, A∗X+ f(X)A = C, B,A,X ∈ C
m×n,

with f(X) = X̄, f(X) = X�, and f(X) = X∗, or their “discrete-time” variants (see
section 6) are less common, but see, for instance, [161] for an occurrence in structured
eigenvalue computation. The homogeneous case (C = 0) has been recently analyzed in
[72], where a complete description of the solution in terms of the Kronecker canonical
form of A+ λf(B) is derived whenever information on this latter pencil is available.
These equations have attracted increasing interest in the past few years, with recent
contributions on the necessary and sufficient conditions for their solvability, for any
right-hand side matrix C [134]; a different proof of this result that also induces a
numerical method is proposed in [253]. As an example of this type of result, in [51,
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Lem. 5.10] for f(X) = X�, it is proved that a unique solution X exists if and only if
the pencil A−λB� is regular and if its spectrum is �-reciprocal free,18 with possibly
the only exception of the unit eigenvalue, which should be simple.

Interestingly, it was recently shown that for A and B nonsingular, the problem
AX+X�B = C can be recast as a standard Sylvester equation. The following result
is proved in [74].

Proposition 15. Assume that A and B are nonsingular. If X is a solution to
the matrix equation AX+X�B = C, then X is also a solution to the Sylvester matrix
equation

(B−�A)X −X(A−�B) = B−�C −B−�CA−�B.(68)

The reverse also holds if (68) admits a unique solution X.

Under the given hypotheses, this result allows one to solve the �-Sylvester equa-
tion by means of procedures for the standard Sylvester equation, with the caveat of
maintaining good stability properties of the problem.

Going back to the original formulation in (67), in [70] an algorithm that relies
on the generalized Schur decomposition of the pair (A, f(B)) (via the QZ algorithm)
is proposed to determine X for small A and B. For f(X) = X� this can be briefly
summarized as follows:

(1) Decompose A = URV and B� = USV , with U , V unitary and R, S upper
triangular.

(2) Compute E = V CV �.
(3) Solve S�W +W�R = E element by element.
(4) Form X = ŪWV̄ .
The solution of the equation in step (3) is also treated in detail in [70].
Recent developments have considered the case where both A and B have large

dimensions. In particular, in [74] projection methods are derived to solve the �-
Sylvester equation for the case when A and B are nonsingular. They generate right
and left approximation spaces Vm and Wm, respectively, satisfying B�Vm = Wm, so
that a suitable Petrov–Galerkin condition can be imposed. The reduction yields a
small Sylvester-like equation of the same form, which can be solved with the Schur
decomposition strategy above. The two approximation spaces can be chosen as any
of the Krylov-based spaces described in previous sections; we refer the reader to [74]
for algorithmic details.

In [265] a closed-form solution to the equation for f(X) = X̄ is considered, to-
gether with the set of all possible solutions for (61) and for the bilinear problem
AX̄+BY = XF . Chiang, Duan, Feng, Wu, and their collaborators have thoroughly
investigated these formulations and their role in control applications.

A particular extension of this class of problems is given by polynomial equations.
Consider a polynomial matrix R(ξ) = R0+R1ξ+ · · ·+R�ξ

� in the unknown ξ, where
Ri are constant square matrices such that det(R(ξ)) is not identically zero, and let Z
be a square polynomial matrix satisfying Z(ξ) = Z(−ξ)�. The equation

R(−ξ)�X(ξ) +X(−ξ)�R(ξ) = Z(ξ)

in the square polynomial matrix X is called the polynomial Sylvester equation. This
special equation plays a role in the computation of integrals of quadratic functions of

18A set of complex numbers {λ1, . . . , λk} is �-reciprocal free if λi �= 1/λ�
j for any 1 ≤ i, j ≤ k.

Typically, � = � or � = ∗, so that λ�
j is λj or λ̄j , respectively.
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the variables of a system and their derivatives (see, e.g., [242]), and in the stability
theory for high-order differential equations. In [195] the authors focus on the case
when the right-hand side has the form Z(ξ) = Q(−ξ)�ΣQ(ξ), where Q is a real
rectangular polynomial matrix in ξ such that QR−1 is a matrix of strictly proper
rational functions and Σ is a diagonal, signature matrix. An iterative solution method
inspired by the method of Faddeev for the computation of the matrix resolvents is also
described; we refer the reader to [117] for a detailed derivation of the Faddeev sequence
in connection with the solution of Lyapunov and Sylvester equations. More general
equations include polynomial Diophantine matrix equations in the form D(ξ)X(ξ) +
N(ξ)Y(ξ) = F (ξ); in [156] closed-form solutions are presented, which could be used
to numerically solve small size equations. In the large scale setting, this problem is
computationally unsolved.

Finally, special attention should be paid to the homogeneous version of the
Sylvester-like equation previously discussed with B = A,

(69) AX� +XA = 0.

For each fixed complex matrix A, the solution space to this latter equation is a Lie
algebra equipped with Lie bracket [X,Y ] := XY − Y X . We refer the reader to the
recent articles [71], [92] and their references for more details.

8. Software and High Performance Computation. Reliable software for solv-
ing matrix equations has been available for a long time, due to its fundamental role
in control applications; in particular, the SLICE Library was made available in 1986.
Early in the 1990s the SLICOT library (http://www.slicot.org/ [246]) replaced SLICE,
and since then a large number of additions and improvements have been included; see,
e.g., [232], [27]. Most recent versions of MATLAB19 also rely on calls to SLICOT rou-
tines within the control-related toolboxes. SLICOT includes a large variety of codes
for model reduction and nonlinear problems on sequential and parallel architectures;
as a workhorse, both the Bartels–Stewart algorithm and the Hessenberg–Schur algo-
rithm are implemented. The Bartels–Stewart algorithm for triangular matrices is also
included in LAPACK. Functions for solving the Lyapunov equation are also available
in other computational environments, such as Mathematica.20 Related projects have
led to the development of additional codes, which are usually available either on more
general websites or directly from the authors. For instance, specifically oriented to
linear matrix equations in the MATLAB framework, the lyapack set of routines de-
veloped by Penzl in [200] has been particularly successful as a possible implementation
of the ADI method for large scale Lyapunov equations, relying on preprocessing for
the computation of quasi-optimal parameters. These routines were included in the
NICONET project repository (http://www.icm.tu-bs.de/NICONET/). The MESS
set21 by Saak, Mena, and Benner is the successor to the lyapack package, with the
aim of fully exploiting the capabilities of newer releases of MATLAB. In addition,
MESS allows for the solution of a larger variety of matrix equations associated with
the differential Riccati equation. A rather detailed list of routines for solving control-
related matrix equations is provided in the book by Sima [223] and in the more recent
book by Datta [65].

19MATLAB is a registered trademark of The MathWorks Inc.
20Mathematica is a registered trademark of Wolfram Research.
21Available at http://www.en.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/mess.

php?lang=en.

http://www.en.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/mess.php?lang=en
http://www.en.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/mess.php?lang=en
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A number of benchmark problems have been made available for testing purposes.
In addition to those available in the NICONET website, a variety of datasets is avail-
able in the Oberwolfach collection22 accompanied by a well-documented description
of the originating application problems; see also the description in [160].

Refined implementations of structured linear equation methods have been pro-
posed for high performance computations. In particular, the efficient solution of tri-
angular and quasi-triangular Sylvester equations has been discussed in [206], [202]. A
high performance library for triangular Sylvester-type matrix equations (continuous-
and discrete-time) is also available at http://www8.cs.umu.se/˜isak/recsy/, while a
parallel SCALAPACK-style version of this software, called SCASY, is available at
http://www8.cs.umu.se/˜granat/scasy.html. Some of the SLICOT routines are over-
loaded in these libraries; see [143], [144], [100] for more information on their imple-
mentation on parallel architectures.

In [129] an early parallel algorithm was developed to solve medium size (0 < n ≤
1000) Lyapunov problems with a banded and negative definite matrix A; experiments
with a shared memory multiprocessor machine (Alliant FX-8) can also be found.
The approach is similar in spirit to classical iterative linear system methods such as
Jacobi and Gauss–Seidel. More recently, specialized parallel algorithms for Lyapunov,
Stein, and other generalized matrix equations for different modern architectures have
been presented by a number of authors; see, e.g., [205] for the Cray T3E, [34], [35]
employing a cluster of PCs, and [24] for hybrid CPU-GPU platforms. The use of
approaches based either on the square Smith iteration or on iterative techniques for
the matrix sign function, as opposed to the Schur decomposition, is key to obtaining
good parallel performance.

Systems of matrix equations were implemented in a parallel environment in [45]
and references therein. A parallel algorithm for the small scale solution to the multi-
input Sylvester-observer equation (see section 7.2) was proposed in [43] and tested on
two shared-memory vector machines.

9. Concluding Remarks and Future Outlook. The solution of linear matrix
equations has always attracted the attention of the engineering and scientific com-
munities. The reliability of efficient core numerical linear algebra methods has made
the solution of these matrix equations increasingly popular in application problem
modeling. A good understanding of the theoretical tools and of the variety of nu-
merical methods available for Sylvester-type equations provides a solid ground for
attacking more general—nonlinear, multiterm, or multifunctional—matrix equations.
In particular, the efficient solution of multiterm matrix equations such as those in (2)
represents the next frontier for numerical linear algebra, as it is currently one of the
major bottlenecks in the numerical treatment of PDEs involving stochastic terms; see
section 3. Advances in this direction will be tightly related to those being made in
the solution of linear systems with tensor product structure, which in the simplest
case can be written as

Ax = b with A =

k∑
j=1

In1 ⊗ · · · ⊗ Inj−1 ⊗Aj ⊗ Inj+1 · · · ⊗ Ink
.(70)

This problem is a further level of generalization of the standard Sylvester equation,
where the solution is a k-way tensor whose size explodes with k even for modest values

22Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.
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of nj [154]. The complex Kronecker structure arising in (70) makes the problem very
hard to even analyze, and its size calls for truncation or reduction procedures that rely
on approximation theory and hierarchical data structures; see, e.g., [106], [191], [192].
Scientific computing applications dealing with many variables can exploit these data
tools to considerably lower the computational complexity of their model; see, e.g., [149]
for a recent survey. Among the very recent projection methods used for the solution of
(70), we find Krylov subspace based procedures that considerably generalize methods
used for the two-dimensional case; see, e.g., [162], [9]. We envisage that a lot of
scientific research will be devoted to multiterm and multidimensional problems in
forthcoming years.

We have mainly limited our presentation to linear problems. Nonlinear matrix
equations have a crucial and ever increasing role in many applications: for instance,
the popular algebraic Riccati equation (see [167]) has a leading role in control applica-
tions and is an important tool in eigenvalue problems; we refer the reader to [42] for a
very recent presentation of the rich literature on computational methods. Other fully
nonlinear equations include, e.g, matrix eigenvalue problems [82], [184] and equations
of the type X+A�F (X)A = Q, where F is a properly defined nonlinear function of
X (see, e.g., [207] and references therein), together with matrix equations involving
powers of X.

Linear matrix equations with special properties arise when dealing with periodic
dynamical systems. These problems give rise to periodic counterparts of the equa-
tions we have analyzed, such as Lyapunov and Sylvester equations. Corresponding
Schur forms can be used for their solution, and necessary and sufficient conditions
for a periodic discrete-time system to be equivalent to a time-invariant system are
known; thorough treatments with developments on both the theoretical and algo-
rithmic fronts, mainly on small size problems, have been carried out by Byers, Van
Dooren, Sreedhar, Varga, and their collaborators.
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