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Problem Description

I NMR data model: The distribution of amplitudes F (T1, T2) of longitudinal and transversal relaxation times T1, T2 is related to the NMR data S(t1, t2) by the
first-kind Fredholm integral equation:

S(t1, t2) =

∫∫ ∞
0

k1(t1, T1)k2(t2, T2)F (T1, T2) dT1 dT2 + e(t1, t2), k1(t1, T1) = 1− 2 exp(−t1/T1), k2(t2, T2) = exp(−t2/T2) (1)

where t1 and t2 are two independent evolution time variables and e(t1, t2) is additive Gaussian noise

I Reconstruction model: min
f
‖(K2 ⊗K1)f − s‖2

2 +
N∑
i=1

λi(Lf)2
i s.t. f ≥ 0 (2)

I s ∈ RM vector ordering of S ∈ RM1×M2 measured noisy signal
I f ∈ RN vector ordering of F ∈ RN1×N2, unknown distribution
IK1 ∈ RM1×N1, K2 ∈ RM2×N2

Iλi local spatially adapted regularization parameters
I L ∈ RN×N discrete Laplacian operator
I (Lf)i i-th element Lf

Contribution

I 2DUPEN is an iterative algorithm that computes the λi’s by imposing that all the non-null products λi(Lf)2
i have the same constant value (UPEN principle [Inv. Problems, 33(1), 2016]) and an

approximated distribution by solving a problem of the form (2) with the Newton Projection method

I 2DUPEN is able to achieve high quality reconstructions but requires a high computational cost

I The Mean Windowing (MW) and Singular Value Decomposition (SVD) filters can be used in order to reduce the computational cost of 2DUPEN when applied to real 2D NMR data

I The purpose of this work is to analyze the separate and combined effects of these filtering techniques on synthetic 2D NMR data.

Filtering techniques

The Mean Windowing-like filter

I Windowing the 2D IR-CPMG data reduces the points in the CPMG blocks:
s̄ ∈ RM1·M2 with M2�M2

I Consider the diagonal weighting matrix (B⊗ I) where B ∈ RM2×M2 contains

the numbers of points of each CPMG windowed block and I ∈ RM1×M1 is the
identity matrix

I Weighted least squares problem:

min
f≥0

∥∥∥(K̃2 ⊗K1)f − s̃
∥∥∥2

+
N∑
i=1

λi(Lf)2
i


where K̃2 = BK2, K2 ∈ RM2×N2 and s̃ = (B⊗ I)s,

The Singular Value Filter filter

I SVD of K1 = U1Σ1V
T

1 and K2 = U2Σ2V
T

2 where Ui, Vi, are orthogonal
matrices and Σi are the diagonal matrices of the singular values (i = 1, 2)

I‖(K2 ⊗K1)f − s‖2 = ‖(Σ2V
T
2 ⊗ Σ1V

T
1 )f − (UT

2 ⊗UT
1 )s‖2

Iρi (i = 1, 2) is the number of singular values of Σi greater than the threshold τ
I SVD compressed problem:

min
f≥0

‖(K̂1 ⊗ K̂2)f − ŝ‖2 +
N∑
i=1

λi(Lf)2
i


where: K̂1 = Σ̂1V̂

T
1 , K̂2 = Σ̂2V̂

T
2 , ŝ = (ÛT

2 ⊗ ÛT
1 )s, Σ̂i has the first ρi

diagonal elements of Σi and Ûi, V̂i are made by the first ρi columns of Ui, Vi

Algorithm

Filtered 2DUPEN methods

I 2DUPENm1: SVD filter without MW data reduction
I 2DUPENm2: SVD filter, MW data reduction without weighting matrix (B⊗ I)

I 2DUPENm3: MW data reduction, weighting matrix (B⊗ I) without SVD
I Improved 2DUPEN: SVD filter, MW data reduction, weighting matrix (B⊗ I)

Notation

Ipµ, cµ are the local slope and curvature values of the 2D distribution
I Ii are the indices subset related to the neighborhood of the distribution point i
Iβ0, βp, βc are parameters depending on the nature of the measured data

Data preprocessing

I Compute K̃2 = BK2

I Compute s̃ = (B⊗ I)s

I Compute the TSVD of K1 and K̃2 and set K̂1 = Σ̂1V̂
T
1 , K̂2 = Σ̂2V̂

T
2

I Compute ŝ = (ÛT
2 ⊗ Û1)s̃

Improved 2DUPEN (I2DUPEN) Algorithm

Set k = 0 and compute an over smoothed solution f (k) of the problem

min
f≥0
‖(K̂2 ⊗ K̂1)f − ŝ‖2

2

by applying a few iterations of the Gradient Projection method

repeat

1. Compute λ
(k)
i , i = 1, . . . , N

λ
(k)
i =

‖(K̂2 ⊗ K̂1)f
(k) − ŝ‖2

N
(
β0 + βpmaxµ∈Ii(p

(k)
µ )2 + βcmaxµ∈Ii(c

(k)
µ )2

)
2. Compute f (k+1) by solving

min
f≥0
‖(K̂2 ⊗ K̂1)f − ŝ‖2 +

N∑
i=1

λ
(k)
i (Lf)2

i

using the Newton Projection method

until ‖f (k+1) − f (k)‖ ≤ tol ‖f (k)‖

Tests on Synthetic NMR relaxation data

I Synthetic data: M1 = 128, M2 = 2048, M2 = 118, N1 = N2 = 64

I Gaussian random noise added with variance 10−2.
I 2DUPEN parameters: β0 = 10−6, βp = βc = 1, tol = 0.001.

exact I2DUPEN SVD

2DUPENm1 2DUPENm2 I2DUPEN
τ ρ1, ρ2 Err Time(s) ρ1, ρ2 Err Time(s) ρ1, ρ2 Err Time(s)
0 64 64 2.749e-02 1352.93 64 64 3.717e-02 2444.87 64 64 7.402e-02 925.04

10−6 32 29 2.620e-02 1455.08 32 28 3.768e-02 1598.35 32 29 5.571e-02 884.07
10−4 24 22 2.731e-02 1252.22 24 21 3.827e-02 1362.99 24 22 6.124e-02 840.35
10−3 20 18 2.841e-02 907.54 20 17 3.878e-02 1409.33 20 18 5.655e-02 915.50
10−2 16 15 3.245e-02 839.48 16 14 3.914e-02 1295.50 16 15 5.833e-02 826.31
10−1 12 11 4.459e-02 738.53 12 10 5.214e-02 778.53 12 11 6.706e-02 720.71
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