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Some matrix equations

• Sylvester matrix equation

AX+XB +D = 0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

AX+XA⊤ +D = 0, D = D⊤

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

Multiterm matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

(Stochastic) PDEs

Focus: All or some of the matrices are large (and possibly sparse)
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Survey article: V.Simoncini, SIAM Review 2016.
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More matrix equations

• Systems of linear matrix equations:

A2X+XA1 +BTP = F1

A1Y +YA2 + PB = F2

BX+YBT = F3

Riccati equation: Find X ∈ R
n×n such that

AX+XA⊤ −XBB⊤X+ C⊤C = 0

workhorse in Control Theory

Focus: All or some of the matrices are large (and possibly sparse)
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Solving the Lyapunov equation. The problem

Approximate X in:

AX+XA⊤ +BB⊤ = 0

A ∈ R
n×n neg.real B ∈ R

n×p, 1 ≤ p≪ n

————————————

Time-invariant linear dynamical system:

x′(t) = Ax(t) +Bu(t), x(0) = x0

Closed form solution:

X =

∫ ∞

0

e−tABB⊤e−tA⊤

dt =

∫ ∞

0

xx⊤dt with x = exp(−tA)B.

⇒ X symmetric semidef.

see, e.g., Antoulas ’05, Benner ’06
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Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equation:

AX+XA⊤ +BB⊤ = 0

No preconditioning to preserve symmetry

X is a large, dense matrix ⇒ low rank approximation

X ≈ X̃ = ZZ⊤, Z tall

11



Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equations:

AX+XA⊤ +BB⊤ = 0

• No preconditioning - to preserve symmetry

• X is a large, dense matrix ⇒ low rank approximation

X ≈ X̃ = ZZ⊤, Z tall

12



Linear systems vs linear matrix equations

Large linear systems:

Ax = b, A ∈ R
n×n

• Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

• Preconditioners: find P such that

AP−1x̃ = b x = P−1x̃

is easier and fast to solve

Large linear matrix equations:

AX+XA⊤ +BB⊤ = 0

Kronecker formulation:

(A⊗ I + I ⊗A)x = b x = vec(X)
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Projection-type methods

Given an low dimensional approximation space K,

X ≈ Xm col(Xm) ∈ K

Galerkin condition: R := AXm +XmA
⊤ +BB⊤ ⊥ K

V ⊤

mRVm = 0 K = Range(Vm)

————————————

Assume V ⊤
m Vm = Im and let Xm := VmYmV

⊤
m .

Projected Lyapunov equation:

V ⊤

m (AVmYmV
⊤

m + VmYmV
⊤

mA
⊤ + BB⊤)Vm = 0

(V ⊤

mAVm)Ym + Ym(V ⊤

mA
⊤Vm) + V ⊤

mBB
⊤Vm = 0

Early contributions: Saad ’90, Jaimoukha & Kasenally ’94, for

K = Km(A,B) = Range([B,AB, . . . , Am−1B])
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More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

K = EK := Km(A,B) +Km(A−1, A−1B),

that is, K = Range([B,A−1B,AB,A−2B,A2B,A−3B, . . . , ])

(Druskin & Knizhnerman ’98, Simoncini ’07)

• Rational Krylov subspace

K = K := Range([B, (A− s1I)
−1B, . . . , (A− smI)

−1B])

usually, {s1, . . . , sm} ⊂ C
+ chosen either a-priori or dynamically

In both cases, for Range(Vm) = K, projected Lyapunov equation:

(V⊤

mAVm)Ym + Ym(V⊤

mA
⊤Vm) + V⊤

mBB
⊤Vm = 0

Xm = VmYmV⊤
m
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Bilinear systems of matrix equations

Find X ∈ R
n1×n2 and P ∈ R

m×n2 such that

A1X+XA2 +B
T
P = F1

BX = F2

with Ai ∈ R
ni×ni , B ∈ R

m×n1 , F1 ∈ R
n1×n2 , F2 ∈ R

m×n2 , m ≤ n1

Emerging matrix formulation of different application problems

• Constraint control

• Mixed formulations of stochastic diffusion problems

• Discretized deterministic/stochastic (Navier-)Stokes equations

• ...
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An example. Mixed FE formulation of stochastic Galerkin diffusion pb

c
−1

~u−∇p = 0,

−∇ · ~u = f,

Assume that c−1 = c0 +

ℓ∑

r=1

√
λrcr(~x)ξr(ω) and that an appropriate class of

finite elements is used for the discretization of the problem

(see, e.g., the derivation in Elman & Furnival & Powell, 2010)

After discretization the problem reads:



G0 ⊗K0 +

ℓ∑

r=1

√
λGr ⊗Kr GT

0 ⊗BT
0

G0 ⊗B0





u
p


 =


0

f




For ℓ = 1 we obtain

K0XG0 +K1XG1 +BT
0 PG0 = 0,

B0XG0 = F

22



An example. Mixed FE formulation of stochastic Galerkin diffusion pb

c
−1

~u−∇p = 0,

−∇ · ~u = f,

Assume that c−1 = c0 +

ℓ∑

r=1

√
λrcr(~x)ξr(ω) and that an appropriate class of

finite elements is used for the discretization of the problem

(see, e.g., the derivation in Elman & Furnival & Powell, 2010)

After discretization the problem reads:



G0 ⊗K0 +

ℓ∑

r=1

√
λGr ⊗Kr GT

0 ⊗BT
0

G0 ⊗B0





u
p


 =


0

f




For ℓ = 1 we obtain

K0XG0 +K1XG1 +BT
0 PG0 = 0,

B0XG0 = F

23



The bilinear case. Computational strategies

A1X+XA2 +B
T
P = F1

BX = F2

Kronecker formulation (monolithic):


A BT

B O




x
p


 =


f1
f2


 , A = I ⊗A1 +A

T
2 ⊗ I, B = B ⊗ I

with x = vec(X), p = vec(P), f1 = vec(F1) and f2 = vec(F2)

Extremely rich literature from saddle point algebraic linear systems

Problem: Coefficient matrix has size (n1n2 +mn2)× (n1n2 +mn2)
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The bilinear case. Computational strategies. Cont’d

A1X+XA2 +B
T
P = F1

BX = F2

⋆ Derive numerical strategies that directly work with the matrix equations:

• Small scale: Null space method

• Small and medium scale: Schur complement method

(also directly applicable to trilinear case)

• Large scale: Iterative method for low rank Fi, i = 1, 2

“Small and medium scale” actually means “Large scale” for

the Kronecker form!
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Large scale problem. Iterative method. 1/3

A1X+XA2 +B
T
P = F1

BX = F2

Rewrite as

A1 BT

B 0




X
P


+


In1

0

0 0




X
P


A2 =


F1

F2


 , ⇔ MZ+D0ZA2 = F

with

M,D0 ∈ R
(n1+m)×(n1+m)

A2 ∈ R
n2×n2 nonsingular

D0 highly singular

If F low rank, exploit projection-type strategies for Sylvester equations
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Large scale problem. Iterative method. 2/3


A1 BT

B 0




X
P


+


In1

0

0 0




X
P


A2 =


F1

F2


 ⇔ MZ+D0ZA2 = F

with F low rank. We rewrite the matrix equation as a Sylvester equation:

ZA
−1
2 +M−1D0Z = F̂

with F̂ = M−1FA−1
2 of low rank if F is of low rank, F̂ = F̂ℓF̂

T
r

⇒ Z ≈ Z̃k = VkZkW
T
k

with Range(Vk),Range(Wk) appropriate approximation spaces of small

dimensions
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Large scale problem. Iterative method. 3/3

Galerkin-Projection method

ZA
−1
2 +M−1D0Z = F̂lF̂

T
r ⇒ Z ≈ Z̃k = VkZkW

T
k

Choice of Vk,Wk. A possible strategy:

• Wk = EKk(A
−T
2 , F̂r), Extended Krylov subspace

• Vk = Kk(M−1D0, F̂l) ∪Kk((M−1D0 + σI)−1, F̂l)

Augmented Krylov subspace, σ ∈ R

(see, e.g., Shank & Simoncini, 2013)

Note: M has size (n1 +m)× (n1 +m)

(Compare with (n1n2 +mn2)× (n1n2 +mn2) of the Kronecker form)
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Numerical experiments

A1X−XA2 +B
T
P = 0, vs Az = f

BX = F2

A1 → L1 = −uxx − uyy , F2 rank-1

A2 → L1 = −(e−10xyux)x − (e10xyuy)y + 10(x+ y)ux

B = bidiag(−1, 1) ∈ R(n2−n1)×n2 , params: tol=10−6, σ = 10−2

n1 n2 size(A) Monolithic Matrix eqns

Elapsed Time Elapsed Time

400 100 79,000 6.9769e-02 3.1523e-02 (4)

900 225 401,625 3.4808e-01 5.0447e-02 (4)

1600 400 1272,000 1.1319e+00 7.8018e-02 (4)

2500 625 3109,375 3.1212e+00 1.5282e-01 (5)

3600 900 6453,000 1.0210e+01 2.8053e-01 (5)

4900 1225 11,962,125 3.7699e+01 1.4754e+00 (5)

Monolithic: direct solver (iterative not competitive)
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Numerical experiments. 1D stochastic Stokes problem.

H BT

B 0




x
p


 =


f1
f2


 , H = (ν0G0 + ν1G1)⊗Ax, B = G0 ⊗Bx

where ν = ν0 + ν1ξ(ω) uncertain viscosity, ξ random variable

Then

AxXG0ν0 +AxXG1ν1 +BT
x PG0 = F1, BxX = F2

with G0 = I. This corresponds to

ν0Ax BT

x

Bx 0




X
P


+


ν1Ax

0




X
P


G1 =


F1

F2




that is

MZ+D0ZG1 = F
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Numerical experiments. 1D stochastic Stokes problem.

MZ+D0ZG1 = F vs Az = f

ν0 = 1/10, ν1 = 3ν0/10 Powell & Silvester, 2012

Elapsed Time

n1 n2 size(A) Monolithic Matrix eqns

1256 4 6,580 0.18 0.12 (2)

3526 4 18,064 0.90 0.56 (2)

9812 4 49,708 4.64 2.19 (2)

n1 n2 size(A) Monolithic Matrix eqns

1256 165 271,425 2.91 0.18 (2)

3526 165 745,140 20.01 0.45 (2)

9812 165 2 050,455 - 1.87 (2)

• n2 could be much larger, n2 = O(103)

• Memory requirements are limited, Z̃ = Z1ZT
2 of very low rank
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Control

• (Stochastic) PDEs

• Matrix least squares

• ...

Main device: Kronecker formulation

(
B⊤

1 ⊗A1 + . . .+B⊤

ℓ ⊗Aℓ

)
x = c

Iterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1XB1 +A2XB2 + . . .+AℓXBℓ = C

Applications:

• Control

• (Stochastic) PDEs

• Matrix least squares

• ...

Alternative approaches:

• Projection onto rich approximation space

• Compression to two-term matrix equation

• Splitting strategy towards two-term matrix equation

• ...
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PDEs on uniform grids and separable coeffs

−ε∆u+φ1(x)ψ1(y)ux+φ2(x)ψ2(y)uy+γ1(x)γ2(y)u = f (x, y) ∈ Ω

φi, ψi, γi, i = 1, 2 sufficiently regular functions + b.c.

Problem discretization by means of a tensor basis

Multiterm linear equation:

−εT1U− εUT2 +Φ1B1UΨ1 +Φ2UB
⊤

2 Ψ2 + Γ1UΓ2 = F

Finite Diff.: Ui,j = U(xi, yj) approximate solution at the nodes
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u : D×Ω → R s.t. P-a.s.,




−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D

u(x, ω) = 0 on ∂D

f : deterministic;

a: random field, linear function of finite no. of real-valued random

variables ξr : Ω → Γr ⊂ R

Common choice: truncated Karhunen–Loève (KL) expansion,

a(x, ω) = µ(x) + σ

m∑

r=1

√
λrφr(x)ξr(ω),

µ(x): expected value of diffusion coef. σ: std dev.

(λr, φr(x)) eigs of the integral operator V wrto V (x,x′) = 1

σ2C(x,x
′)

(λr ց C : D ×D → R covariance fun. )
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Discretization by stochastic Galerkin

Approx with space in tensor product forma Xh × Sp

Ax = b, A = G0 ⊗K0 +

m∑

r=1

Gr ⊗Kr, b = g0 ⊗ f0,

x: expansion coef. of approx to u in the tensor product basis {ϕiψk}

Kr ∈ Rnx×nx , FE matrices (sym)

Gr ∈ R
nξ×nξ , r = 0, 1, . . . ,m Galerkin matrices associated w/ Sp (sym.)

g0: first column of G0

f0: FE rhs of deterministic PDE

nξ = dim(Sp) =
(m+ p)!

m!p!
⇒ nx · nξ huge

aSp set of multivariate polyn of total degree ≤ p
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The matrix equation formulation

(G0 ⊗K0 +G1 ⊗K1 + . . .+Gm ⊗Km)x = g0 ⊗ f0

transforms into

K0XG0 +K1XG1 + . . .+KmXGm = F, F = f0g
⊤

0

(G0 = I)

Solution strategy. Conjecture:

• {Kr} from trunc’d Karhunen–Loève (KL) expansion

⇓

X ≈ X̃ low rank, X̃ = X1X
T
2

(Possibly extending results of Grasedyck, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space Kk and basis matrix Vk: X ≈ Xk = VkY

V ⊤

k Rk = 0, Rk := K0Xk +K1XkG1 + . . .+KmXkGm − f0g
⊤

0

Computational challenges:

• Generation of Kk involved m+ 1 different matrices {Kr} !

• Matrices Kr have different spectral properties

• nx, nξ so large that Xk, Rk should not be formed !

(Powell & Silvester & Simoncini, SISC 2017)

For a full account attend Catherine Powell’s talk, M12, 16:45 Thu
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Not discussed but in this category

• Sylvester-like linear matrix equations

AX + f(X)B = C

typically (but not only!): f(X) = X̄, f(X) = X⊤, or f(X) = X∗

(Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez,

Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder,

Vorntsov, Watkins, Wu, ...)

Linear systems with complex tensor structure

Ax = b with A =

k∑

j=1

In1
⊗ · · · ⊗ Inj−1

⊗Aj ⊗ Inj+1
· · · ⊗ Ink

.

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov,

and many more...
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Conclusions

Large-scale (Multiterm) linear equations are a new computational tool

• Great advances in solving really large linear matrix equations

• Second order (matrix) challenges rely on strength and maturity of

linear system solvers

• Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

⋆ V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.
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