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The problem
Solve Ax =b with GMRES assuming
e A c C™™ ™ large, nonsymmetric
e A almost singular (or numerically singular)

e b noise-perturbed version of “consistent” rhs
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Two different perspectives

For the analysis of the GMRES behavior:

e |ll-posed problem framework suggests using sing.values

(e.g., Jensen, Hansen 2006, Hanke, Nagy, Plemmons 1993, Brianzi, Favati,
Menchi, Romani 2006)

e The Krylov subspace setting suggests using spectral information

(e.g., Calvetti, Lewis, Reichel 2002)




Some preliminary considerations
Assume A is exactly singular: Ax =b
GMRES: Given g € C", and ro = b — Axy,

Find xx € x¢ + Kx(A, 7o) such that x; = arg min |6 — Az||
$E£U0+Kk(A,T0)

Brown, Walker 1997, Hayami, Sugihara 2011:

GMRES determines a least squares solution x, of a
singular system Ax = b, for all b and starting

approximations xg, without breakdown, if and only if

N(A) = N(A%)

Furthermore, if the system is consistent and xg € R(A),

then x, 1s a minimum norm solution.




Some preliminary considerations

If Ax = b is written as

Ay
0

then

and
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Clearly, Ai5 = 0 corresponds to solving A1) = b

In practice: A5 ~ 0 and b® ~ 0 (but nonzero)



Our setting

Consider a preconditioned least squares problem

min || (AM], )y — 0|
Yy

Discrepancy principle:

Determine approx & with residual ||Az — b|| =~ ¢
(6 prespecified, measure of data noise level)

= right preconditioning

= stopping criterion: § = 1.1 - (datanoise) - /|||



Our setting

Consider a preconditioned least squares problem

Discrepancy principle:

min || (AM], )y — 0|
Yy

Determine approx & with residual ||Az — b|| =~ ¢

(6 prespecified, measure of data noise level)

= right preconditioning

= stopping criterion: § = 1.1 - (datanoise) - /|||
* Schur decomposition AM = UBU* with U unitary. Then
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Our setting

1, al law] [
min _
|:d(1)i| 0 L2 d(2) 6(2)
a(2) n 4 L _ n _
with
Amin (L) > Pmax(L2), eV > 12 =6

= Ly and ¢ correspond to “noise”

Moreover,

e ||L;'|| moderate; ||G|| moderate (high non-normality excluded)



Our setting

al ool [.o]
min
[dm} Ly| [d® c(2)

a(2)

with
Amin(L1)] > Amax(L2)|,  [|eP]] > (|| =6
= Ly and ¢ correspond to “noise”

Moreover,

e ||L;'|| moderate; ||G|| moderate (high non-normality excluded)

The problem above may be viewed as a perturbation of
o] [
min (2)
|:d(1)i| d(2) c(2)

a(2)

s it possible to “solve” (1) as efficiently as we would do with (2) 7




Spectral decomposition

i G Ly o] |y
B=|" = XBoX = [X1,Xo] | !

0 Lo 0 Lo| |Yy

where [Yl,YQ]* = [Xl,XQ]_l, and

(X1, Xs5] = , Y1, Y] =

and P is the unique soln of the Sylvester eqn L1 P — PLy = —G
Note that
|G|l

Xol| <1+ ||P Vi <1+ ||P h P <
IXel = 1PN I < LR where [P) < 227

It also follows that: | X <1+ ||P]
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The residual polynomial

Bd = c

For any polynomial ¢,,,

om(L1)Y1 c
om(L2)Y5'c

pm(B)c = [X1, X2]

so that

lom (B)ell < llm (L)Y el + || Xawm(La)e® |
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An explanatory example

wing example from Regularization Matlab Toolbox (Hansen, 1994-2007)

(Discretization of a 1st kind Fredholm integral eqn, discontinuous soln)
spec(A):

3.74-1071, —2.55-.1072, 7.65-10"%, —1.48 - 107,
2.13-1077, —2.45-1072,2.33-10~ ', —1.89-107%3,1.32-107 1%, ...

perturbed rhs: b =0, +ep  (p with randn entries and ||p|| = 1)

L1: corresponds to the abs largest six eigenvalues

|G| = 2.29- 1075, ||P| = 10.02

Fore =107 ||Y*¢c|| =1 and ||Yse|| = 6.7- 1077

For e = 107°: ||YS'¢|| = 6.49-107°




GMRES residual bounds
m«: grade of L1 with respect to Y{*c (Fdm., st. dm, (L1)Y{'c=0)
rr: GMRES residual after k iterations

Ay: circle centered at the origin and having radius p s.t. spec(L2) C Ag
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GMRES residual bounds
m«: grade of L1 with respect to Y{*c (Fdm, st. dm, (L1)Y{'c=0)
ri. GMRES residual after k iterations
As: circle centered at the origin and having radius p s.t. spec(L2) C Az

i) If & < my, let s,(:) = ¢ (L1)Y{"c be the GMRES residual associated with
L1z =Y c. Then

1 —_—
Il < 10+ IXallver, 7= p max [|(z] — La)~ @),
z€Ao
k
where 73, = max H 10; — z|/|0i| and 0; are the roots of ¢
2€82,
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GMRES residual bounds

m«: grade of L1 with respect to Y{*c (Fdm, st. dm, (L1)Y{'c=0)
ri: GMRES residual after k iterations

Ag: circle centered at the origin and having radius p s.t. spec(L2) C Ag

i) If & < my, let s,(:) = ¢ (L1)Y{"c be the GMRES residual associated with
L1z =Y c. Then

7= p max ||(z] — La) " 1P|,

< [Ist )+ |1x
Ireell < llsy Il + [ X2 llveT, max

k

where v, = anzz}; H 0; — z|/|0;] and 0; are the roots of ¢y
i=1

Wing data. mx = 6, |G| = 2.29-107° and ||P|| = 10.02. radius p =2-107?
(1)
gl

€ s [ Xo|[veT Sum 7%l

10— 7

1.640e-03
3.594e-05

6.770e-06
6.770e-06

1.647e-03
4.271e-05

1.640e-03
3.573e-05

10—°

1.621e-03
6.568e-05

6.770e-04
6.770e-04

2.298e-03
7.427e-04

1.640e-03
7.568e-05




GMRES residual bounds
m«: grade of L1 with respect to Y{*c (Fdm., st. dm, (L1)Y{'c=0)
ri: GMRES residual after k iterations
Aq: circle centered at the origin and having radius p s.t. spec(L2) C Az
i) If k=ms«+j,7>0, let 55.2) = goj(Lg)c(Q) be the GMRES residual associated
with Loz = ¢(?) after j iterations (note that ||s§.2)]| < [|e)]). Then

(2) B —1
Irell < pymls; ™ 11| X2]] max [(zI — L2)~ 7|

™«
where v,,, = max H |0; — z|/|0;| and 0; are the roots of the grade polyn of L

A
zE82 0




GMRES residual bounds
m«: grade of L1 with respect to Y{*c (Fdm, st. dm, (L1)Y{'c=0)
ri: GMRES residual after k iterations
Aq: circle centered at the origin and having radius p s.t. spec(L2) C Ag
i) If k= m. +4, 5 >0, let s = ;(L2)c® be the GMRES residual associated
with Loz = ¢(2) after j iterations (note that ||s§.2>|| < [|e(®)]]). Then

Irill < prym. 557 1 Xa]| mage (12T = L2) ™|

M %

where ~v,,, = max H |0; — z|/|0;| and 6; are the roots of the grade polyn of L,
#€A2

Wing data. m. = 6, |G| = 2.29-107° and ||P|| = 10.02. radius p =2-107?
ek | Isi”l X2t Bound I
107 10 6.712e-06  6.311e-07
10~° 10 6.442e-04  6.308e-05




Application to singular preconditioning

Let M1 € C™ " be a rank-m approximation of A~}
Then rank(AM] ) = m,

B=U*(AM! U =

and the least squares problem reads

min{|[L1, Gld — <VJ° + [P}, e=U"b=

19

(1)

(2)




A preconditioned 2D ill-posed elliptic problem

(5(y)uy)y + (auy), + yuy =0

with o =1, v = 2, and

50, 0<y<05 .
Bly) = ’ ”
8 0.0 <y < L.

randn perturbation s.t.

Hg - gpertH/Hg” ~ 18- 10_3 | u=g(x), u =0
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A preconditioned 2D ill-posed elliptic problem

(Bly)uy), + (), + Yty =0

with a =1, v =2, and

50, 0<y <0.5,
8 0.5 <y <1.

randn perturbation s.t.
19 = gpertll/llgl| = 1.8 -107°

Rank-m preconditioner M (m = 9):

approx to the exact soln operator: fy = cosh ((%L

(Elden, Simoncini, 2009)




The preconditioned problem solved by GMRES

1
min (4D} )y gl Mhy = cosh (L))
Y Bo
* Operation Av: solve the well-posed problem with b.c. u(z,1) = v(x) replacing

u(zx,0) = g(x) (dim. 10000)
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The preconditioned problem solved by GMRES

1
min [(AMI )y —gll, M, = cosh ((—Lm> )
Y Bo

N[

* Operation Av: solve the well-posed problem with b.c. u(x,1) = v(x) replacing

u(z,0) = g(x) (dim. 10000)
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The preconditioned problem solved by GMRES

1
min [(AMI )y —gll, M, = cosh ((—Lm> )
Y Bo

N[

* Operation Av: solve the well-posed problem with b.c. u(x,1) = v(x) replacing

u(z,0) = g(x) (dim. 10000)
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Conclusions

e Good understanding of GMRES behavior for almost singular
systems stemming from ill-posed problems

e Applicability to singular preconditioning

Error bounds (not shown) seem to imply:

e The singular preconditioner acts as regularization operator

e For the residual rp, = b — Axy, the quantity ||A*ry|| could be
monitored together with ||ry||

Reference:

L. Elden and V. Simoncini, Solving Ill-posed Linear Systems with
GMRES and a Singular Preconditioner, SIMAX, v.33 (4), 2012.




