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Some matrix equations

e Sylvester matrix equation
AX+XB+ D=0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati egn

e Lyapunov matrix equation
AX +XA" + D=0, D=D"

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

e Multiterm matrix equation
A1 XB; + A2XBsy + ...+ Ay XBy=C

Control, (Stochastic) PDEs, ...
Focus: All or some of the matrices are large (and possibly sparse)
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Solving the Lyapunov equation. The problem

Approximate X in:
AX +XA' + BB' =0

A € R" ™ neg.real B € R"*P, 1<p<Kn

Time-invariant linear system:
x'(t) = Ax(t) + Bu(t), x(0) = zg
Closed form solution:

X = / e ABBT et
0
= X symmetric semidef.

see, e.g., Antoulas '05, Benner '06
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Large linear matrix equations:
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e No preconditioning - to preserve symmetry

e X is a large, dense matrix = low rank approximation

X~X=22" Ztall



Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 12 = b r =P 17
Is easier and fast to solve

Large linear matrix equations:

AX + XAT + BBT =0

Kronecker formulation:

(ARI+1T®A)x=bb  z=vec(X)
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Projection-type methods

Given an approximation space K,
X~ X, col(X,,) € K
Galerkin condition: R := AX,, + X,,A' + BB' 1 K
V'RV, =0 IC = Range(V,,)
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Projection-type methods

Given an approximation space K,
X~ X, col(X,,) € K
Galerkin condition: R := AX,, + X,,A' + BB' 1 K
V'RV, =0 IC = Range(V,,)

Assume VTIVm — 1,, and let X,,, := VmYmVTI.

Projected Lyapunov equation:

VAV Y V. + V.Y, VAT + BBV, = 0
(V.y AV, ) Yo + Yo (VN ATV, )+ V.V BBTV,, = 0

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K = Km(A, B) = Range(|B, AB,...,A™~1B])
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace

K=Kn(AB)+Kn(A A 'B),

that is, X = Range([B,A'B,AB, A 2B, A*’B,A™°B, ...

(Druskin & Knizhnerman '98, Simoncini '07)
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(Druskin & Knizhnerman '98, Simoncini '07)
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=KnA B)+ KA AB),

that is, K = Range([B,A !B, AB,A 2B, A’B, A 3B, ...,])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K =K := Range([B, (A —s:1)"'B,...,(A—s,I) 'B])
usually, {s1,...,8m} C CT chosen either a-priori or dynamically
In both cases, for Range(V,,) = K, projected Lyapunov equation:
(Vo AV ) Yo + Yo (Vs ATV, + V) BBV, = 0
X =V Y Vi)
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Multiterm linear matrix equation

A1 XBy + A XBys + ...+ Ay XBy =C

Applications:
e Control

e (Stochastic) PDEs

e Matrix least squares
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Multiterm linear matrix equation

A1 XBy + A XBys + ...+ Ay XBy =C

Applications:
e Control
e (Stochastic) PDEs
e Matrix least squares

Main device: Kronecker formulation
(B @ A1+...+ B, ® Ay)x=c

lterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1 XBy + A XBy + ...+ Ay XBy =C

Applications:
e Control
e (Stochastic) PDEs
e Matrix least squares
o ..

Alternative approaches:

low-rank approx in the problem space. Some examples:
- Control problem

- PDEs on uniform discretizations

- Stochastic PDE
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PDEs on uniform grids and separable coeffs

—eAu+¢1(2)Y1(y)ue + P2(x) Y2 (y)uy + 71 (@) r2(Y)u = f  (2,y) € Q
i Vi, Vi, © = 1,2 sufficiently regular functions + b.c.

Problem discretization by means of a tensor basis

Multiterm linear equation:

—eThU — eUT, + B, UV, + &, UB,) Uy + T4 Uy, = F

Finite Diff.: U; ; = U(x;,y;) approximate solution at the nodes
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find v : D x 2 — R s.t. P-a.s.,
—V - (a(x,w)Vu(x,w)) = f(x) in D
u(x,w)= 0 on 0D
f: deterministic;

a: random field, linear function of finite no. of real-valued random
variables &, : @ - T, C R

Common choice: truncated Karhunen—Loéve (KL) expansion,

ax,w) = p(x) + 0 >V Ardr(x)ér (W),
r=1

u(x): expected value of diffusion coef. o: std dev.
(Ar, ér(x)) eigs of the integral operator V wrto V(x,x) = 5C(x,x')

(Ar N\ C : D x D — R covariance fun. )
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Discretization by stochastic Galerkin

Approx with space in tensor product form®* &}, x S,

Ax=b, A=Gi®Ki+)» G, ®K, b=gof,

r=1
x: expansion coef. of approx to w in the tensor product basis {p;¢ }
K, € R™= X"z FE matrices (sym)
Gr € R"¢%"™¢ r =0,1,...,m Galerkin matrices associated w/ Sp, (sym.)
go: first column of Gg

fo: FE rhs of deterministic PDE

!
ne = dim(Sp) = % = | ng - ng | huge

2S5y set of multivariate polyn of total degree < p
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The matrix equation formulation

(Go®Ko+GLKi+...+4Gn Ky)x=go®f

transforms into
KoXGo+ K1 XGy + ...+ K XGp = F,  F=fog]
(Go =1)

Solution strategy. Conjecture:

e {K,} from trunc'd Karhunen—Loéve (KL) expansion

4
X ~ X low rank, X = X xt

(Possibly extending results of Gradesyk, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space K and basis matrix V: X~X,=V.Y

V' Ry, =0, Ry, := Ko Xy, + K1 X3,G1 + ... + Ky X Gy — fogg

Computational challenges:

e Generation of K, involved m + 1 different matrices { K.} !
e Matrices K, have different spectral properties

e n,,n¢ so large that Xy, Ry should not be formed !

(Powell & Silvester & Simoncini, SISC 2017)
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Example. —V - (aVu) =1, D = (—1,1)2. KL expansion.

p=1, & ~U(—V3,v3) and C(Z1,72) = 02 exp (—M) , ng = 65,025,
oc=0.3

m P Ng k inner ng  rank time CG

its | Kg X secs time (its)

2 45 | 17 9.8 | 128 45 32.1 13.4 (8)

8 3 165 | 21 12.2 | 160 129 41.4 56.6 (10)

87% | 4 495 | 24 145 | 183 178  51.1 197.0 (12)
5 1,287 | 27 16.9 | 207 207 64.0 553.0 (13)

2 91 | 15 9.9 | 165 89 47.8 30.0 (8)

12 3 455 | 18 12.2 | 201 196 61.6 175.0 (10)

89% | 4 1,820 | 21 150 | 236 236 86.4 821.0 (12)
5 6,188 | 25 18.6 | 281 281 188.0 3070.0 (13)

2 231 | 16 9.4 | 281 206 111.0 94.7 (8)

20 3 1,771 | 23 123 | 399 399 197.0 845.0 (10)
93% | 4 10,626 | 26 15.4 | 454 454  556.0 Out of Mem

% of variance integral of a
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Bilinear systems of matrix equations

Find X € R"1*™2 agnd P € R™*"2 such that

AX+-XA, +B'P = R
BX = F,

with A; € Rnixni, B € Ranl' Fi € Rn1><n2’ Fy e Rman, m < nq
Emerging matrix formulation of different application problems
e Constraint control

e Mixed formulations of stochastic diffusion problems

e Discretized deterministic/stochastic (Navier-)Stokes equations
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An example. Mixed FE formulation of stochastic Galerkin diffusion pb
c'da—Vp = 0,

¢
Assume that ¢! = ¢ + Z VArcr ()€ (w) and that an appropriate class of
r=1

finite elements is used for the discretization of the problem
(see, e.g., the derivation in Elman-Furnival-Powell, 2010)

After discretization the problem reads:

¢
Go® Ko+ Y VAG-®K, GI&Bl| |ul |0
r=1 T
p
! Go ® By ] d
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An example. Mixed FE formulation of stochastic Galerkin diffusion pb
c'da—Vp = 0,

¢
Assume that ¢! = ¢ + Z VArcr ()€ (w) and that an appropriate class of
r=1

finite elements is used for the discretization of the problem
(see, e.g., the derivation in Elman-Furnival-Powell, 2010)

After discretization the problem reads:

, _
Go® Ko+ Y VAG-®K, GI&Bl| |ul |0
r=1 T
p
! Go ® By ] d

For £ = 1 we obtain

KoXGo + K1XG1 + B PGy =0, BoXGo = F
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The bilinear case. Computational strategies

AX+XA, +B'P = K
BX = Fy

Kronecker formulation:

A BT
x| _ | . A=I®A +A; I, B=B®I
B Of |p J2

with x = vec(X), p = vec(P), f1 = vec(F1) and fa = vec(F2)

Extremely rich literature from saddle point algebraic linear systems

Problem: Coefficient matrix has size (nin2 + mnz) X (nins + mns)
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The bilinear case. Computational strategies. Cont'd

AX+XA, +B'P = R
BX = I

* Derive numerical strategies that directly work with the matrix equations:

e Small scale: Null space method

e Small and medium scale: Schur complement method

(also directly applicable to trilinear case)

e Large scale: lterative method for low rank F;, 1 = 1,2

“Small and medium scale” actually means ‘“Large scale” for

the Kronecker form!
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Large scale problem. lIterative method. 1/3

AX +XA,+B'P = B
BX = Fy
Rewrite as
Ay B* X I,, 0| |X Fy
+ Ao = , <= MZ +DoZAs = F
B 0 P 0O O] P Fy
with

M, Dy € R(n14+m)x(ni+m)
Ao € R™2%™2 nonsingular

Do highly singular
If F' low rank, exploit projection-type strategies for Sylvester equations

32



Large scale problem. lIterative method. 2/3

A, BT| |X I,, 0| |X F
+ Ao = = MZ + DyZAs; = F
B 0| |P 0 0| |P Fy

with F' low rank. We rewrite the matrix equation as

ZA' A MIDyZ=F, F=M'FA;'

which is a Sylvester equation with a singular coefficient matrix.

= 7 ~ Zk; = VkaWkT

with Range(Vy), Range(W},) appropriate approximation spaces of small

dimensions
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Large scale problem. lIterative method. 3/3

ZA; '+ MTIDyZ = FFT = Z a7k = ViZWE

Choice of Vi, Wx. A possible strategy:

o Wi =FEKp(A; 7, F\r) Extended Krylov subspace

o V. = Kk(./\/l_lpo, ﬁl) U Kk((./\/l_lpo + O‘I)_l, ﬁl)
Augmented Krylov subspace, 0 € R
(see, e.g., Shank & Simoncini (2013))

Note: M has size (n1 +m) X (n1 +m)

(Compare with (ning 4+ mno) X (nin2 + mna) of the Kronecker form)
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Numerical experiments
AiX —XA,+B"P=0, BX=F vs Az={f
A1l = L1 = —Ugz — Uyy
Ay — L1 = —(e7"9%u,), — (e'%%Yuy)y + 10(x + ) us
[Fy; 3] rank-1 matrix

B = bidiag(—1,1) € R("27"1)Xn2 — jterative: tol=10"°, o = 1072
Elapsed time
n1 N2 size(A)  Monolithic lterative EK
400 100 79,000 6.9769e-02  3.1523e-02 (4)

000 225 401,625 3.4808e-01  5.0447e-02 (4)
1600 400  1272,000 1.1319e+00  7.8018e-02 (4)
2500 625  3109,375 3.1212e+00  1.5282¢-01 (5)
3600 900  6453,000 1.0210e+01  2.8053e-01 (5)
4900 1225 11,962,125 3.7699e+01  1.4754e+00 (5)
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Numerical experiments. 1D stochastic Stokes problem. 1/3

H BT X fl
= ; H = (r0Go+11G1) ® Az, B=Go® By

B 0 P f2

where v = vy + 11&(w) uncertain viscosity, £ random variable

Then
A XGovo + Az XGivi + BIPGy = Fi, B,X =F,

with Gog = I. This corresponds to

VOA:U B:{ X VlA:c X F1
+ G1 =
B, 0 P 0 P F2

that is
MZ + DoZG1 = F
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Numerical experiments. 1D stochastic Stokes problem. 2/3

MZ +DoZG = F VS Az = f

ni1  nz2 size(A) Monolithic Iterative EK

1256 4 6,580 0.1852 0.12 (2)
3526 4 18,064 0.9063 0.56 (2)
0812 4 49,708 4.6418 2.19 (2)

vo = 1/10, 1 = 31 /10 Powell-Silvester (2012)
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Numerical experiments. 1D stochastic Stokes problem. 3/3

MZ +DyZG, = F VS Az = f

ni N2 size(\A)  Monolithic Iterative EK

1256 165 271,425 2.91 0.18 (2)
3526 165 745,140 20.01 0.45 (2)
0812 165 2050,455 - 1.87 (2)

vo = 1/10, 1 = 31 /10 Powell-Silvester (2012)

e no could be much larger, no = O(103)

e Memory requirements are very limited, 7 = ZlZQT of very low rank
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Numerical experiments. 2D stochastic Stokes problem

H BT H = blkdiag((l/oGo + 1/1G1) ® Ax, (l/oGo + I/1G1) X Ay)

B = [G0®Ba€7 GO®By]

MZ + DoZG1 = F VS Az = f

n1 n2 size(A)  Monolithic Iterative EK

2512 4 11,604 0.55 0.28 (2)
7052 4 32,168 3.73 1.26 (2)
19624 4 88,956 11.93 3.95 (2)

vo = 1/10,v1 = 31v5/10 Powell-Silvester (2012)
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Not discussed but in this category
e Sylvester-like linear matrix equations
AX + f(X)B=C

typically (but not only!): f(X)=X, f(X)=X", or f(X)=X"*
(Bevis, Braden, Byers, Chiang, De Teran, Dopico, Duan, Feng, Gonzalez,
Guillery, Hall, Hartwig, lkramov, Kressner, Montealegre, Reyes, Schroder,
Vorntsov, Watkins, Wu, ...)
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Not discussed but in this category

e Sylvester-like linear matrix equations
AX + f(X)B=C

typically (but not only!): f(X)=X, f(X)=X", or f(X)=X"*
(Bevis, Braden, Byers, Chiang, De Teran, Dopico, Duan, Feng, Gonzalez,

Guillery, Hall, Hartwig, lkramov, Kressner, Montealegre, Reyes, Schroder,
Vorntsov, Watkins, Wu, ...)

e Linear systems with complex tensor structure

k
Ax=b with A=) In @ QIn, , Q@A; ®@In, - @ In,.
j=1

Dolgov, Grasedyck, Khoromskij, Kressner, Oseledets, Tobler, Tyrtyshnikov,
and many more...
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Conclusions

Multiterm (Kron) linear equations is the new challenge
e Great advances in solving really large linear matrix equations

e Second order (matrix) challenges rely on strength and maturity of
linear system solvers

e Low-rank tensor formats is the new generation of approximations

Reference for linear matrix equations:

* V. Simoncini,

Computational methods for linear matrixz equations,

SIAM Review, Sept. 2016.
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