

Computational methods for large-scale matrix equations and application to PDEs

V. Simoncini

Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it

• Sylvester matrix equation

$$A\mathbf{X} + \mathbf{X}B + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

• Sylvester matrix equation

$$A\mathbf{X} + \mathbf{X}B + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Sylvester matrix equation

$$AX + XB + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Multiterm matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_{\ell}\mathbf{X}B_{\ell} = C$$

Control, (Stochastic) PDEs, ...

Sylvester matrix equation

$$AX + XB + D = 0$$

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

• Lyapunov matrix equation

$$A\mathbf{X} + \mathbf{X}A^{\mathsf{T}} + D = 0, \qquad D = D^{\mathsf{T}}$$

Stability analysis in Control and Dynamical systems, Signal processing, eigenvalue computations

Multiterm matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_{\ell}\mathbf{X}B_{\ell} = C$$

Control, (Stochastic) PDEs, ...

Focus: All or some of the matrices are large (and possibly sparse)

Solving the Lyapunov equation. The problem

Approximate X in:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

$$A \in \mathbb{R}^{n \times n}$$
 neg.real $B \in \mathbb{R}^{n \times p}, \qquad 1 \leq p \ll n$

Solving the Lyapunov equation. The problem

Approximate X in:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

$$A \in \mathbb{R}^{n \times n} \text{ neg.real} \qquad B \in \mathbb{R}^{n \times p}, \qquad 1 \leq p \ll n$$

Time-invariant linear system:

$$\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t), \quad \mathbf{x}(0) = x_0$$

Closed form solution:

$$\mathbf{X} = \int_0^\infty e^{-tA} B B^{\top} e^{-tA^{\top}} dt$$

X symmetric semidef.

see, e.g., Antoulas '05, Benner '06

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Large linear matrix equations:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

- No preconditioning to preserve symmetry
- \bullet X is a large, dense matrix \Rightarrow low rank approximation

$$\mathbf{X} pprox \widetilde{X} = ZZ^{\top}, \quad Z \text{ tall}$$

Linear systems vs linear matrix equations

Large linear systems:

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

- Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
- Preconditioners: find P such that

$$AP^{-1}\widetilde{x} = b$$
 $x = P^{-1}\widetilde{x}$

is easier and fast to solve

Large linear matrix equations:

$$A\mathbf{X} + \mathbf{X}A^{\top} + BB^{\top} = 0$$

Kronecker formulation:

$$(A \otimes I + I \otimes A)x = b$$
 $x = \text{vec}(\mathbf{X})$

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$.

Projected Lyapunov equation:

$$V_m^{\top} (AV_m Y_m V_m^{\top} + V_m Y_m V_m^{\top} A^{\top} + BB^{\top}) V_m = 0$$

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition:
$$R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$.

Projected Lyapunov equation:

$$V_{m}^{\top} (AV_{m}Y_{m}V_{m}^{\top} + V_{m}Y_{m}V_{m}^{\top}A^{\top} + BB^{\top})V_{m} = 0$$
$$(V_{m}^{\top}AV_{m})Y_{m} + Y_{m}(V_{m}^{\top}A^{\top}V_{m}) + V_{m}^{\top}BB^{\top}V_{m} = 0$$

Given an approximation space \mathcal{K} ,

$$\mathbf{X} \approx X_m \quad \operatorname{col}(X_m) \in \mathcal{K}$$

Galerkin condition: $R := AX_m + X_m A^\top + BB^\top \perp \mathcal{K}$

$$V_m^{\top} R V_m = 0$$
 $\mathcal{K} = \text{Range}(V_m)$

Assume $V_m^\top V_m = I_m$ and let $X_m := V_m Y_m V_m^\top$.

Projected Lyapunov equation:

$$V_{m}^{\top} (AV_{m}Y_{m}V_{m}^{\top} + V_{m}Y_{m}V_{m}^{\top}A^{\top} + BB^{\top})V_{m} = 0$$
$$(V_{m}^{\top}AV_{m})Y_{m} + Y_{m}(V_{m}^{\top}A^{\top}V_{m}) + V_{m}^{\top}BB^{\top}V_{m} = 0$$

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for

$$\mathcal{K} = \mathcal{K}_m(A, B) = \text{Range}([B, AB, \dots, A^{m-1}B])$$

More recent options as approximation space

Enrich space to decrease space dimension

• Extended Krylov subspace

$$\mathcal{K} = \mathcal{K}_m(A,B) + \mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is,
$$\mathcal{K} = \operatorname{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$$
 (Druskin & Knizhnerman '98, Simoncini '07)

More recent options as approximation space

Enrich space to decrease space dimension

Extended Krylov subspace

$$\mathcal{K}=\mathcal{K}_m(A,B)+\mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is, $\mathcal{K}=\mathrm{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

Rational Krylov subspace

$$\mathcal{K} = \mathbb{K} := \operatorname{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$
 usually, $\{s_1, \dots, s_m\} \subset \mathbb{C}^+$ chosen either a-priori or dynamically

More recent options as approximation space

Enrich space to decrease space dimension

Extended Krylov subspace

$$\mathcal{K}=\mathcal{K}_m(A,B)+\mathcal{K}_m(A^{-1},A^{-1}B),$$
 that is, $\mathcal{K}=\mathrm{Range}([B,A^{-1}B,AB,A^{-2}B,A^2B,A^{-3}B,\dots,])$ (Druskin & Knizhnerman '98, Simoncini '07)

Rational Krylov subspace

$$\mathcal{K} = \mathbb{K} := \text{Range}([B, (A - s_1 I)^{-1} B, \dots, (A - s_m I)^{-1} B])$$

usually, $\{s_1, \ldots, s_m\} \subset \mathbb{C}^+$ chosen either a-priori or dynamically

In both cases, for $Range(V_m) = \mathcal{K}$, projected Lyapunov equation:

$$(V_m^{\top} A V_m) Y_m + Y_m (V_m^{\top} A^{\top} V_m) + V_m^{\top} B B^{\top} V_m = 0$$

$$X_m = V_m Y_m V_m^{\top}$$

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares
- ...

Multiterm linear matrix equation

$$A_1 \mathbf{X} B_1 + A_2 \mathbf{X} B_2 + \ldots + A_\ell \mathbf{X} B_\ell = C$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares

• ...

Main device: Kronecker formulation

$$(B_1^{\top} \otimes A_1 + \ldots + B_{\ell}^{\top} \otimes A_{\ell}) x = c$$

Iterative methods: matrix-matrix multiplications and rank truncation (Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)

Multiterm linear matrix equation

$$A_1\mathbf{X}B_1 + A_2\mathbf{X}B_2 + \ldots + A_\ell\mathbf{X}B_\ell = C$$

Applications:

- Control
- (Stochastic) PDEs
- Matrix least squares
- ...

Alternative approaches:

low-rank approx in the problem space. Some examples:

- Control problem
- PDEs on uniform discretizations
- Stochastic PDE

PDEs on uniform grids and separable coeffs

 $-\varepsilon\Delta u + \phi_1(x)\psi_1(y)u_x + \phi_2(x)\psi_2(y)u_y + \gamma_1(x)\gamma_2(y)u = f \quad (x,y) \in \Omega$ $\phi_i, \psi_i, \gamma_i, \ i = 1, 2 \text{ sufficiently regular functions} + \text{b.c.}$

Problem discretization by means of a tensor basis

Multiterm linear equation:

$$-\varepsilon T_1 \mathbf{U} - \varepsilon \mathbf{U} T_2 + \Phi_1 B_1 \mathbf{U} \Psi_1 + \Phi_2 \mathbf{U} B_2^{\mathsf{T}} \Psi_2 + \Gamma_1 \mathbf{U} \Gamma_2 = F$$

Finite Diff.: $U_{i,j} = U(x_i, y_j)$ approximate solution at the nodes

PDEs with random inputs

Stochastic steady-state diffusion eqn: $Find\ u: D \times \Omega \to \mathbb{R}\ s.t.\ \mathbb{P}$ -a.s.,

$$\begin{cases}
-\nabla \cdot (a(\mathbf{x}, \omega)\nabla u(\mathbf{x}, \omega)) = f(\mathbf{x}) & in D \\
u(\mathbf{x}, \omega) = 0 & on \partial D
\end{cases}$$

f: deterministic;

a: random field, linear function of finite no. of real-valued random variables $\xi_r:\Omega\to\Gamma_r\subset\mathbb{R}$

Common choice: truncated Karhunen-Loève (KL) expansion,

$$a(\mathbf{x}, \omega) = \mu(\mathbf{x}) + \sigma \sum_{r=1}^{m} \sqrt{\lambda_r} \phi_r(\mathbf{x}) \xi_r(\omega),$$

 $\mu(\mathbf{x})$: expected value of diffusion coef. σ : std dev. $(\lambda_r, \phi_r(\mathbf{x})) \text{ eigs of the integral operator } \mathcal{V} \text{ wrto } V(\mathbf{x}, \mathbf{x}') = \frac{1}{\sigma^2} C(\mathbf{x}, \mathbf{x}')$ $(\lambda_r \searrow C: D \times D \to \mathbb{R} \text{ covariance fun. })$

Discretization by stochastic Galerkin

Approx with space in tensor product form $\mathcal{X}_h \times S_p$

$$\mathcal{A}\mathbf{x} = \mathbf{b}, \qquad \mathcal{A} = G_0 \otimes K_0 + \sum_{r=1}^m G_r \otimes K_r, \quad \mathbf{b} = \mathbf{g}_0 \otimes \mathbf{f}_0,$$

 \mathbf{x} : expansion coef. of approx to u in the tensor product basis $\{\varphi_i\psi_k\}$

 $K_r \in \mathbb{R}^{n_x \times n_x}$, FE matrices (sym)

 $G_r \in \mathbb{R}^{n_\xi \times n_\xi}$, $r = 0, 1, \dots, m$ Galerkin matrices associated w/ S_p (sym.)

 \mathbf{g}_0 : first column of G_0

 \mathbf{f}_0 : FE rhs of deterministic PDE

$$n_{\xi} = \dim(S_p) = \frac{(m+p)!}{m!p!}$$
 $\Rightarrow \boxed{n_x \cdot n_{\xi}}$ huge

 $^{{}^{\}mathbf{a}}S_{p}$ set of multivariate polyn of total degree $\leq p$

The matrix equation formulation

$$(G_0 \otimes K_0 + G_1 \otimes K_1 + \ldots + G_m \otimes K_m) \mathbf{x} = \mathbf{g}_0 \otimes \mathbf{f}_0$$

transforms into

$$K_0\mathbf{X}G_0+K_1\mathbf{X}G_1+\ldots+K_m\mathbf{X}G_m=F, \qquad F=\mathbf{f}_0\mathbf{g}_0^{ op}$$
 $(G_0=I)$

Solution strategy. Conjecture:

• $\{K_r\}$ from trunc'd Karhunen-Loève (KL) expansion

$$\mathbf{X} \approx \widetilde{X} \text{ low rank, } \widetilde{X} = X_1 X_2^T$$

(Possibly extending results of Gradesyk, 2004)

Matrix Galerkin approximation of the deterministic part. 1

Approximation space K_k and basis matrix V_k : $\mathbf{X} \approx X_k = V_k Y$

$$V_k^{\top} R_k = 0, \qquad R_k := K_0 X_k + K_1 X_k G_1 + \ldots + K_m X_k G_m - \mathbf{f}_0 \mathbf{g}_0^{\top}$$

Computational challenges:

- Generation of \mathcal{K}_k involved m+1 different matrices $\{K_r\}$!
- Matrices K_r have different spectral properties
- n_x, n_ξ so large that X_k, R_k should not be formed !

(Powell & Silvester & Simoncini, SISC 2017)

Example. $-\nabla \cdot (a\nabla u) = 1$, $D = (-1, 1)^2$. KL expansion.

 $\mu = 1$, $\xi_r \sim U(-\sqrt{3}, \sqrt{3})$ and $C(\vec{x}_1, \vec{x}_2) = \sigma^2 \exp\left(-\frac{\|\vec{x}_1 - \vec{x}_2\|_1}{2}\right)$, $n_x = 65,025$, $\sigma = 0.3$

m	p	n_{ξ}	k	inner	n_k	rank	time	CG
				its	\mathcal{K}_k	$\widetilde{\mathbf{X}}$	secs	time (its)
	2	45	17	9.8	128	45	32.1	13.4 (8)
8	3	165	21	12.2	160	129	41.4	56.6 (10)
87%	4	495	24	14.5	183	178	51.1	197.0 (12)
	5	1,287	27	16.9	207	207	64.0	553.0 (13)
	2	91	15	9.9	165	89	47.8	30.0 (8)
12	3	455	18	12.2	201	196	61.6	175.0 (10)
89%	4	1,820	21	15.0	236	236	86.4	821.0 (12)
	5	6,188	25	18.6	281	281	188.0	3070.0 (13)
	2	231	16	9.4	281	206	111.0	94.7 (8)
20	3	1,771	23	12.3	399	399	197.0	845.0 (10)
93%	4	10,626	26	15.4	454	454	556.0	Out of Mem

[%] of variance integral of a

Bilinear systems of matrix equations

Find $\mathbf{X} \in \mathbb{R}^{n_1 \times n_2}$ and $\mathbf{P} \in \mathbb{R}^{m \times n_2}$ such that

$$A_1 \mathbf{X} + \mathbf{X} A_2 + B^T \mathbf{P} = F_1$$
$$B \mathbf{X} = F_2$$

with $A_i \in \mathbb{R}^{n_i \times n_i}$, $B \in \mathbb{R}^{m \times n_1}$, $F_1 \in \mathbb{R}^{n_1 \times n_2}$, $F_2 \in \mathbb{R}^{m \times n_2}$, $m \leq n_1$

Emerging matrix formulation of different application problems

- Constraint control
- Mixed formulations of stochastic diffusion problems
- Discretized deterministic/stochastic (Navier-)Stokes equations
- ...

An example. Mixed FE formulation of stochastic Galerkin diffusion pb

$$c^{-1}\vec{u} - \nabla p = 0,$$
$$-\nabla \cdot \vec{u} = f,$$

Assume that $c^{-1}=c_0+\sum_{r=1}^\ell\sqrt{\lambda_r}c_r(\vec x)\xi_r(\omega)$ and that an appropriate class of finite elements is used for the discretization of the problem (see, e.g., the derivation in Elman-Furnival-Powell, 2010)

After discretization the problem reads:

$$\begin{bmatrix} G_0 \otimes K_0 + \sum_{r=1}^{\ell} \sqrt{\lambda} G_r \otimes K_r & G_0^T \otimes B_0^T \\ G_0 \otimes B_0 & \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} 0 \\ f \end{bmatrix}$$

An example. Mixed FE formulation of stochastic Galerkin diffusion pb

$$c^{-1}\vec{u} - \nabla p = 0,$$
$$-\nabla \cdot \vec{u} = f,$$

Assume that $c^{-1}=c_0+\sum_{r=1}^\ell\sqrt{\lambda_r}c_r(\vec x)\xi_r(\omega)$ and that an appropriate class of finite elements is used for the discretization of the problem (see, e.g., the derivation in Elman-Furnival-Powell, 2010)

After discretization the problem reads:

$$\begin{bmatrix} G_0 \otimes K_0 + \sum_{r=1}^{\ell} \sqrt{\lambda} G_r \otimes K_r & G_0^T \otimes B_0^T \\ G_0 \otimes B_0 & \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} 0 \\ f \end{bmatrix}$$

For $\ell = 1$ we obtain

$$K_0 \mathbf{X} G_0 + K_1 \mathbf{X} G_1 + B_0^T \mathbf{P} G_0 = 0, \qquad B_0 \mathbf{X} G_0 = F$$

The bilinear case. Computational strategies

$$A_1 \mathbf{X} + \mathbf{X} A_2 + B^T \mathbf{P} = F_1$$
$$B \mathbf{X} = F_2$$

Kronecker formulation:

$$\begin{bmatrix} \mathcal{A} & \mathcal{B}^T \\ \mathcal{B} & \mathcal{O} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, \quad \mathcal{A} = I \otimes A_1 + A_2^T \otimes I, \quad \mathcal{B} = B \otimes I$$

with
$$\mathbf{x} = \text{vec}(\mathbf{X})$$
, $\mathbf{p} = \text{vec}(\mathbf{P})$, $f_1 = \text{vec}(F_1)$ and $f_2 = \text{vec}(F_2)$

Extremely rich literature from saddle point algebraic linear systems

Problem: Coefficient matrix has size $(n_1n_2 + mn_2) \times (n_1n_2 + mn_2)$

The bilinear case. Computational strategies. Cont'd

$$A_1 \mathbf{X} + \mathbf{X} A_2 + B^T \mathbf{P} = F_1$$
$$B \mathbf{X} = F_2$$

- * Derive numerical strategies that directly work with the matrix equations:
 - Small scale: Null space method
 - Small and medium scale: Schur complement method (also directly applicable to trilinear case)
 - Large scale: Iterative method for low rank F_i , i = 1, 2

"Small and medium scale" actually means "Large scale" for the Kronecker form!

Large scale problem. Iterative method. 1/3

$$A_1 \mathbf{X} + \mathbf{X} A_2 + B^T \mathbf{P} = F_1$$
$$B \mathbf{X} = F_2$$

Rewrite as

$$\begin{bmatrix} A_1 & B^* \\ B & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} + \begin{bmatrix} I_{n_1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} A_2 = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}, \Leftrightarrow \mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}A_2 = F$$

with

$$\mathcal{M}, \mathcal{D}_0 \in \mathbb{R}^{(n_1+m)\times(n_1+m)}$$

 $A_2 \in \mathbb{R}^{n_2 \times n_2}$ nonsingular

 \mathcal{D}_0 highly singular

If F low rank, exploit projection-type strategies for Sylvester equations

Large scale problem. Iterative method. 2/3

$$\begin{bmatrix} A_1 & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} + \begin{bmatrix} I_{n_1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} A_2 = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} \Leftrightarrow \mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}A_2 = F$$

with F low rank. We rewrite the matrix equation as

$$\mathbf{Z}A_2^{-1} + \mathcal{M}^{-1}\mathcal{D}_0\mathbf{Z} = \widehat{F}, \qquad \widehat{F} = \mathcal{M}^{-1}FA_2^{-1},$$

which is a Sylvester equation with a singular coefficient matrix.

$$\Rightarrow$$
 $\mathbf{Z} \approx \widetilde{\mathbf{Z}}_k = V_k \mathcal{Z}_k W_k^T$

with $Range(V_k), Range(W_k)$ appropriate approximation spaces of small dimensions

Large scale problem. Iterative method. 3/3

$$\mathbf{Z}A_2^{-1} + \mathcal{M}^{-1}\mathcal{D}_0\mathbf{Z} = \widehat{F}_l\widehat{F}_r^T \quad \Rightarrow \quad \mathbf{Z} \approx \widetilde{\mathbf{Z}}_k = V_k\mathcal{Z}_kW_k^T$$

Choice of V_k , W_k . A possible strategy:

- $W_k = \mathbb{E}\mathbb{K}_k(A_2^{-T}, \widehat{F}_r)$, Extended Krylov subspace
- $V_k = K_k(\mathcal{M}^{-1}\mathcal{D}_0, \widehat{F}_l) \cup K_k((\mathcal{M}^{-1}\mathcal{D}_0 + \sigma I)^{-1}, \widehat{F}_l)$ Augmented Krylov subspace, $\sigma \in \mathbb{R}$ (see, e.g., Shank & Simoncini (2013))

Note: \mathcal{M} has size $(n_1 + m) \times (n_1 + m)$ (Compare with $(n_1n_2 + mn_2) \times (n_1n_2 + mn_2)$ of the Kronecker form)

Numerical experiments

$$A_1\mathbf{X} - \mathbf{X}A_2 + B^T\mathbf{P} = 0, \qquad B\mathbf{X} = F_2 \qquad \text{vs} \qquad A\mathbf{z} = f$$

$$A_1 \to \mathcal{L}_1 = -u_{xx} - u_{yy}$$

$$A_2 \to \mathcal{L}_1 = -(e^{-10xy}u_x)_x - (e^{10xy}u_y)_y + 10(x+y)u_x$$

 $[F_1;F_2]$ rank-1 matrix

$$B = \text{bidiag}(-1, \underline{1}) \in \mathbb{R}^{(n_2 - n_1) \times n_2}$$
, iterative: tol=10⁻⁶, $\sigma = 10^{-2}$

Elapsed time

n_1	n_2	$size(\mathcal{A})$	Monolithic	Iterative $\mathbb{E}\mathbb{K}$
400	100	79,000	6.9769e-02	3.1523e-02 (4)
900	225	401,625	3.4808e-01	5.0447e-02 (4)
1600	400	1272,000	1.1319e+00	7.8018e-02 (4)
2500	625	3109,375	3.1212e+00	1.5282e-01 (5)
3600	900	6453,000	1.0210e+01	2.8053e-01 (5)
4900	1225	11,962,125	3.7699e+01	1.4754e+00 (5)

Numerical experiments. 1D stochastic Stokes problem. 1/3

$$\begin{bmatrix} \mathcal{H} & \mathcal{B}^T \\ \mathcal{B} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, \qquad \mathcal{H} = (\nu_0 G_0 + \nu_1 G_1) \otimes A_x, \quad \mathcal{B} = G_0 \otimes B_x$$

where $\nu = \nu_0 + \nu_1 \xi(\omega)$ uncertain viscosity, ξ random variable

Then

$$A_x \mathbf{X} G_0 \nu_0 + A_x \mathbf{X} G_1 \nu_1 + B_x^T \mathbf{P} G_0 = F_1, \quad B_x \mathbf{X} = F_2$$

with $G_0 = I$. This corresponds to

$$\begin{bmatrix} \nu_0 A_x & B_x^T \\ B_x & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} + \begin{bmatrix} \nu_1 A_x \\ \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{P} \end{bmatrix} G_1 = \begin{bmatrix} F1 \\ F2 \end{bmatrix}$$

that is

$$\mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}G_1 = F$$

Numerical experiments. 1D stochastic Stokes problem. 2/3

$$\mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}G_1 = F$$
 vs $\mathcal{A}\mathbf{z} = f$

n_1	n_2	$size(\mathcal{A})$	Monolithic	Iterative \mathbb{EK}
1256	4	6,580	0.1852	0.12 (2)
3526	4	18,064	0.9063	0.56 (2)
9812	4	49,708	4.6418	2.19 (2)

$$\nu_0 = 1/10, \nu_1 = 3\nu_0/10$$
 Powell-Silvester (2012)

Numerical experiments. 1D stochastic Stokes problem. 3/3

$$\mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}G_1 = F$$
 vs $\mathcal{A}\mathbf{z} = f$

n_1	n_2	$size(\mathcal{A})$	Monolithic	Iterative $\mathbb{E}\mathbb{K}$
1256	165	271,425	2.91	0.18 (2)
3526	165	745,140	20.01	0.45 (2)
9812	165	2050,455	-	1.87 (2)

$$\nu_0 = 1/10, \nu_1 = 3\nu_0/10$$
 Powell-Silvester (2012)

- n_2 could be much larger, $n_2 = O(10^3)$
- ullet Memory requirements are very limited, $\widetilde{f Z}=Z_1Z_2^T$ of very low rank

Numerical experiments. 2D stochastic Stokes problem

$$\begin{bmatrix} \mathcal{H} & \mathcal{B}^T \\ \mathcal{B} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}, \quad \mathcal{H} = \text{blkdiag}((\nu_0 G_0 + \nu_1 G_1) \otimes A_x, (\nu_0 G_0 + \nu_1 G_1) \otimes A_y) \\ \mathcal{B} = [G_0 \otimes B_x, G_0 \otimes B_y]$$

$$\mathcal{M}\mathbf{Z} + \mathcal{D}_0\mathbf{Z}G_1 = F$$
 vs $\mathcal{A}\mathbf{z} = f$

n_1	n_2	$size(\mathcal{A})$	Monolithic	Iterative $\mathbb{E}\mathbb{K}$
2512	4	11,604	0.55	0.28 (2)
7052	4	32,168	3.73	1.26 (2)
19624	4	88,956	11.93	3.95 (2)

$$\nu_0 = 1/10, \nu_1 = 3\nu_0/10$$
 Powell-Silvester (2012)

Not discussed but in this category

Sylvester-like linear matrix equations

$$AX + f(X)B = C$$

typically (but not only!): $f(X) = \bar{X}, \ f(X) = X^{\top}, \ \text{or} \ f(X) = X^*$ (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

Not discussed but in this category

Sylvester-like linear matrix equations

$$AX + f(X)B = C$$

typically (but not only!): $f(X) = \bar{X}, \ f(X) = X^{\top}, \ \text{or} \ f(X) = X^*$ (Bevis, Braden, Byers, Chiang, De Terán, Dopico, Duan, Feng, Gonzalez, Guillery, Hall, Hartwig, Ikramov, Kressner, Montealegre, Reyes, Schröder, Vorntsov, Watkins, Wu, ...)

Linear systems with complex tensor structure

$$\mathcal{A}\mathbf{x} = b$$
 with $\mathcal{A} = \sum_{j=1}^{k} I_{n_1} \otimes \cdots \otimes I_{n_{j-1}} \otimes A_j \otimes I_{n_{j+1}} \cdots \otimes I_{n_k}$.

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov, and many more...

Conclusions

Multiterm (Kron) linear equations is the new challenge

- Great advances in solving really large linear matrix equations
- Second order (matrix) challenges rely on strength and maturity of linear system solvers
- Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

★ V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.