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Abstract. Building upon earlier work by Golub, Meurant, Strakos and Tichy, we derive new a
posteriori error bounds for Krylov subspace approximations to f(A)b, the action of a function f of
a real symmetric or complex Hermitian matrix A on a vector b. To this purpose we assume that a
rational function in partial fraction expansion form is used to approximate f , and the Krylov subspace
approximations are obtained as linear combinations of Galerkin approximations to the individual
terms in the partial fraction expansion. Our error estimates come at very low computational cost. In
certain important special situations they can be shown to actually be lower bounds of the error. Our
numerical results include experiments with the matrix exponential, as used in exponential integrators,
and with the matrix sign function, as used in lattice QCD simulations, and demonstrate the accuracy
of the estimates. The use of our error estimates within acceleration procedures is also discussed.
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1. Introduction. Matrix functions arise in a large number of application prob-
lems, and over the last years efforts to enhance their effective numerical computation
have significantly encouraged their use in discretization and approximation methods.
These include exponential integrators, which require the computation of the matrix
exponential exp(A) or of ϕ(A) with ϕ(t) = (exp(t)− 1)/t, and have recently emerged
for numerically solving stiff or oscillatory systems of ordinary differential equations;
see, e.g., [22], [15]. Another example arises when simulating chiral fermions in lattice
QCD. Here, one has to solve linear systems of the form (P + sign(A))x = b, where P
is a permutation matrix and A is the Wilson fermion matrix; see [3].

In general, given a square matrix A, the matrix function f(A) can be defined for
a sufficiently smooth function f by means of an appropriate spectral decomposition
of A; see, e.g., [24]. In both the examples cited above, as well as in many other
applications, the matrix A can be very large. Then it is practically impossible to
explicitly compute f(A) by means of a spectral decomposition of A, since f(A) will in
general be full even if A is sparse. Fortunately, in these applications the knowledge of
the action of the matrix function on a vector is usually all that is required, and not the
matrix function itself. For example, when solving the system (P +sign(A))x = b with
an iterative solver, each step will usually require the computation of (P + sign(A))p
for a certain vector p which changes at each iteration.

In the case of some functions such as the exponential, the sign, the square-root and
trigonometric functions, a particularly attractive approach for large matrices exploits
the powerful rational function approximation

f(t) ≈ g(t) =
ps1(t)

ps(t)
,

where pi(t) are polynomials of degree i; see, e.g., [37], [2]. The built-in Matlab ([27])
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function for the matrix exponential, for example, uses a Padé rational approximation.
Rational functions may be conveniently employed in a matrix context by using a
partial fraction expansion, namely (assuming that multiple poles do not occur)

g(t) =
ps1(t)

ps(t)
= ps2(t) +

s∑

i=1

ωi
1

t − σi
. (1.1)

Since the computation of ps2(A)b is trivial – although numerical accuracy may
become an issue if ‖A‖ is large –, we assume ps2 = 0 and concentrate on the sum
representing the fractional part. When applied to a matrix A, this gives

z = g(A)b =
s∑

i=1

ωi(A − σiI)−1b =
s∑

i=1

ωixi. (1.2)

For large dimensional problems, the solutions xi of the shifted linear systems

(A − σiI)xi = b, i = 1, . . . , s, (1.3)

are approximated by more cheaply computable vectors x̃i, so as to obtain z̃ =∑s
i=1 ωix̃i. This can be done by using a single approximation space for all shifted

systems. More precisely, if the columns of the matrix V span such an approximation
space, then each approximate system solution may be written as x̃i = V yi for some
yi, i = 1, . . . , s, so that

z̃ =

s∑

i=1

ωix̃i = V

s∑

i=1

ωiyi. (1.4)

This strategy is particularly welcomed in view of the fact that constructing the ap-
proximation space is commonly the most expensive step in the whole approximation
process. It is important to realize that such a procedure corresponds to employing a
projection technique for g(A)b; we refer to [9] for a discussion of this connection and
for further references.

The aim of this paper is to obtain cheap as well as sufficiently accurate estimates
of the Euclidean norm of the error

‖z̃ − g(A)b‖, (1.5)

which can then serve as a stopping criterion for an iterative process computing a
sequence of approximations z̃. To this end, we build upon a large amount of work
available in the literature, on estimating the energy-norm or Euclidean norm of the
error when the Conjugate Gradient method (CG) is used to solve Mx = b with M
Hermitian and positive definite (hereafter Hpd); see, e.g., [4, 12, 13, 29, 31, 44, 45].

We recall at this point that ad-hoc (mostly a-priori) error estimates for projection-
type approximations of the matrix exponential have been recently developed [7], [43],
[21]. On the other hand, a-posteriori bounds have also been derived for the matrix
sign function [46].

The estimates proposed in this paper directly aim at approximating the error
norm (1.5) of the rational approximation and are therefore of a general nature. The
overall approximation error is then a combination of the error of the rational function
as an approximation to f , a quantity which is usually known a priori, and the error
(1.5). Our estimates are particularly useful in two situations: the matrix A is Hpd
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and all σi are negative or A is real symmetric with the σi being complex. We show
experimentally that the new estimates can be very tight, and that they are lower
bounds when A−σiI is Hpd for all i. The stopping criterion associated with the bound
can be cheaply included in Krylov subspace projection-type methods for solving the
combined shifted linear systems, and we discuss the corresponding implementation
within the Lanczos and the CG framework.

The paper is organized as follows: In Section 2 we review some important facts for
Krylov subspace approximations to the solution of linear systems and we establish the
connection between the projection approach and Galerkin approximations. Section 3
discusses in more detail the CG method as an iterative method producing Galerkin
approximations. After briefly explaining the known fact that CG can be implemented
very efficiently in the context of multiple shifted linear systems, we highlight the role
of the computed CG coefficients as ingredients to error estimates for the individual
systems. In Section 4 we shortly discuss alternative estimates and stopping criteria.
Section 5 is the core section where we develop our new error estimates and prove some
results on their accuracy. In Section 6 we discuss details of an efficient implementation.
Numerical experiments are contained in Section 7 and, finally, Section 8 shows how
our estimates can be extended to shift-and-invert acceleration procedures that were
recently proposed in [23] and [32].

Exact arithmetic is assumed throughout. This is a crucial issue, since rounding
errors may substantially affect computed quantities in our context. To ensure the
practical usefulness of the error estimates and the related stopping criteria to be
developed in this work one thus needs an additional error analysis with respect to
floating point arithmetic. Such an error analysis is beyond the scope of the work
presented here. Let us just mention that in the case of the CG iteration such an
error analysis has been presented in [44]. The fact that the stopping criteria to be
developed here build on those for CG which have been identified as stable in [44] may
thus be taken as a first hint on their numerical reliability.

We close this introduction with a word on notation. As a rule, we will use super-
script to denote the iteration number, and subscript to denote the associated system,

so that r
(k)
i is the residual after k iterations of the ith system. For certain matrices

that are independent of the systems considered, we will prefer the simpler notation
Vk (say) rather than V (k). We use the Euclidean 2-norm for vectors. Moreover, for a
column vector x ∈ Cn, we use xT = [(x)1, . . . , (x)n] and xH = [(x)1, . . . , (x)n], where
(v)i denotes the ith component of the vector v, and (x)i the conjugate of the ith
component of x.

2. Basic facts on Krylov subspace approximation. Given a linear system
Mx = b and an approximation space K, an approximate solution x̃ ∈ K to x may
be obtained by imposing some orthogonality condition on the corresponding residual
r̃ = b − Mx̃. For M Hermitian or complex symmetric, a common strategy is to
impose that the residual be orthogonal to the approximation space, and this is called
the Galerkin condition. Such orthogonality condition may be given, for instance, in
terms of the standard Euclidean inner product, that is,

vHr̃ :=

n∑

i=1

(v)i(r̃)i = 0, v ∈ K. (2.1)

A particularly convenient approximation space is given by the Krylov subspace
Km(M, b) = span{b, Mb, M2b, . . . , Mm−1b}. Starting with v(0), a normalized ver-
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sion of b, a basis of this space can be constructed iteratively, one vector at a time,
as {v(0), v(1), . . . , v(m−1)}, so that for each m, Km ⊆ Km+1. The following classi-
cal matrix relation, the Arnoldi recurrence, provides the overall procedure for gen-
erating a nested orthonormal basis for Km(A, b) as the columns of the matrices
Vm = [v(0), v(1), . . . , v(m−1)],

MVm = VmTm + v(m)tm+1,meTm, Vm = [v(0), v(1), . . . , v(m−1)]. (2.2)

Here, Tm is an m×m upper Hessenberg matrix which reduces to a tridiagonal matrix
if M is self-adjoint with respect to the inner product in use. The vector em is the
mth vector of the canonical basis, and tm+1,m is a normalization factor [41]. Note
that while the entries in Vm and Tm depend on the underlying inner product, the
general recursive form (2.2) remains unchanged. In case of the standard Euclidean
inner product, Vm will satisfy V H

mVm = Im, the identity matrix of dimension m, and if
M ∈ Cn×n is Hermitian, Tm is tridiagonal and the Arnoldi recurrence (2.2) simplifies
accordingly (see below).

The choice of an appropriate inner product depends on the matrix properties.
In our context, the use of a bilinear form different from the Euclidean inner product
turns out to be very convenient in the case where M ∈ Cn×n is complex symmetric
(M = M T). In this case, M is self-adjoint with respect to the bilinear form xTy =∑n

i=1(x)i(y)i. To make the notation more uniform, we use 〈·, ·〉∗ to denote either of

〈x, y〉H := xHy =

n∑

i=1

(x)i(y)i, 〈x, y〉T := xTy =

n∑

i=1

(x)i(y)i.

Both forms will be called an ‘inner product’, the first one being definite, the second one
indefinite. Hence, we assume that the basis generated with the Arnoldi process (2.2)
is orthogonal with respect to the employed inner product 〈·, ·〉∗, when no additional
specification is needed. With a slight abuse of terminology, we will use the following
definition from now on:

Definition 2.1. A shifted complex symmetric matrix is a matrix of the form
M = A − σI, with A real symmetric, and σ ∈ C.

Note that shifted complex symmetric matrices are a subclass of the complex
symmetric matrices.

When M is Hermitian (resp. complex symmetric) and the basis vectors are orthog-
onal with respect to 〈·, ·〉H (resp. 〈·, ·〉T), the upper Hessenberg matrix Tm = V H

mMVm

is Hermitian (resp. Tm = V T

mMVm is complex symmetric) and thus tridiagonal. This
allows one to derive the next basis vector v(m) in (2.2) by only using the previous two
basis vectors. The resulting short-term recurrence is the well-known Lanczos proce-
dure for generating the Krylov subspace associated with M and b. We will henceforth
always employ ∗=H when M is Hpd, and ∗=T when M is shifted complex symmetric.

We next recall some key facts about Galerkin approximations in the Krylov sub-
space when the coefficient matrix has a shifted form; see, e.g., [35], [36].

Proposition 2.2. Let the system Mx = b be given, with M = A − σI for some
σ ∈ C. Then

1. Km(A − σI, b) = Km(A, b) (invariance with respect to shift)
2. Let x̃(σ) ∈ Km(A, b) be the Galerkin approximation to Mx = b with the given

inner product, and r̃(σ) = b − Mx̃(σ). For any σ ∈ C we have

r̃(σ) = (−1)mρ(σ)v(m),
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where v(m) is the (m + 1)st Krylov subspace basis vector from (2.2) and
|ρ(σ)| = ‖r̃(σ)‖.

The first result shows that when solving systems that only differ for the shifting
parameter σ, approximations can be carried out in a single approximation space.
The second result says that the residuals associated with the shifted systems are all
collinear to the next basis vector.

In terms of the Arnoldi relation, shift invariance results in

(A − σI)Vm = Vm(Tm − σI) + v(m)tm+1,meTm, V ∗
mVm = I,

where Vm and Tm are the same for all σ’s. Denoting by x̃(σ) = Vmy(σ) ∈ Km(A, b)
the Galerkin approximation for x(σ), the solution of (A − σI)x = b, we have

0 = V ∗
mb − V ∗

m(A − σI)Vmy(σ) = e1β − (Tm − σI)y(σ), β = 〈b, b〉
1/2
∗ .

Assuming (Tm − σI) nonsingular, it follows that y(σ) = (Tm − σI)−1e1β so that

x̃(σ) = Vmy(σ) = Vm(Tm − σI)−1e1β. (2.3)

By substituting this quantity in the residual r̃(σ) = b − Mx̃(σ), it also follows that
r̃(σ) = v(m)eTmy(σ)tm+1,m, which is related to Proposition 2.2, part 2. In particular,
this relation shows that neither x̃(σ) nor r̃(σ) need to be explicitly computed to get

〈r̃(σ), r̃(σ)〉∗ = (eTmy(σ)tm+1,m)∗(eTmy(σ)tm+1,m). (2.4)

Remark 2.3. If A in M = A − σI is real and b is also real, then Vm is real.
Complex arithmetic for σ ∈ C only arises in the computation of the approximate
solution y(σ). Moreover, all residuals are complex multiples of a real vector. In this
case, we also have a particularly simple relation between the iterates belonging to pairs
of conjugate shifts. If x̃(σ) = Vmy(σ) is the approximate solution to (A − σI)x = b
in (2.3), then

y(σ) = (Tm − σI)−1e1β = (Tm − σI)−1e1β = y(σ).

This shows that x̃(σ) is identical to x̃(σ), so that x̃(σ) needs not be computed explic-
itly. Clearly, one also has r̃(σ) = r̃(σ).

3. CG-type approximations and their error estimates. In the previous
section we recalled that when Tm is tridiagonal the Arnoldi process reduces to a short
(three)-term recurrence. In fact, if in addition Tm can be factorized as a product of two
bidiagonal matrices, then a coupled two-term recurrence can be obtained. In the case
when M (and thus Tm) is Hpd, then Tm = LmLH

m, with Lm lower bidiagonal, which
gives rise to the classical Conjugate Gradient method. A possible implementation is
reported in Figure 3.1 (take ∗ = H).

In the case when M = A − σI is shifted complex symmetric and b is real, the
Lanczos procedure in the inner product 〈·, ·〉T yields the shifted complex symmetric
tridiagonal matrix Tm − σI. An implementation of the Conjugate Gradient method
in this inner product has been proposed in [28]. It is also subsumed in Figure 3.1,
now with ∗ = T.

We next focus on some specific properties of the CG algorithm that allow us
to derive error estimates for the rational function approximation. In section 6 we
show that these quantities are easily available in practical algorithms that realize the
rational function approximation.
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Choose x(0), set r(0) = b − Mx(0), p(0) = r(0)

for k = 1, 2, . . . do
γ(k−1) = 〈r(k−1), r(k−1)〉∗/〈p

(k−1), Mp(k−1)〉∗
x(k) = x(k−1) + γ(k−1)p(k−1)

r(k) = r(k−1) − γ(k−1)Mp(k−1)

δ(k) = 〈r(k), r(k)〉∗/〈r
(k−1), r(k−1)〉∗

p(k) = r(k) + δ(k)p(k−1)

end for

Fig. 3.1. CG for the two inner products (∗ = H or ∗ = T)

Before we move on to discussing error estimates obtained from the CG coefficients,
we need to provide sufficient conditions for the CG recurrence to exist. If M = A−σI
with A Hpd and σ ≤ 0 real, then M as well as Tm − σI are also Hpd, therefore the
Lanczos approximate solution can be computed by solving the equation (2.3). In
addition, a Cholesky factorization of the form Tm − σI = LmLH

m exists, which yields
the CG recurrence, see [10, 41].

When A is Hermitian, and σ ∈ C is nonreal, the Lanczos recurrence still exists,
Tm is Hermitian and Tm−σI is nonsingular, since Tm has only real eigenvalues. How-
ever, the existence of a Cholesky-type factorization of Tm−σI that formally produces
the CG recurrence (in the inner product 〈·, ·〉T), is not obvious. For a general complex
symmetric matrix such a factorization does not necessarily exist unless additional hy-
potheses on the matrix are assumed, see [19]. Fortunately, for the shifted tridiagonal
matrices we are dealing with, the existence of the Cholesky-type factorization is guar-
anteed by the following result. It thus ensures that the CG procedure does not break
down, so that the associated coefficients can be recovered.

Proposition 3.1. Let T̂ be a Hermitian matrix and let σ be a complex number
with non-zero imaginary part. Let T = T̂−σI. Then the symmetric root-free Cholesky
decomposition T = LDLT with L lower triangular with unit diagonal, D diagonal,
exists.

Proof. We first show that the traditional LU -decomposition of T without pivoting
exists. Therefore, L and U are lower and upper tridiagonal, respectively. By using
[18, Theorem 9.2], this decomposition exists, and all diagonal entries of U are non-
zero, if det(Ti) is non-zero for i = 1, . . . , k − 1. Here, Ti denotes the i × i principal

submatrix of T . Now note that T̂i is Hermitian, since T̂ is. Therefore, if Ti were
singular, σ would be an eigenvalue of T̂i which is impossible, since all eigenvalues of
T̂i are real. To conclude, write U = DL̃T with D the diagonal matrix containing the
diagonal elements of U . Then T = LDL̃T and T = T T = L̃DLT. By the uniqueness
of the LU -factorization we get L̃ = L.

Corollary 3.2. Let A ∈ Rn×n be symmetric and let σ ∈ C, ℑ(σ) 6= 0. Then
there is no breakdown in the CG algorithm with 〈·, ·〉T when applied to M = A − σI
with b real.

Proof. This algorithm updates iterates using the complex Cholesky factorization
of the tridiagonal matrix Tk = T̂k − σI, where T̂k comes from the classical Lanczos
procedure. Since T̂k = V T

k AVk is real and symmetric, Proposition 3.1 guarantees the
existence of the factorization.

Our error estimates will make use of the following relations in the CG methods.
For the standard Euclidean inner product, they date back to the original work of
Hestenes and Stiefel [17] and have recently been highlighted in [44, formulas (1.4) -
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(1.7)]. For the bilinear form 〈x, y〉T, they can be derived in a completely analogous
manner so that we do not reproduce a proof here. For the expressions associated with
〈e(k), e(k)〉∗, we refer to the corresponding relations in [44, formulas (11.1) - (11.3)];
see also [30] for related results.

Lemma 3.3. Let M be either Hpd, or shifted complex symmetric. Let e(k) =
x− x(k) denote the error at iteration k where x(k) is the iterate of the CG method for
Mx = b and r(k) = Me(k) its residual. For d ∈ N, using the CG coefficients γ(k),
denote

η(k,d) :=
d−1∑

i=0

γ(k+i)〈r(k+i), r(k+i)〉∗

ϕ(k,d) :=

d∑

i=0

〈p(k+i), p(k+i)〉∗
〈p(k+i), Mp(k+i)〉∗

(
〈r(k+i), e(k+i)〉∗ + 〈r(k+i+1), e(k+i+1)〉∗

)
.

The following relations hold at any iteration k and for any d > 0:

〈r(k), e(k)〉∗ = 〈r(k+d), e(k+d)〉∗ + η(k,d),

〈e(k), e(k)〉∗ = 〈e(k+d), e(k+d)〉∗ + ϕ(k,d).

Note that 〈r(k), e(k)〉∗ = 〈Me(k), e(k)〉∗. Therefore, in case M is Hpd (and ∗ = H),
all inner products in the definition of η(k,d) and ϕ(k,d) are positive from which it
follows that η(k,d) and ϕ(k,d) are both positive and

〈r(k), e(k)〉H ≥ η(k,d), 〈e(k), e(k)〉H ≥ ϕ(k,d).

In the case that M is shifted complex symmetric, we can only write the estimates

〈r(k), e(k)〉T ≈ η(k,d), (3.1)

〈e(k), e(k)〉T ≈ ϕ(k,d), (3.2)

since these are in general complex quantities and 〈·, ·〉T is not definite.
In either case, the estimates (3.1) and (3.2) are close to equalities whenever the

quantities 〈r(k+d), e(k+d)〉∗, 〈e
(k+d), e(k+d)〉∗ at iteration k + d are small (but not nec-

essarily very small) compared to those at iteration k, see [44]. Despite the lack of
any minimization property in the bilinear form with ∗ = T, it can be shown that the
convergence behavior of CG applied to the shifted complex symmetric matrix M is
driven by the spectral properties of M in a way somehow similar to the Hpd case;
see [26]. We thus expect at least linear convergence for sufficiently large k, and in
particular, we expect that the error e(k) decreases with k.

The term η(k,d) is very easily computable from the scalar quantities of the CG
iteration. For ϕ(k,d) this is not so, since its computation involves the unavailable
quantities 〈r(k+i), e(k+i)〉∗. Estimating those as in (3.1), we get an estimate τ (k,d) for
ϕ(k,d) with

τ (k,d) =

d∑

i=0

〈p(k+i), p(k+i)〉∗
〈p(k+i), Mp(k+i)〉∗

(η(k+i,d) + η(k+i+1,d)). (3.3)

Using this instead of ϕ(k,d) in (3.2) we obtain the estimate

〈e(k), e(k)〉∗ ≈ τ (k,d), (3.4)
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which is now again very cheaply computable from the CG coefficients. Therefore,
after k + d iterations it is possible to compute the estimates η(k,d), τ (k,d) associated
with the CG error at iteration k.

For M Hpd and ∗ = “H”, we can summarize this discussion as follows; see [44].
Lemma 3.4. If M is Hpd, then for d ∈ N, at any iteration k it holds

〈r(k), e(k)〉H ≥ η(k,d),

〈e(k), e(k)〉H ≥ ϕ(k,d),

〈e(k), e(k)〉H ≥ 〈e(k+d), e(k+d)〉H + τ (k,d) ≥ τ (k,d).

When M is Hpd and has a shifted form, we now show that the norm of the residual
of the Galerkin approximation gets smaller as the shift moves the matrix spectrum
away from the origin. We will need this result later in Section 5.

Lemma 3.5. Assume that A is Hermitian and positive definite and consider the
two linear systems (A− σiI)x = b, σi ∈ R, i = 1, 2 with 0 ≥ σ1 > σ2. Let v(k) denote

the (k + 1)st Lanczos vector. Let r
(k)
i = (−1)kρ

(k)
i v(k), with ρ

(k)
i ∈ R, i = 1, 2, be the

residuals associated with a Galerkin approximation in Kk(A, b). Then for any k ≥ 0

with v(k) 6= 0, we have ρ
(k)
i > 0, i = 1, 2, and, in addition, for d ≥ 0 with v(k+d) 6= 0

ρ
(k)
2

ρ
(k)
1

≥
ρ
(k+d)
2

ρ
(k+d)
1

≥ 0. (3.5)

Proof. We use the expressions (see [35],[46])

ρ
(k)
1 = ρ

(k)
0

k∏

ν=1

1

1 − σ1/Θ
(k)
ν

, ρ
(k)
2 = ρ

(k)
0

k∏

ν=1

1

1 − σ2/Θ
(k)
ν

.

Here, ρ
(k)
0 ≥ 0 is the norm of the residual of the Galerkin approximation to Ax = b in

Kk(A, b) and the Θ
(k)
ν ’s denote the Ritz values of A in Kk(A, b), i.e. the (all positive)

eigenvalues of the Hpd matrix Tk from the Lanczos process. This shows that ρ
(k)
i ≥ 0,

i = 1, 2. We have

ρ
(k)
2

ρ
(k)
1

=
k∏

ν=1

1 − σ1/Θ
(k)
ν

1 − σ2/Θ
(k)
ν

. (3.6)

Since the Ritz values for two consecutive values of k interlace, we can order them in

such a manner that Θ
(k+d)
ν ≤ Θ

(k)
ν for ν = 1, . . . , k. Because σ2 < σ1 ≤ 0, the fraction

1−σ1/t
1−σ2/t = 1 + σ2−σ1

t−σ2
is a positive and monotonically increasing function of t ∈ [0,∞).

Applying this to each factor in (3.6) we obtain

ρ
(k)
2

ρ
(k)
1

≥

k∏

ν=1

1 − σ1/Θ
(k+d)
ν

1 − σ2/Θ
(k+d)
ν

.

Since 0 <
1−σ1/Θ(k+d)

ν

1−σ2/Θ
(k+d)
ν

≤ 1 for ν = k + 1, . . . , k + d, we can multiply the expression to

the right with these factors to obtain

ρ
(k)
2

ρ
(k)
1

≥
k+d∏

ν=1

1 − σ1/Θ
(k+d)
ν

1 − σ2/Θ
(k+d)
ν

=
ρ
(k+d)
2

ρ
(k+d)
1

,

which is the desired inequality.
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4. Standard estimates. Given the vector z = g(A)b and its approximation zk

obtained after k steps of an iterative process, a simple stopping criterion consists in

monitoring the change of these iterates. Since (see (1.4)) zk =
∑s

i=1 ωiVky
(k)
i , within

the Lanczos method we can cheaply compute

∆k,d = ‖zk − zk+d‖ = ‖

s∑

i=1

ωi(

(
y
(k)
i

0d

)
− y

(k+d)
i )‖, (4.1)

where 0d is the zero vector of d components. Note that the second equality only
holds if V H

k+dVk+d = I which is the case in both our situations: A real symmetric
and all shifts complex (∗ = T and Vk+d is real) as well as A Hermitian and all
shifts real (∗ = H). In the case of the CG algorithm for instance, and for d = 1,

∆k,1 may be computed as ∆k,1 = ‖
∑s

i=1 ωiγ
(k−1)
i p

(k−1)
i ‖. A criterion based on ∆k,d

is commonly employed in linear and nonlinear iterative solvers [25]. Its effectiveness
strongly depends on the convergence behavior of the iterative process, and in fact ∆k,d

may be small due to temporary stagnation, rather than to a satisfactory convergence
of the approximate solution. In our context, convergence is in many cases linear (with
a good rate) or even superlinear (cf., e.g., [21] for superlinear convergence results for
exp(x)), except possibly for the first phase, where almost complete stagnation may
occur. Our numerical experience fully confirms these phenomena, showing that (4.1)
is very reliable when convergence enters the second phase (good linear convergence),
whereas it may fail completely in the case of initial stagnation; cf. section 7.

Another stopping criterion may be derived by trying to generalize the concept of
residual stemming from the linear system setting, by resorting to the partial fraction

expansion of g in (1.2). Let x
(k)
i be the Galerkin approximation to (A − σiI)−1b

in Kk(A, b), r
(k)
i the associated residual and assume that (A − σiI) is not highly

ill-conditioned for any i. If the quantity r(k) =
∑s

i=1 ωir
(k)
i is small, then one may

reasonably argue that z(k) =
∑s

i=1 ωix
(k)
i is a good approximation to z. This provides

an argument for using ‖r(k)‖ as stopping criterion [40]. In particular, since for each i

we have r
(k)
i = (−1)kρ

(k)
i v(k) and ‖v(k)‖ = 1, we can define

̺(k) := ‖v(k)
s∑

i=1

ωi(−1)kρ
(k)
i ‖ = |

s∑

i=1

ωiρ
(k)
i |, (4.2)

which can be cheaply computed at each iteration; cf. [26] for a related discussion.
Experience in the context of evaluating the exponential (cf., e.g., [23, 26, 38, 40,
42]) has shown that ̺(k) may dramatically underestimate the actual error in the
early convergence phase, until good information on the spectrum of A is generated
in the Krylov subspace. After the stagnation phase terminates, we have observed
a reasonable agreement, at least in terms of slope, with respect to the true error;
cf. section 7. However, ̺(k) can still differ from the exact error by some orders of
magnitude. The approach just discussed can be refined. Assume that we know bounds
ℓ1, ℓ2 such that spec(A) ⊆ [ℓ1, ℓ2]. Starting from

g(A)b − z(k) =

s∑

i=1

ωi

(
(A − σiI)−1b − x

(k)
i

)
=

s∑

i=1

ωi(A − σiI)−1r
(k)
i

=

s∑

i=1

(−1)kρ
(k)
i ωi(A − σiI)−1v(k),
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with ‖v(k)‖ = 1, we see that

‖g(A)b − z(k)‖ ≤ ‖

s∑

i=1

ρ
(k)
i ωi(A − σiI)−1‖ ≤ max

t∈[ℓ1,ℓ2]
|h(k)(t)|, (4.3)

where

h(k)(t) =

s∑

i=1

ρ
(k)
i ωi

t − σi
.

Similarly,

‖g(A)b − z(k)‖ ≥ min
t∈[ℓ1,ℓ2]

|h(k)(t)|. (4.4)

We can obtain upper and lower bounds for the error if we can bound h(k) in [ℓ1, ℓ2]
from above and from below, respectively. In some situations, for example for ratio-
nal approximations to the sign function or the square root of an Hpd matrix, the
function h(k) is monotone, so that the maximum and the minimum can be read off
from its values at ℓ1 or ℓ2. In other situations, for example for the exponential, the
extremal values of h(k) are attained in the interior of the interval [ℓ1, ℓ2], and we can
use standard optimization methods to find them. Of course, this process should be
comparably cheap. In experiments not reported here, we used S. M. Rump’s intlab
toolbox [39], and we obtained bounds of the extrema by just subdividing the interval
[ℓ1, ℓ2] into several subintervals and computing an image interval containing the range
of |h(k)| on each of these subintervals using standard interval arithmetic. Bounds for
the maximum and the minimum are then obtained from the endpoints of the image
intervals.

The previous discussion allows us to better interpret the classical estimate ̺(k)

from (4.2), at least in the case where A is Hpd, 0 ≥ σ1 > σ2 . . . > σs and all ωi are

positive. By Lemma 3.5, we then know that ρ
(k)
i ≥ 0 for all i. Thus we have

̺(k)

ℓ2 − σs
≤ h(k)(t) ≤

̺(k)

ℓ1 − σ1
, t ∈ [ℓ1, ℓ2].

We finish this section by referring to some earlier work on Gaussian quadrature
and iterative methods. For A Hpd, in [11] Golub and Meurant developed an elegant
theory on moments and Gaussian quadrature with respect to discrete measures al-
lowing to obtain methods for computing lower and upper bounds to quantities of the
form vHf(A)v; see also [13]. This theory was then elaborated to be cheaply included
in conjugate gradient type algorithms, leading to important practical developments,
on which the results of this paper are based; see, e.g., [12], [29], [30], [44].

5. New error estimates for rational approximations. Our goal is to de-
velop estimates for the 2-norm of the error when the approximation z(k) is determined

as z(k) =
∑s

i=1 ωix
(k)
i and each x

(k)
i is obtained by a Galerkin procedure. For sim-

plicity of notation we assume ‖b‖ = 1 from now on. Then

‖g(A)b − z(k)‖ = ‖

s∑

i=1

ωi(A − σiI)−1b −

s∑

i=1

ωiVk(Tk − σiI)−1e1‖.

10



Our estimates only rely on the quantities available from the CG processes for each
of the s systems (A − σiI)x = b, as described in section 3. In particular, using the
estimates from (3.1) and (3.4) we now prove the following result.

Theorem 5.1. In the systems (A−σiI)xi = b, assume that either of the following
assumptions holds:

1. A is Hpd and σi real, i = 1, . . . , s,
2. A is real symmetric and b is real.

For each i, let x
(k)
i be the Galerkin approximation to xi with respect to the kth Krylov

subspace (obtained via CG or Lanczos) which is assumed to exist. This is the case,

e.g., if σi ≤ 0 in case 1 and if ℑ(σi) 6= 0 in case 2. Let r
(k)
i = (−1)kρ

(k)
i v(k) be the

associated residual. With the definitions in Lemma 3.3 and in (3.3), it holds

‖g(A)b −
s∑

i=1

ωix
(k)
i ‖2

2 ≈ ηηη(k,d) + τττ (k,d) (5.1)

where

ηηη(k,d) =

s∑

i,j=1,σ̄i 6=σj

ωiωj

σi − σj

(
ρ
(k)
j

ρ
(k)
i

η
(k,d)
i −

ρ
(k)
i

ρ
(k)
j

η
(k,d)
j

)
,

τττ (k,d) =

s∑

i,j=1,σi=σj

ω̄iωjτ
(k,d)
j .

Proof. We have

‖g(A)b −

s∑

i=1

ωix
(k)
i ‖2

2 =

s∑

i,j=1

ωiωj

(
(A − σiI)−1r

(k)
i

)H
(A − σjI)−1r

(k)
j (5.2)

=

s∑

i,j=1

ωiωj(e
(k)
i )He

(k)
j .

We discuss each summand in (5.2) depending on whether σi = σj or not. First, let
σi 6= σj . Using

1

(t − σi)(t − σj)
=

1

σi − σj
·

(
1

t − σi
−

1

t − σj

)
, (5.3)

we see that in this case
(
(A − σiI)−1r

(k)
i

)H
(A − σjI)−1r

(k)
j

=
1

σi − σj

(
(r

(k)
i )H(A − σiI)−1r

(k)
j − (r

(k)
i )H(A − σjI)−1r

(k)
j

)

=
1

σi − σj

(
(e

(k)
i )Hr

(k)
j − (r

(k)
i )He

(k)
j

)
.

Recall that r
(k)
i = (−1)kρ

(k)
i v(k). If A and b are real and A is symmetric, then v(k) is

a real vector and

(e
(k)
i )Hr

(k)
j = (−1)kρ

(k)
j (e

(k)
i )Hv(k) = (−1)kρ

(k)
j (v(k))T e

(k)
i

=
ρ
(k)
j

ρ
(k)
i

(r
(k)
i )T e

(k)
i =

ρ
(k)
j

ρ
(k)
i

〈r
(k)
i , e

(k)
i 〉T.
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Analogously, (r
(k)
i )He

(k)
j =

ρ
(k)
i

ρ
(k)
j

〈r
(k)
j , e

(k)
j 〉T.

If A is Hermitian and all poles σi are real, then ρ
(k)
i is real, and also

(e
(k)
i )Hr

(k)
j =

ρ
(k)
j

ρ
(k)
i

(e
(k)
i )Hr

(k)
i =

ρ
(k)
j

ρ
(k)
i

〈r
(k)
i , e

(k)
i 〉H,

as well as, analogously, (r
(k)
i )He

(k)
j =

ρ
(k)
i

ρ
(k)
j

〈r
(k)
j , e

(k)
j 〉H. With our general notation 〈·, ·〉∗,

we can subsume both cases in writing

(
(A − σiI)−1r

(k)
i

)H
(A − σjI)−1r

(k)
j =

1

σi − σj

(
ρ
(k)
j

ρ
(k)
i

〈r
(k)
i , e

(k)
i 〉∗ −

ρ
(k)
i

ρ
(k)
j

〈r
(k)
j , e

(k)
j 〉∗

)
.

Now, let σi = σj . If A is real symmetric and b is real, then x
(k)
i = x

(k)
j and

r
(k)
i = r

(k)
j , e

(k)
i = e

(k)
j , see Remark 2.3. Therefore,

(e
(k)
i )He

(k)
j = (e

(k)
j )Te

(k)
j = 〈e

(k)
j , e

(k)
j 〉T,

while for A Hermitian and σi = σj real, we have (e
(k)
i )He

(k)
j = 〈e

(k)
j , e

(k)
j 〉H. Therefore,

(5.2) can be written as

‖g(A)b −

s∑

i=1

ωix
(k)
i ‖2

2 =

s∑

i,j=1,σi 6=σj

ωiωj

σi − σj

(
ρ
(k)
j

ρ
(k)
i

〈r
(k)
i , e

(k)
i 〉∗ −

ρ
(k)
i

ρ
(k)
j

〈r
(k)
j , e

(k)
j 〉∗

)

+
s∑

i,j=1,σ̄i=σj

ωiωj〈e
(k)
j , e

(k)
j 〉∗. (5.4)

By using the estimates from (3.1) and (3.4), the result follows.

Except for the ρ
(k)
i ’s – which can be updated very cheaply; see section 6 – all quan-

tities used in estimate (5.1) are directly available from the respective CG processes.

More precisely, the quantities η
(k,d)
i and τ

(k,d)
j needed in ηηη(k,d) and τττ (k,d) are built up

from quantities available in iterations k, . . . , k + d and k, . . . , k + 2d, resp. Therefore,
after k + 2d iterations of the CG or Lanczos methods, it is possible to estimate the
2-norm of the error at iteration k. At convergence, the overall estimation procedure
will have required only 2d additional iterations to get often very accurate estimates
throughout the convergence history. The parameter d can be fixed a-priori or adjusted
dynamically; in many cases a small constant value, d = 2, . . . , 5, is satisfactory.

Remark 5.2. Since τττ (k,d) requires the quantities η
(k+j)
i for j = 0, . . . , 2d, we can

even use, at the same computational cost, the improved estimate

‖g(A)b −

s∑

i=1

ωix
(k)
i ‖2

2 ≈ ηηη(k,2d) + τττ (k,d). (5.5)

Remark 5.3. For any d > 0 the quantities ηηη(k,d) and τττ (k,d) are real in the
following two cases of interest:

1. A is (complex) Hermitian and all shifts are real;
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2. A is real symmetric, b is real, the non-real shifts σi come in conjugate pairs
and ωi = ωj whenever σi = σj .

Indeed, in the case 1), every single summand in ηηη(k,d) and τττ (k,d) is real. In the case 2),
each summand in ηηη(k,d) and τττ (k,d) corresponding to an index pair (i, j) has a complex
conjugate summand corresponding to the index pair (j, i).

We now proceed to further investigate the error estimate (5.1) in the case of A
Hpd and negative poles σi. This is so, for instance, for rational approximations to
the sign function as well as to the inverse square root. We show that the estimates
we derived are then lower bounds for the true error.

Theorem 5.4. Let A be Hermitian and positive definite and b ∈ Cn. Let g(t) =∑s
i=1 ωi(t− σi)

−1. Assume that ωi ∈ R, ωi > 0, i = 1, . . . , s and that the poles σi are
real and satisfy σi < σj < 0 for i < j. Let ηηη(k,d), τττ (k,d) be defined as in Theorem 5.1.
Then, for any d ≥ 0,

a) ‖g(A)b −
∑s

i=1 ωix
(k)
i ‖2 ≥ ηηη(k,d) + τττ (k,d);

b) ‖g(A)b −
∑s

i=1 ωix
(k)
i ‖2 ≥ ηηη(k,2d) + τττ (k,d).

Proof. Note first that the condition σi 6= σj is now equivalent to i 6= j. Since
σj > σi for i < j, Lemma 3.5 yields

ρ
(k)
i /ρ

(k)
j ≥ ρ

(k+d)
i /ρ

(k+d)
j , (5.6)

where all quantities are real. In the following, we use the symbol̂ to denote quantities
related to iteration k + d. Define ŵi = v̂H(A − σiI)−1v̂ ∈ R with v̂ the (complex)

Lanczos vector at stage k + d. We have ŵi > 0 for all i and (r
(k+d)
i )He

(k+d)
i = ρ̂2

i ŵi.
Therefore, using (3.1), the part that was neglected when passing from the first sum
in (5.4) to its estimate ηηη(k,d) can be bounded as follows:

s∑

i,j=1,i6=j

ωiωj

σi − σj

(
ρ
(k)
j

ρ
(k)
i

(r
(k+d)
i )He

(k+d)
i −

ρ
(k)
i

ρ
(k)
j

(r
(k+d)
j )He

(k+d)
j

)

= 2
s∑

i,j=1,i<j

ωiωj

σi − σj

(
ρ
(k)
j

ρ
(k)
i

ρ̂2
i ŵi −

ρ
(k)
i

ρ
(k)
j

ρ̂2
j ŵj

)

≥ 2
s∑

i,j=1,i<j

ωiωj

σi − σj
(ρ̂j ρ̂iŵi − ρ̂j ρ̂iŵj) .

In the last line we have used that σi − σj < 0 for i < j and that, according to (5.6),

ρ
(k)
j

ρ
(k)
i

ρ̂2
i ≤ ρ̂iρ̂j , and

ρ
(k)
i

ρ
(k)
j

ρ̂2
j ≥ ρ̂j ρ̂i.

Now, ρ̂j ρ̂iŵi = (r
(k+d)
j )H(A − σiI)−1r

(k+d)
i , which together with (5.3) shows that

1

σi − σj
(ρ̂j ρ̂iŵi − ρ̂j ρ̂iŵj) = (e

(k+d)
j )He

(k+d)
i .
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This gives us

s∑

i,j=1,i6=j

ωiωj

σi − σj

(
ρ
(k)
j

ρ
(k)
i

(r
(k+d)
i )He

(k+d)
i −

ρ
(k)
i

ρ
(k)
j

(r
(k+d)
j )He

(k+d)
j

)

≥ 2

s∑

i,j=1,i<j

ωiωj(e
(k+d)
i )He

(k+d)
j

=

s∑

i,j=1,i6=j

ωiωj(e
(k+d)
i )He

(k+d)
j . (5.7)

According to Lemma 3.4, the part that was neglected when passing from the

second sum in (5.4) to its estimate τττ (k,d) is not smaller than
∑s

j=1 ω2
j (e

(k+d)
j )He

(k+d)
j .

Putting things together, we obtain

‖g(A)b −

s∑

i=1

ωix
(k)
i ‖2

2

≥ ηηη(k,d) + τττ (k,d) + 2

s∑

i,j=1,i<j

ωiωj(e
(k+d)
i )He

(k+d)
j +

s∑

j=1

ω2
j (e

(k+d)
j )He

(k+d)
j

= ηηη(k,d) + τττ (k,d) + ‖g(A)b −
s∑

i=1

ωix
(k+d)
i ‖2

2.

This proves part a). For b), we obtain in a similar manner as before

‖g(A)b −

s∑

i=1

ωix
(k)
i ‖2

2

≥ ηηη(k,2d) + τττ (k,d) +

s∑

i,j=1,i6=j

ωiωjρ
(k)
j

(σi − σj)ρ
(k)
i

(r
(k+2d)
i )He

(k+2d)
i

−

s∑

i,j=1,i6=j

ωiωjρ
(k)
i

(σi − σj)ρ
(k)
j

(r
(k+2d)
j )He

(k+2d)
j +

s∑

j=1

ω2
j (e

(k+d)
j )He

(k+d)
j

= ηηη(k,2d) + τττ (k,d) + 2 ·




s∑

i,j=1,i<j

ωiωjρ
(k)
j

(σi − σj)ρ
(k)
i

(r
(k+2d)
i )He

(k+2d)
i

−
ωiωjρ

(k)
i

(σi − σj)ρ
(k)
j

(r
(k+2d)
j )He

(k+2d)
j

)
+

s∑

j=1

ω2
j (e

(k+d)
j )He

(k+d)
j . (5.8)

The same steps that lead to (5.7) yield

s∑

i,j=1,i<j

(
ωiωjρ

(k)
j

(σi − σj)ρ
(k)
i

(r
(k+2d)
i )He

(k+2d)
i −

ωiωjρ
(k)
i

(σi − σj)ρ
(k)
j

(r
(k+2d)
j )He

(k+2d)
j

)

≥

s∑

i,j=1,i<j

ωiωj(e
(k+2d)
i )He

(k+2d)
j

=

s∑

i,j=1,i<j

ωiωj ρ̂iρ̂j v̂
H(A − σiI)−1(A − σjI)−1v̂j ≥ 0,
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where the last inequality follows from the positive definiteness of the matrix (A −
σiI)−1(A − σjI)−1 and the fact that ρ̂iρ̂j is positive.

Noticing that
∑s

j=1 ω2
j (e

(k+d)
j )He

(k+d)
j ≥ 0, the result in b) follows.

Note that the proof of this theorem also shows that we have a monotone behavior,

‖g(A)b−
∑p

i=1 ωix
(k)
i ‖ ≥ ‖g(A)b−

∑p
i=1 ωix

(k+1)
i ‖, as soon as ηηη(k,1) + τττ (k,1) ≥ 0. Al-

though it is easy to see that the individual terms η
(k,d)
i and τ

(k,d)
j are nonnegative (see

[44]), we did not succeed in proving that the latter condition always holds. Numerical
evidence strongly suggests that this is true.

6. Implementation aspects. The bounds obtained in Theorem 5.1 and The-
orem 5.4 allow us to derive a computable and rather cheap stopping criterion. For
a fixed small value of d, after k iterations of the iterative process, with k > 2d, it is
possible to derive an error estimate at iteration k − 2d. As an example, for d = 3,
after 20 iterations it is possible to give an estimate of the error norm at iteration 14.

Starting with k = 1, a sketch of the procedure is as follows
1. Expand Krylov subspace from k − 1 to k
2. Update projected approximate solution y(σ) for all σ’s
3. If k > 2d, compute estimate of error at step k − 2d
4. If not converged, set k = k + 1 and goto 1.

We suggest to stop the iteration as soon as the following criterion is satisfied

|ηηη(k,2d) + τττ (k,d)|
1
2 ≤ tol,

where tol is a user-selected tolerance. We next discuss some additional details asso-
ciated with the actual implementation of the overall approach.

The computation of ηηη(k,2d), τττ (k,d) requires knowledge of the CG coefficients γ
(k)
i

and δ
(k)
i . When using the Lanczos recurrence (2.2), the CG coefficients are related to

the entries of the tridiagonal matrix Tk = (tij) as follows (cf., e.g., [41]):

tk+1,k+1 − σi =
1

γ
(k)
i

+
δ
(k−1)
i

γ
(k−1)
i

, tk,k+1 =

√
δ
(k−1)
i

γ
(k−1)
i

, (6.1)

while tk+1,k = tk,k+1 and tk+1,k = tk,k+1 for ∗ = “T” and ∗=“H”, respectively. More-

over, τττ (k,d) requires the computation of τk,d
i , which for i = 1, . . . , s, contains the

factor

π̂i,k =
〈p

(k)
i , p

(k)
i 〉∗

〈p
(k)
i , (A − σiI)p

(k)
i 〉∗

.

Once again, this quantity is not directly available in case the Lanczos process is
employed. However, a short-term recurrence can be used for its update. We first
observe that

π̂i,k =
〈p

(k)
i , p

(k)
i 〉∗

〈p
(k)
i , (A − σiI)p

(k)
i 〉∗

= γ
(k)
i

〈p
(k)
i , p

(k)
i 〉∗

〈r
(k)
i , r

(k)
i 〉∗

.

Using the CG recurrence and the orthogonality between p
(k−1)
i and r

(k)
i , we have

〈p
(k)
i , p

(k)
i 〉∗ = 〈r

(k)
i , r

(k)
i 〉∗ + (δ

(k)
i )2〈p

(k−1)
i , p

(k−1)
i 〉∗.
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Therefore, starting with δ
(0)
i = 0, πi,0 = 〈p

(0)
i , p

(0)
i 〉∗ = 〈r

(0)
i , r

(0)
i 〉∗, i = 1, . . . , s, we

have

πi,k = 〈r
(k)
i , r

(k)
i 〉∗ + (δ

(k)
i )2πi,k−1, π̂i,k = γ

(k)
i

πi,k

〈r
(k)
i , r

(k)
i 〉∗

, k = 1, 2, . . . . (6.2)

In the following we report a possible implementation1 of the whole procedure with
the new stopping criterion. The Lanczos recurrence is employed as underlying Krylov
space method. We assume that A and b are given as well as the coefficients ωi and
the poles σi of the rational function g(t) =

∑s
i=1 ωi

1
t−σi

. Without loss of generality,
we scale b so that ‖b‖ = 1.

Algorithm PFE-Lanczos.

Choose d ,tol, maxit {for error estimate and stopping}
I = {1, 2, . . . , s} {non-converged systems}
for i, j = 1, , . . . , s do {various initializations}

if σi 6= σj then ξi,j = ωiωj/(σi − σj) else ξi,j = 0, end
end for
β = 0, v0 = b, v−1 = 0, πi,0 = 1, γ

(−1)
i = 1, δ

(0)
i = 0, ρ

(0)
i = 1, π

(0)
i = 1 (i ∈ I)

for k = 1, . . . ,maxit do {iteration}
q = Avk−1 − βvk−2, α = v∗k−1q, tk,k = α {Lanczos coefficients and vectors}
ṽ = q − αvk−1

β = (ṽ∗ṽ)1/2, vk = ṽ/β, tk+1,k = β, tk,k+1 = β, vk = ṽ/β

γ
(k−1)
i = 1/(α − σi − δ

(k−1)
i /γ

(k−2)
i ), i ∈ I {CG coefficients γi using (6.1)}

π
(k)
i = (ρ

(k−1)
i )2 + (δ

(k−1)
i )2π

(k−1)
i , i ∈ I {update factors in (6.2)}

π̂
(k)
i = (π

(k)
i /ρ

(k−1)
i )(γ

(k−1)
i /ρ

(k−1)
i ), i ∈ I

δ
(k)
i = β2(γ

(k−1)
i )2, i ∈ I {CG coefficients δi using (6.1)}

if k − 1 ≥ 2d then {compute error estimate}

ℓi =

k∑

j=k−d

π̂
(j)
i


γ

(j−1)
i (ρ

(j−1)
i )2 + 2

k∑

m=j−d

γ
(m−1)
i (ρ

(m−1)
i )2


 , i ∈ I

τττk,d =
∑

i∈I

ω2
i ℓi

ℓ̂i =
k∑

m=k−d

γ
(m−1)
i (ρ

(m−1)
j )2, i ∈ I

ηηηk,2d =
∑

j∈I

∑

m∈I

(
ℓ̂j

ρ
(k−2d)
j

ξj,mρ(k−2d)
m −

ℓ̂m

ρ
(k−2d)
m

ξj,mρ
(k−2d)
j

)

est = |τττk,d + ηηηk,2d|
1
2

end if
yi = (Tk − σiIk)−1e1, i ∈ I {get projected solutions}

ρ
(k)
i = eTkyitk+1,k, i ∈ I {factors for residuals}

if est < tol then {iteration converged}

wk =

s∑

i=1

ωiyi, zk =

k−1∑

i=0

(wk)i+1vi, stop {zk approx. solution as in (1.4)}

else

1For the sake of readability we do not address the possible optimizations in the presence of
complex conjugate shifts, see Remark 2.3.
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remove i with |ρ
(k)
i | ≈ ǫmach from I {remove converged systems}

end if
end for

Note that in this implementation, the whole set of Lanczos basis vectors is only needed
when retrieving the approximate solution upon convergence. So, during the iteration
phase, older vectors may be stored in secondary memory and accessed again only
at convergence. An alternative is a two-sweep strategy, where the basis vectors are
recomputed a second time. On the other hand, the number of basis vectors involved
in the approximation procedure does not depend on the number of shifted systems
to be solved. Therefore, the storage requirements do not increase significantly with
the number of shifted systems, and the additional cost for getting a solution for the
s shifted tridiagonal systems (Tk − σiIk)yi = e1 is just O(sk) in iteration k. The
computational cost for computing the various coefficients is O(s2) per iteration. This
shows that the dominant cost per iteration are caused by the computation of the next
Lanczos basis vector where we have to invest one matrix-vector multiplication and
O(n) additional work for the vector updates.

An analogous implementation relying on the CG method for multiple shifted sys-
tems can also be derived, see [47]. There, again, the Krylov subspace is expanded only
once for all shifted systems at a time. In exact arithmetic, at each CG iteration the
approximate solutions and the associated residuals are the same as those obtained in
the Lanczos procedure, see (2.3). The algorithmic difference is that they are updated
at each iteration, so that the whole subspace basis needs not be stored. As opposed
to the Lanczos procedure, however, the direction vectors p(k) depend on the shift σ in
M = A − σI. As was shown in [47], it is possible to retrieve the CG coefficients γ(k)

and δ(k) for a shifted system from those of the non-shifted system at little constant
cost. For each additional shift, one direction vector and one solution iterate need
to be stored so that the memory requirements increase linearly with the number of
shifts. This is in contrast to the Lanczos based approach, where memory requirements
increase linearly with the number of iterations performed. The computational cost
of CG for each additional shifted system is O(n) per iteration for the updates of the
iterates and of the direction vectors, plus O(1) for retrieving the shifted CG coeffi-
cients. Summarizing, we see that the computational cost of the Lanczos and the CG
methods for solving several shifted linear systems are slightly in favor of the former,
which does not require s direction vector updates. However, if memory requirements
become crucial, the multiple CG approach is preferable.

7. Numerical experiments. In this section we report on our numerical experi-
ence with the discussed stopping criteria. In particular, we compare our new estimate
(5.5) for a very low value of d, usually d ≤ 5, with the estimates using ∆k,d from (4.1),
for the same value of d, and the classical estimate ̺(k) from (4.2). For completeness, in
one case with A Hpd we also give the bounds obtained via the operator norm bounds
in (4.3) and (4.4).

We consider four different rational functions, each approximating a function of
interest in applications: sign(x), x− 1

2 , exp(x) and cos(x). In our experiments we
use both matrices from real application problems, as well as “academic” examples
with diagonal matrices. In the latter case, this is not a major restriction since the
performance of the methods in exact arithmetic only depends on the spectrum and
the initial vector, but not on the sparsity of the matrix.

Example 7.1. The Wilson fermion matrix Q results as a discretization of the
theory of Quantum Chromodynamics (QCD) which explains the strong interaction
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between the quarks as constituents of matter. Recent developments that for the first
time respect the physically important ‘chiral symmetry’ (see, e.g., [3]), produce models
in which systems of the form P +sign(Q), P a simple permutation matrix, have to be
solved repeatedly. This is done with a Krylov subspace method, so that in each step
one has to compute sign(Q)b for some vector b. The matrix Q is Hermitian and indef-
inite. Here we report on numerical results obtained with the matrix D available in the
QCD collection of the matrix market [33] as configuration conf5.4-00l8x8-2000.mtx

with κc = 0.15717. Q is then given as Q = P (I − 4
3κcD), with P the permutation

P = I3 ⊗




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


⊗ I n

12
.

The dimension of the system is n = 12 · 84 ≈ 50 000. We compute sign(Q)b for
a randomly generated vector b. To this purpose, we first compute two numbers
0 < a1 < a2 such that spec(Q) ⊂ [−a2,−a1] ∪ [a1, a2]. We then approximate sign(t)
on [−a2,−a1]∪ [a1, a2] with the Zolotarev rational approximation, see [37]. It has the
form ĝ(t) =

∑s
i=1 ωi

t
t2+αi

, ωi, αi > 0 and it is an ℓ∞ best approximation. The number

of poles s was chosen such that the ℓ∞-error was less than 10−7, that is s = 11. To
compute ĝ(Q)b, we actually computed g(Q) · (Qb) with

g(t) =

s∑

i=1

ωi
1

t2 + αi
. (7.1)

Since Q2 is Hpd, Theorem 5.4 applies so that our estimates will be lower bounds
of the true error. We also used a deflation technique which has become common
in realistic QCD computations: Since the density of the eigenvalues of Q close to
0 is relatively small, it pays out to compute q eigenvalues of Q which are smallest
in modulus, λ1, . . . , λq, say, beforehand using a Lanczos procedure for Q2. With
Π denoting the orthogonal projector along the space spanned by the corresponding
eigenvectors wi, i = 1, . . . , q, we then work with the matrix ΠQΠ and the vector
Πb. In this manner, we effectively shrink the eigenvalue intervals for Q, so that we
need fewer poles for an accurate Zolotarev approximation and, in addition, the linear
systems to be solved converge more rapidly. The vector sign(Q)b can be retrieved
as sign(ΠQΠ)Πb + sign(diag(λ1, . . . , λq)) · (I − Π)b. In QCD practice, this approach
results in a major speedup, since sign(Q)b must usually be computed repeatedly for
various vectors b.

The convergence plot in Figure 7.1 shows that the error is monotonically decreas-
ing. Our new estimate (with d=5) is quite close to the true error, and it is a lower
bound in accordance with Theorem 5.4. The plot also gives upper and lower bounds
as obtained by (4.3) and (4.4), as well as the classical estimate ̺(k) from (4.2), and
the estimate ∆k,d from (4.1), with d = 5. Our new estimate is the most precise of all.

Let us mention that [46] gives an alternative way for obtaining an upper estimate
for the error with the Zolotarev approximation. This estimate assumes that we first
compute the Galerkin approximation for g(Q)b and then post-multiply by Q, whereas
here we use just the opposite order, i.e. we first multiply b by Q.

Example 7.2. We consider the Zolotarev rational function approximation to the
inverse square root function, g̃(A)b ≈ A−1/2b, see [37, Chapter 4]. This is directly
related to the sign function as g̃(t) = g(t1/2) with g from (7.1). So, again, our new
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Fig. 7.1. Results for the Zolotarev rational approximation of sign(Q) for the QCD matrix Q.
The 30 smallest eigenvalues are deflated. We plot the convergence history of the Krylov subspace
approximation and various error estimates for s = 11 poles. Both the new estimate and ∆k,d use
d = 5.

estimates will be lower bounds of the error if A is Hpd. In both experiments below,
we employ d = 2. We use a rational function with denominator of degree s = 12
(and numerator of degree s − 1 = 11), and a 200 × 200 diagonal matrix A with
uniformly distributed values in the interval [1, 1000]; b is the normalized vector of all
ones. With these parameters, the accuracy of the Zolotarev approximation turns out
to be of the order of 10−7. The convergence history of our Krylov subspace method
together with the error estimates are reported in the left plot of Figure 7.2. The figure
shows the good agreement of the new estimate with the true error. The norm ∆k,d (for
d = 2) between different approximate solutions is also a good estimate, since complete
stagnation of the process is never observed. The estimate ̺(k) is not sharp, losing at
least two orders of magnitude. In the right plot A was taken a diagonal matrix of size
3000×3000 with clustered eigenvalues. There are 300 clusters the centers of which are
uniformly distributed in [1, 10 000]. Each cluster contains 10 eigenvalues obtained by
perturbing the center with a random relative change uniformly distributed in [0, 10−4].
The analysis in [34] explains that we are now to expect stagnation phases as those
observed in the plot. The error estimates become less tight – and they are too small
– when stagnation occurs, whereas they are quite good when there is progress in the
approximation. The new error estimate is again slightly better than ∆k,d (d = 2 in
both estimates). As in Example 7.1 we know that the new estimate represents a lower
bound by Theorem 5.4.

Example 7.3. In this example we consider the Chebyshev rational approximation
g(A)b to the exponential function exp(−A)b. The coefficients of the two polynomials of
the same degree appearing in g have been tabulated in [5] for several different degrees.
It is known that the error associated with this approximation is maxt>0 | exp(−t) −
g(t)| = O(10−s), where s is the degree of the polynomials in the rational function.
In this case, the poles σi and the coefficients ωi in the partial fraction expansion are
complex, and appear in conjugate pairs. Therefore, the code with ∗ = T is employed.
In both experiments below we use d = 2. We first consider the 900× 900 matrix A =
0.1 Ã, with Ã stemming from the finite difference discretization of the two-dimensional
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Fig. 7.2. Results for the (11,12) Zolotarev rational function approximation of 1/
√

x. Con-
vergence history of the Krylov subspace approximation with various error estimates. Left: A is a
200 × 200 diagonal matrix with uniformly distributed values in [1, 1000]. Right: A is a 3000 × 3000
diagonal matrix with clustered values in [1, 10 000]. In both examples, we used d = 2 for the new
estimate and for ∆k,d.

Laplace operator in the unit square and homogeneous boundary conditions, and thus
A is real symmetric and positive definite; b is taken as the scaled vector of all ones.
The convergence in the approximation to the vector g(A)b, with g of degree s = 14 is
reported in the left plot of Figure 7.3, together with the considered error estimates.
Both the new bound and the difference ∆k,d, for the same value of d, are able to
closely follow the true convergence behavior of the error. The classical bound ̺(k)

stays almost two orders of magnitude above the actual error, although the slope is
very similar.

We next consider an example in which the convergence history shows an initial
stagnation phase, and the picture changes significantly. To this end, we let A be a
diagonal 400 × 400 matrix with uniformly distributed values in the interval [0, 2000],
and b, g(t) as above. The results are reported in the right plot of Figure 7.3. Both the
classical estimates ̺(k) and those relying on ∆k,d are completely unreliable throughout
the stagnation stage, whereas our new estimate provides a useful estimate. After that
phase, all curves behave as in the previous example, with the new estimate being
the sharpest one. We refer to [40] for an improved, possibly more reliable stopping
criterion than that based on ̺(k), in the case of the exponential function. In this
context, we also mention that a stopping criterion based on a variant of ∆k,d is also
used in [23, sec. 4].

Example 7.4. Finally, we consider the (8, 8) Padé rational approximation to
the cosine function, as described in [20, formula (4.1)]; see also [16]. We consider a
diagonal 1000 × 1000 matrix A with diagonal real elements uniformly distributed in
[0, π], and b equal to a normalized vector of uniformly distributed random values in
[0,1]. The moderate norm of A ensures an accuracy of the Padé approximation of the
order of 10−8. The poles and coefficients in the partial fraction expansion of the Padé
function arise in complex conjugates, yielding a shifted complex symmetric matrix
M .

The results for the Krylov subspace iteration are displayed in Figure 7.4. They
confirm the good accuracy of the new estimate as those based on ∆k,d to the point
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Fig. 7.3. Results for the Chebyshev rational function approximation of the exponential. Con-
vergence history of the Krylov subspace approximation with various error estimates. Left: A stems
from the 2D Laplace operator on a 30 × 30 grid. Right: A is a diagonal matrix of dimension 400
with uniformly distributed eigenvalues in [0, 2000]. In both examples, we used d = 2 for the new
estimate and for ∆k,d.

that they fully overlap. We used d = 2 for both the new estimate and ∆k,d. The
classical estimate ̺(k) has a dramatic oscillating behavior, which makes the estimate
completely unreliable. We also observe that the true error stagnates at the level
≈ 10−13), which for this problem appears to be the method’s final attainable accuracy.
This phenomenon deserves a deeper analysis, in view of similar discussions in the case
of iterative system solvers for linear systems; see, e.g., [14].
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Fig. 7.4. Results for the (8,8) Padé rational function approximation to the cosine. Convergence
history of the Krylov subspace approximation with various error estimates. A is a 1000 × 1000
diagonal matrix with uniformly distributed values in [−π,π]. We used d = 2 for the new estimate
and for ∆k,d.

8. Acceleration procedures. Acceleration procedures have been proposed to
enhance the convergence of the approximation to matrix functions; see, e.g., [23], [32],
[6], [8], [1]. In [23] and [32] a procedure based on shift-invert Lanczos is proposed to
accelerate the Krylov subspace approximation of the action of matrix functions to a
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vector, f(A)b, so that fewer iterations are required to reach the desired accuracy. For a
given real parameter µ > 0, the procedure first constructs the Krylov subspace Kk((I−
µA)−1, b), by means of the Arnoldi recurrence (I − µA)−1Vk = VkTk + tk+1,kvk+1e

T

k,
then determines an approximation to f(A)b as Vkf((I − T−1

k )/µ)e1. For f a rational
function, it was shown in [38, Proposition 3.1] that the shift-invert Lanczos procedure
amounts to approximating each system solution (A−σiI)−1b in Kk((I −µA)−1, b) by

imposing the Galerkin condition. To be specific, put Â = (I −µA)−1 and σ̂i = 1
σiµ−1 .

Then

Â · (A − σiI) =
1 − µσi

µ

(
Â − σ̂iI

)
,

and the shift-invert Lanczos procedure amounts to solve, for i = 1, . . . , p, the systems

(
Â − σ̂iI

)
x̂ = b̂, with x̂ =

1 − µσi

µ
x, b̂ = Âb. (8.1)

The linear systems in (8.1) have precisely the same shifted structure as those

in the previous sections. Let x̂
(k)
i be the Galerkin solution to system i in Kk(Â, b̂);

note that the generation of this subspace requires solving a system with (I − µA) at
each iteration. The acceleration procedure is therefore effective only if one can solve

these systems efficiently, e.g. using a multigrid method. Let x
(k)
i = µ

1−µσi
x̂

(k)
i be the

corresponding approximate solution to the original system (A − σiI)x = b, see (8.1).
Then

g(A)b −

s∑

i=1

ωix
(k)
i =

s∑

i=1

ωi(xi − x
(k)
i )

=
s∑

i=1

µωi

1 − µσi
(x̂i − x̂

(k)
i ) ≡

s∑

i=1

ω̂i(x̂i − x̂
(k)
i ).

The results of Theorems 5.1 and 5.4 can now be used to estimate the error∑s
i=1 ω̂i(x̂i − x̂

(k)
i ). We show the behavior of the shift-invert acceleration procedure

in the next two examples.
Example 8.1. We consider the approximation of the operation exp(−tA)b where

t = 0.1, b is the scaled unit vector, and A is the 10 000×10 000 matrix stemming from
the five point finite difference discretization of the operator

L(u) = (a(x, y)ux)x + (b(x, y)uy)y, a(x, y) = 1 + y − x, b(x, y) = 1 + x + x2,

in [0, 1]2; see [23]. The standard Lanczos approach is extremely inefficient on this
problem, whereas the shift-invert acceleration strategy is very competitive [38]. In
Figure 8.1 we report the performance of the procedure for s = 14, d = 2 and the
acceleration parameter µ taken as µ = 1/ maxi |σi|; cf. [38] for a justification of this
choice. The results fully confirm the effectiveness of the error estimate even in the
acceleration context, and highlight its sharpness whenever convergence is fast. Note
that the simple estimate ∆k,d is equally good, owing to the fast convergence rate,
whereas the classical residual-based estimate ̺(k) is unable to capture the true order
of magnitude of the error.

Example 8.2. We conclude with the use of the shift-invert Lanczos procedure for
accelerating the approximation of A−1/2b in Example 7.2 with A of size 3000× 3000.
For this example, after some tuning we set the acceleration parameter to be equal to
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Fig. 8.1. Convergence of the acceleration procedure. Left: approximation to the Chebyshev
rational function approximating the exponential. A is the discretization of an elliptic operator; see
Example 8.1. Right: approximation to the (11,12) Zolotarev rational function approximation of the
function 1/

√
x; see Example 8.2. In both cases, we used d = 2 for the new estimate and for ∆k,d.

µ = 1/(100 + mini |σi|) and we considered d = 2. With the same data as in Example
7.2, the results are displayed in the right plot of Figure 8.1 and once again report an
optimal behavior of our new error estimate compared to ̺(k).

9. Conclusions. In this paper we have shown that a sharp error estimate may be
obtained for the approximation by Krylov subspace methods of the action of rational
matrix functions to a vector. Our results are sufficiently general to be applicable to a
large class of rational functions, commonly employed to approximate not necessarily
analytic functions such as the exponential, the sign, the square-root functions and
trigonometric functions. Our estimates rely on known error estimates for Hermitian
positive definite systems, however we apply them to a wider class of matrices and
to the far more general context of rational functions. Under certain hypotheses, we
were able to prove that our estimates are true lower bounds of the Euclidean norm of
the rational function error. We have also discussed practical implementation issues,
showing that our estimates can be cheaply included in a Lanczos or CG procedure.
We also showed that a classical measure of the error, the difference ∆k,d between two
iterates, may be a good indicator of the actual convergence history, unless complete
stagnation takes place.
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[45] Z. Strakoš and P. Tichý, Error estimation in preconditioned conjugate gradients, BIT Nu-
merical Mathematics, 45 (2005), pp. 789–817.

[46] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. van der Vorst, Numer-
ical methods for the QCD overlap operator. I: Sign-function and error bounds., Comput.
Phys. Commun., 146 (2002), pp. 203–224.

[47] J. van den Eshof and G. L. Sleijpen, Accurate conjugate gradient methods for families of
shifted systems, Appl. Numer. Math., 49 (2004), pp. 17–37.

25


