Filtering techniques for efficient inversion of two-dimensional NMR data V. Bortolotti¹ L. Brizi^{2,3} P. Fantazzini^{2,3} G. Landi⁴ F. Zama⁴

¹Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna ²Department of Physics and Astronomy, University of Bologna, ³Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy, ⁴Department of Mathematics, University of Bologna

PROBLEM DESCRIPTION

NMR data model: The distribution of amplitudes $F(T_1, T_2)$ of longitudinal and transversal relaxation times T_1 , T_2 is related to the NMR data $S(t_1, t_2)$ by the first-kind Fredholm integral equation:

$$S(t_1, t_2) = \iint_0^\infty k_1(t_1, T_1) k_2(t_2, T_2) F(T_1, T_2) \ dT_1 \ dT_2 + e(t_1, t_2), \quad k_1(t_1, T_1) = 1 - 2 \exp(-t_1/T_1), \quad k_2(t_2, T_2) = \exp(-t_2/T_2) \tag{1}$$

where t_1 and t_2 are two independent evolution time variables and $e(t_1,t_2)$ is additive Gaussian noise

Reconstruction model:

 $ullet \mathbf{s} \in \mathbb{R}^M$ vector ordering of $S \in \mathbb{R}^{M_1 imes M_2}$ measured noisy signal λ_i local spatially adapted regularization parameters

 $\min_{\mathrm{f}} \| (K_2 \otimes K_1) \mathrm{f} - \mathrm{s} \|_2^2 + \sum_{i=1} \lambda_i (\mathrm{Lf})_i^2 \;\; s.t. \;\; \mathrm{f} \geq 0$

• $\mathbf{f} \in \mathbb{R}^N$ vector ordering of $F \in \mathbb{R}^{N_1 \times N_2}$, unknown distribution $igstar{K}_1 \in \mathbb{R}^{M_1 imes N_1}$, $K_2 \in \mathbb{R}^{M_2 imes N_2}$

• $\mathbf{L} \in \mathbb{R}^{N imes N}$ discrete Laplacian operator

(2)

 $(Lf)_i$ *i*-th element Lf

CONTRIBUTION

- > 2DUPEN is an *iterative algorithm* that computes the λ_i 's by imposing that all the non-null products $\lambda_i(Lf)_i^2$ have the same constant value (UPEN principle [*Inv. Problems*, 33(1), 2016]) and an approximated distribution by solving a problem of the form (2) with the Newton Projection method
- ► 2DUPEN is able to achieve *high quality reconstructions* but requires a *high computational cost*
- ► The Mean Windowing (MW) and Singular Value Decomposition (SVD) filters can be used in order to reduce the computational cost of 2DUPEN when applied to real 2D NMR data
- ► The purpose of this work is to analyze the separate and combined effects of these filtering techniques on synthetic 2D NMR data.

FILTERING TECHNIQUES

THE MEAN WINDOWING-LIKE FILTER

- Windowing the 2D IR-CPMG data reduces the points in the CPMG blocks: $ar{\mathrm{s}} \in \mathbb{R}^{M_1 \cdot \overline{M}_2}$ with $\overline{M}_2 \ll M_2$
- Consider the *diagonal weighting matrix* $(\mathbf{B}\otimes\mathbf{I})$ where $\mathbf{B}\in\mathbb{R}^{\overline{M}_2 imes\overline{M}_2}$ contains the numbers of points of each CPMG windowed block and $\mathbf{I} \in \mathbb{R}^{\overline{M}_1 imes \overline{M}_1}$ is the identity matrix
- Weighted least squares problem:

$$\min_{f \ge 0} \left\{ \left\| (\widetilde{K_2} \otimes K_1) f - \widetilde{s} \right\|^2 + \sum_{i=1}^N \lambda_i (Lf)_i^2 \right\}$$

where $\widetilde{K_2} = B\overline{K}_2$, $\overline{K}_2 \in \mathbb{R}^{\overline{M}_2 \times N_2}$ and $\widetilde{s} = (B \otimes I)\overline{s}$,

THE SINGULAR VALUE FILTER FILTER

SVD of $K_1 = U_1 \Sigma_1 V_1^T$ and $K_2 = U_2 \Sigma_2 V_2^T$ where U_i, V_i , are orthogonal matrices and Σ_i are the diagonal matrices of the singular values (i = 1, 2) $||(\mathbf{K}_2 \otimes \mathbf{K}_1)\mathbf{f} - \mathbf{s}||^2 = ||(\boldsymbol{\Sigma}_2 \mathbf{V}_2^T \otimes \boldsymbol{\Sigma}_1 \mathbf{V}_1^T)\mathbf{f} - (\mathbf{U}_2^T \otimes \mathbf{U}_1^T)\mathbf{s}||^2$ $ightarrow
ho_i \, (i=1,2)$ is the number of singular values of Σ_i greater than the threshold auSVD compressed problem:

$$\min_{\mathrm{f}\geq 0}\left\{\|(\hat{\mathrm{K}}_1\otimes\hat{\mathrm{K}}_2)\mathrm{f}-\hat{\mathrm{s}}\|^2+\sum_{i=1}^Noldsymbol{\lambda}_i(\mathrm{Lf})_i^2
ight\}$$

i=1where: $\hat{\mathrm{K}}_1 = \hat{\Sigma}_1 \hat{\mathrm{V}}_1^T, \ \hat{\mathrm{K}}_2 = \hat{\Sigma}_2 \hat{\mathrm{V}}_2^T, \ \hat{\mathrm{s}} = (\hat{\mathrm{U}}_2^T \otimes \hat{\mathrm{U}}_1^T) \mathrm{s}, \ \hat{\Sigma}_i$ has the first ρ_i diagonal elements of Σ_i and \hat{U}_i, \hat{V}_i are made by the first ho_i columns of U_i, V_i

Algorithm

FILTERED 2DUPEN METHODS

► 2DUPENm₁: SVD filter without MW data reduction

 \sim 2DUPENm₂: SVD filter, MW data reduction without weighting matrix ($\mathbf{B} \otimes \mathbf{I}$) > 2DUPENm₃: MW data reduction, weighting matrix ($\mathbf{B} \otimes \mathbf{I}$) without SVD \blacktriangleright Improved 2DUPEN: SVD filter, MW data reduction, weighting matrix ($\mathbf{B} \otimes \mathbf{I}$)

NOTATION

 $ightarrow p_{\mu}, c_{\mu}$ are the local slope and curvature values of the 2D distribution • I_i are the indices subset related to the neighborhood of the distribution point i $\triangleright \beta_0, \beta_p, \beta_c$ are parameters depending on the nature of the measured data

DATA PREPROCESSING

• Compute $K_2 = B\overline{K}_2$

• Compute $\widetilde{\mathbf{s}} = (\mathbf{B} \otimes \mathbf{I})\overline{\mathbf{s}}$

• Compute the TSVD of K_1 and \widetilde{K}_2 and set $\hat{K}_1 = \hat{\Sigma}_1 \hat{V}_1^T$, $\hat{K}_2 = \hat{\Sigma}_2 \hat{V}_2^T$ • Compute $\hat{\mathbf{s}} = (\hat{\mathbf{U}}_2^T \otimes \hat{\mathbf{U}}_1) \widetilde{\mathbf{s}}$

IMPROVED 2DUPEN (I2DUPEN) ALGORITHM Set k = 0 and compute an over smoothed solution $f^{(k)}$ of the problem $\min_{\mathrm{f} \geq 0} \| (\hat{\mathrm{K}}_2 \otimes \hat{\mathrm{K}}_1) \mathrm{f} - \hat{\mathrm{s}} \|_2^2$ by applying a few iterations of the Gradient Projection method repeat 1. Compute $\lambda_i^{(k)}$, $i = 1, \dots, N$ $\|(\hat{\mathbf{K}}_2 \otimes \hat{\mathbf{K}}_1) \mathbf{f}^{(k)} - \hat{\mathbf{s}}\|^2$ $\lambda_i^{(k)} = \frac{\|(\hat{\mathbf{K}}_2 \otimes \hat{\mathbf{K}}_1) \mathbf{f}^{(k)} - \hat{\mathbf{s}}\|^2}{N\left(\beta_0 + \beta_p \max_{\mu \in I_i} (p_\mu^{(k)})^2 + \beta_c \max_{\mu \in I_i} (c_\mu^{(k)})^2\right)}$ 2. Compute $f^{(k+1)}$ by solving $\min_{\mathrm{f}\geq 0} \|(\hat{\mathrm{K}}_2\otimes\hat{\mathrm{K}}_1)\mathrm{f}-\hat{\mathrm{s}}\|^2 + \sum_{i=1}^N \lambda_i^{(k)}(\mathrm{Lf})_i^2$ using the Newton Projection method

until $\|f^{(k+1)} - f^{(k)}\| \le tol \|f^{(k)}\|$

Tests on Synthetic NMR relaxation data

 \blacktriangleright Synthetic data: $M_1=128$, $M_2=2048$, $\overline{M}_2=118$, $N_1=N_2=64$ • Gaussian random noise added with variance 10^{-2} . > 2DUPEN parameters: $eta_0 = 10^{-6}$, $eta_p = eta_c = 1$, tol = 0.001.

	$2DUPENm_1$			$2DUPENm_2$			I2DUPEN		
au	$ ho_1, ho_2$	Err	Time(s)	$ ho_1, ho_2$	Err	Time(s)	$ ho_1, ho_2$	Err	Time(s)
0	64 64	2.749e-02	1352.93	64 64	3.717e-02	2444.87	64 64	7.402e-02	925.04
10^{-6}	32 29	2.620e-02	1455.08	32 28	3.768e-02	1598.35	32 29	5.571e-02	884.07
10^{-4}	24 22	2.731e-02	1252.22	24 21	3.827e-02	1362.99	24 22	6.124e-02	840.35
10^{-3}	20 18	2.841e-02	907.54	20 17	3.878e-02	1409.33	20 18	5.655e-02	915.50
10^{-2}	16 15	3.245e-02	839.48	16 14	3.914e-02	1295.50	16 15	5.833e-02	826.31
10^{-1}	12 11	4.459e-02	738.53	12 10	5.214e-02	778.53	12 11	6.706e-02	720.71

7th International Conference on New Computational Methods for Inverse Problems, May 12, 2017