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Abstract. Let us consider two closed curves M, N of class C1 and two functions ϕ : M → R,
ψ : N → R of class C1, called measuring functions. The natural pseudo-distance d between the pairs
(M,ϕ), (N,ψ) is defined as the infimum of Θ(f )

def
= maxP∈M |ϕ(P) − ψ(f (P))|, as f varies in the set

of all homeomorphisms from M onto N. The problem of finding the possible values for d naturally
arises. In this paper we prove that under appropriate hypotheses the natural pseudo-distance equals
either |c1 − c2| or 1

2 |c1 − c2|, where c1 and c2 are two suitable critical values of the measuring
functions. This equality shows that the relations between the natural pseudo-distance and the critical
values of the measuring functions previously obtained in higher dimensions can be made stronger
in the particular case of closed curves. Moreover, the examples we give in this paper show that our
result cannot be further improved, and therefore it completely solves the problem of determining the
possible values for d in the 1-dimensional case.

2000 Mathematics Subject Classification: 58E35, 58D99, 53C99; 58C05, 58C25, 53A04.

Introduction

In recent years, considerable research has been carried out to formalize the concept of shape
for topological spaces and manifolds, and to provide an efficient comparison of shapes. Part
of this research (cf., e.g., [1, 10, 18, 23]) concerns the study of the geometrical/topological
properties of a suitable real function defined on the considered space. In this approach, a
main issue is the stability under perturbations of the proposed methods, meaning that small
changes in the real functions produce small changes in the geometrical descriptors (cf.,
e.g., [2, 3, 4, 5]). This has led to the study of the concept of natural pseudo-distance, as
introduced in Size Theory. In this formalization, the pairs (M,ϕ) are considered, where M
is a topological space and ϕ :M → R is a continuous function. These pairs are called size
pairs and each function ϕ is called a measuring function. The usual setting assumes that M
is a closed manifold, and that both M and ϕ are C1. If two size pairs (M,ϕ) and (N,ψ) are
given and M, N are homeomorphic, then the natural pseudo-distance δ is defined by setting
δ((M,ϕ), (N,ψ))

def
= inf f ∈H (M,N) maxP∈M |ϕ(P) − ψ(f (P))|, where H (M, N) denotes the

set of all homeomorphisms from M onto N. Clearly, in cases in which the natural pseudo-
distance is zero, we can obtain homeomorphisms for which the difference between the values
taken by the measuring functions at corresponding points is arbitrarily small. On the other
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hand, if the infimum is large, we find that every homeomorphism between the considered
manifolds must change the values taken by our measuring function considerably.

Besides being a key theoretical tool for applications involving comparison of shapes,
the natural pseudo-distance is challenging from the mathematical point of view and there
are several open questions concerning its properties. This paper is the last of three papers
devoted to this subject. In [7] it was proved that in general dimensions a suitable multiple
of δ((M,ϕ), (N,ψ)) by a positive integer k coincides with the distance between two critical
values of the functionsϕ,ψ. In [9] the particular case of surfaces was considered and it was
proved that the number k can be assumed to equal 1, 2 or 3, using some results concerning
Riemannian metrics (cf. [13, 15]) and a theorem by Jost and Schoen about harmonic maps
(cf. [17]). In this final paper we succeed in proving that an even stronger statement holds in
the 1-dimensional case, and the integer k can be assumed to be either 1 or 2 for curves, using
a linearization technique. Moreover, the examples we give in this paper show that our result
cannot be further improved, and therefore it completely solves the problem of determining
the possible values for the natural pseudo-distance in the 1-dimensional case.

The subject of this paper fits in the current mathematical research and interest about simple
closed curves, motivated by problems concerning shape comparison in Pattern Recognition
and Computer Vision (cf., e.g., [19, 20]).

In Section 1 we sketch the main ideas in our proof. In Section 2 we give the main definitions
and some examples, while in Section 3 the concepts of train and minimal d -approximating
sequence are illustrated, together with some related results. In Section 4 we prove our main
result (Theorem 4.5) about the natural pseudo-distance between closed curves.

1 The point of this paper

As described in the previous section, in [7] it was proved that the natural pseudo-distance
between size pairs always equals |c1 − c2|/k, where c1, c2 are two suitable critical values
of the measuring functions and k is an appropriate integer number. The minimum possible
value for k is called the analytic folding number.

Interestingly enough, in every known example, the analytic folding number is 1 or 2.
Two questions naturally arise.Are there any examples showing an analytic folding number

strictly greater than 2? Is this question related to the dimension of our manifolds?
In this paper we take another step towards answering these questions, completely solving

the 1-dimensional case.
The key fact in the study of the natural pseudo-distance is that the attempt to minimize

the change Θ(f )
def
= maxP∈M |ϕ(P) − ψ(f (P))| in the measuring functions under the action

of f does not, in general, lead to a homeomorphism, as we are going to show in the fol-
lowing section. The possible emergence of degeneracies prevents us from studying a single
optimal homeomorphism. Therefore, approximating sequences of homeomorphisms must
be considered, instead of a single homeomorphism. However, we can show that “optimal”
approximating sequences (fi) of homeomorphisms exist, converging to relations that repre-
sent the best way to take one manifold to another with respect to the change in the measuring
functions. The study of these relations leads us to define the concept of train of “limit d -
jumps”, describing some degeneracies corresponding to the sequence (fi). As we are going
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to see later on, the properties of these structures imply the properties of the analytic folding
number.

How can we study these properties in the case of curves?
In [7] local deformations were used, based on the flow diffeomorphism of the gradient of

the measuring functions but, unfortunately, this approach does not seem to be sufficient to
answer the questions we posed.The main idea of this paper is to use a linearization procedure
to confront the 1-dimensional case.

We shall proceed in this way. We shall consider each “optimal” sequence (fi) of homeo-
morphisms between the manifolds M and N that we are examining, where optimal means
that inf i maxP∈M |ϕ(P) −ψ(fi(P))| equals δ((M,ϕ), (N,ψ)). Then we shall describe the de-
generacies relating to (fi) using a train of “limit d -jumps”, and assume that the degeneracies
of (fi) are minimal with respect to a suitable order � we are going to define.

Finally, we shall apply a local linearization procedure to each fi far from the critical points.
The key remark will be that the change we are going to apply produces a new sequence that
is “smaller” than (fi) with respect to �. Since (fi) will already be minimal, some further
information about the length of the trains of d -jumps for (fi) will be derived, implying the
main result obtained in this paper.

The outline of the proof will be similar to the one exposed in [9], but the technique that
we shall use will be different, since a linearization procedure will be involved, in place of
the theory of harmonic maps. This choice will allow us to get a stronger result than the one
we obtained for surfaces.

Obviously, some technicalities will be necessary in order to use our ideas in practice, but
the key point is simply the possibility of reducing the change of the measuring functions
by locally decreasing the energy of the transformations we use between our curves. The
following sections will formalize the ideas we have just described.

1.1 Some remarks concerning our mathematical setting

Before proceeding in our exposition, it may be useful to make some points clear. First of
all the use of the word “shape” in this paper derives from the application of Size Theory in
Pattern Recognition. Indeed, from the beginning of the 90s the idea of comparing topological
spaces (or manifolds) endowed with measuring functions has been used to compare shapes
of objects in Computer Vision (cf., e.g., [6, 11, 12, 14, 21, 22]).

The reader may wonder why we study size pairs instead of a unique pair (X ,ϕ) where X
is a finite disjoint union of circles. After all the manifolds M and N are the same manifold,
from a topological point of view. Formally, we could do that, but it would be useless and
a little misleading as regards applications. The point is that the homeomorphism used to
identify M and N is not canonical. Indeed, finding the “best homeomorphisms” to identify
M and N (supposing that they exist) is just the main motivation of our research. Assuming
to know them from the beginning is equivalent to look for the solution of a problem that
has been already solved. Obviously, we could also consider a generic homeomorphism h
between our manifolds, but in this case this subjective choice would introduce some degree
of indetermination in our model. Furthermore, while this approach would give us just a slight
formal advantage in exposition, it would make the theory more difficult to apply, since the
“normalizing” homeomorphism h should be chosen each time.
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Another question could concern the motivation of studying the functional inf f ∈H (M,N)
‖ϕ − ψ ◦ f ‖∞ instead of inf f ∈H (M,N) ‖ϕ − ψ ◦ f ‖p . The reason of this choice is that the
latter functional is not a pseudo-distance between size pairs (cf. [3, 5]).

Finally, the reader may wonder why we use measuring functions taking values in R

rather than in another space Y. Indeed, the main definitions considered in Size Theory can
be adapted to the case of Y being a partially ordered metric space. However, in this case the
treatment becomes much more difficult and, in particular, it does not seem easy to extend
Theorems 2.4 and 4.5. For these reasons, we postpone the study of this kind of generalization
to further papers.

2 The natural pseudo-distance

2.1 The main definition

The definition of natural size pseudo-distance can be introduced for n-dimensional mani-
folds. Let us consider the set Sizen of all pairs (M,ϕ), where M is a closed n-manifold of
class Ck and ϕ :M → R is a function of class Ck . We shall call (M,ϕ) an (n-dimensional)
size pair of class Ck and ϕ a measuring function.

Assume that (M,ϕ), (N,ψ) are two size pairs. H (M, N) will denote the set of all home-
omorphisms from M to N.

Definition 2.1. If H (M, N) �= ∅, the functionΘ : H (M, N) → R

Θ(f ) = max
P∈M

|ϕ(P) − ψ(f (P))|

is called natural size measure with respect to the measuring functions ϕ and ψ.

In other words,Θmeasures how much f changes the values taken by the measuring functions
at corresponding points.

Definition 2.2. We shall call natural size pseudo-distance the pseudo-distance δ : Sizen ×
Sizen → R ∪ {+∞} so defined:

δ((M,ϕ), (N,ψ)) =

{
inf f ∈H (M,N)Θ(f ) if H (M, N) �= ∅

+∞ otherwise.

In the following, the symbol d will denote the value of the natural size pseudo-distance
computed between the pairs (M,ϕ) and (N,ψ) that we are considering. As we previously
explained, this pseudo-distance gives a method for comparing two manifolds with respect
to the measuring functions chosen.

We point out that δ is not a distance, since two size pairs can have a vanishing pseudo-
distance without being equal. On the other hand, the symmetry property and the triangle
inequality can be trivially proved.

Remark 2.3. The presence of the word “size” in our definitions is due to the link existing
between the pseudo-distance δ, size functions and size homotopy groups (cf. [12, 16]).
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However, for the sake of simplicity, we shall often drop the word “size” in the expressions
“natural size measure” and “natural size pseudo-distance”. The term “natural” is used in
order to distinguish the pseudo-distance studied here from other pseudo-distances we can
define between submanifolds of the Euclidean space and between manifolds paired with
measuring functions (cf. [11]).

In spite of the considerable difficulty in computing natural size pseudo-distances, the fol-
lowing result holds for the general dimension n (cf. [7]):

Theorem 2.4. Assume that M and N are two homeomorphic closed manifolds of class C1

and that ϕ : M → R and ψ : N → R are two functions of class C1. Then, if d denotes
the natural pseudo-distance between the size pairs (M,ϕ) and (N,ψ), a positive integer k
exists for which one of the following properties holds:
i) k is odd and kd equals the distance between a critical value of ϕ and a critical value

of ψ.
ii) k is even and kd equals either the distance between two critical values of ϕ or the

distance between two critical values of ψ.

The smallest positive integer k for which either i) or ii) of Theorem 2.4 holds will be called
analytic folding number for the pairs (M,ϕ) and (N,ψ).

In this paper we shall prove that in the case of closed curves the analytic folding num-
ber always equals either 1 or 2. This fact, besides showing a particular property of the
1-dimensional case, allows us to make a direct computation of natural pseudo-distances for
closed curves easier.

However, the hypothesis n = 1 will be not used until Section 4.
In the following Subsection 2.2, we shall show that the infimum of Θ(f ) varying f in

H (M, N) is not always a minimum. When such an infimum is also a minimum, we shall say
that each homeomorphism f ∈ H (M, N) with d = Θ(f ) is an optimal homeomorphism.

In the case where an optimal homeomorphism exists, the following result holds (Theo-
rem 6.3 in [7]).

Theorem 2.5. Assume that M and N are two C1 closed homeomorphic manifolds and
that ϕ : M → R and ψ : N → R are of class C1. If an optimal homeomorphism
f ∈ H (M, N) between the size pairs (M,ϕ) and (N,ψ) exists, then the natural pseudo-
distance d = δ((M,ϕ), (N,ψ)) equals the distance between a critical value of ϕ and a
critical value of ψ.

N.B.: For the sake of conciseness, all through this paper we shall use the expression “closed
curve” to mean a closed 1-manifold (we shall not require this manifold to be connected).

In order to simplify our notations, we shall assume that the manifolds M and N do not meet,
and that the corresponding measuring functions are obtained by restriction of a function
ω : M ∪ N → R, so that ϕ = ω|M and ψ = ω|N. In this way we can use just one symbol
to denote both the measuring functions. These hypotheses are not restrictive, since we can
always replace the size pair (N,ψ) with a new size pair (N,ψ), having vanishing pseudo-
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distance from the previous one and such that M ∩ N = ∅. Sometimes, when not confusing,
we shall use the symbol ω to denote both ω|M and ω|N.

Moreover, it is easy to prove that, for every 1-dimensional size pair (M,ω) of class Ck ,
an embedding h : M → R3 of class Ck exists such that z(P) = ω(h−1(P)) for each point
P ∈ h(M). If ω is Morse (i.e., smooth and having invertible Hessian at each critical point),
we can assume that z is Morse on h(M), too. In other words, there is no lack of generality in
assuming that the measuring functions associated with the studied closed curves M, N are
obtained by restriction of the z-coordinate in R3. Sometimes, when not confusing, we shall
use the symbol z to denote both z|M and z|N and use the expression “height of a point”. For
the sake of clarity, in our examples and figures we shall often assume that our measuring
function is the z-coordinate.

2.2 Two examples

Now we give two simple examples in order to make our definitions clear.

Example 2.6. The first example we give is shown in Figure 1. M and N are smooth closed
curves in R3, embedded in the xz-plane. It is clear that the natural pseudo-distance d between
the size pairs (M, z) and (N, z) equals z(B) − z(A), that is, the distance between a critical
value of z|M and a critical value of z|N.

In this example no optimal homeomorphism exists, since it ought to take both the maxi-
mum points for z|M to A, against injectivity.

Example 2.7. Let us consider the smooth closed curves M and N in Figure 2. The points
A and B are critical points of the function z and z(C) = 1

2 (z(A) + z(B)) = z(G). We want
to prove that the natural pseudo-distance between the size pairs (M, z) and (N, z) takes the
value

d =
1

2
(z(A) − z(B))

and that no optimal homeomorphism exists. In order to do that we shall construct a sequence
of homeomorphisms (fn) for which limn Θ(fn) = 1

2 (z(A) − z(B)), and show that Θ(f ) >
1
2 (z(A) − z(B)) for every homeomorphism f ∈ H (M, N).

Let us start by proving that, for every ε > 0, a homeomorphism gε : M → N exists,
such that Θ(gε) ≤ 1

2 (z(A) − z(B))+2ε. Consider the points Dε, Eε, H ε and Fε in Figure 2,
verifying z(Dε) = z(H ε) = z(C) + ε and z(Eε) = z(Fε) = z(C) − ε. We choose a
homeomorphism gε, taking the arc DεCEε to the arc H εGFε in such a way that gε(Dε) = H ε

and gε(Eε) = Fε. Outside the arc DεCEε in M we define gε by taking every point P to a
point gε(P), verifying z(P) = z(gε(P)).

For every n ∈ N − {0} we set fn = g1/n. It is easy to prove that

lim
n
Θ(fn) =

1

2
(z(A) − z(B)).
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Figure 1 The natural pseudo-distance between the size pairs (M, z) and (N, z) is z(B) − z(A).

Figure 2 Construction of the homeomorphism gε for which Θ(gε) ≤ d + ε.

Now we have only to verify that no homeomorphism between M and N exists for which
Θ(f ) ≤ 1

2(z(A) − z(B)). If such a homeomorphism existed, for every P ∈ M we would have

|z(P) − z(f (P))| ≤ z(A) − z(B)

2

and hence z(f (A)) ≥ z(G) ≥ z(f (B)). Therefore we could easily find points P ∈ M, for
which |z(P) − z(f (P))| > 1

2(z(A) − z(B)), contradicting our assumption.

3 Some technical tools and definitions

3.1 The concept of train of “limit d-jumps”

In order to prove our main theorem, we need some new definitions and technical results.
Assume two size pairs (M,ω), (N,ω) are given.
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The symbol SH (M, N) will denote the set of all sequences of homeomorphisms (fn) in
H (M, N) such thatΘ(fn) → d . Every sequence in SH (M, N) will be called a d -approximat-
ing sequence.

Let us consider a sequence (fn) ∈ SH (M, N). We shall say that a pair of points (P, Q) ∈
M × N is in relation with respect to (fn) if a sequence (Pr) in M exists, together with a
strictly increasing sequence (ir ) in N such that

(P, Q) = lim
r

(Pr , fir (Pr )).

In this case we shall write either PρQ or QρP, indifferently.
In the following part of this section we shall assume that 0 < d < +∞. The following

compact sets are defined with respect to each d -approximating sequence (fn):

N+M = N+M
(
(fn)
)
= {P ∈ M | ∃Q ∈ N : P ρQ, ω(Q) − ω(P) = d}

N−
M = N−

M
(
(fn)
)
= {P ∈ M | ∃Q ∈ N : P ρQ, ω(P) − ω(Q) = d}

N+N = N+N
(
(fn)
)
= {Q ∈ N | ∃P ∈ M : P ρQ, ω(P) − ω(Q) = d}

N−
N = N−

N
(
(fn)
)
= {Q ∈ N | ∃P ∈ M : P ρQ, ω(Q) − ω(P) = d} .

In other words, the points P in N+M are those for which a point Q ∈ N exists, such that
the pair (P, Q) can be approximated arbitrarily well by a pair (Pn , fin (Pn)) whose “jump”
ω(fin (Pn))−ω(Pn) is arbitrarily close to d . Hence, if we think ofω as a “height” function (cf.
the examples in the previous section), the points Pn have images with height approximated
by ω(Pn) + d . In N+M, the symbol M recalls the manifold to which P belongs, while the
symbol+ recalls that, by taking P to Q, we increase the value of the measuring function, i.e.
the “jump” starting from the node in M is “upwards”. The notations used for the other three
sets are quite analogous. The symbol − is used as a sign for denoting nodes from which
“downwards jumps” start (the starting node belonging to the manifold shown as subscript).

It is clear that, for every point P ∈ N+M, a point Q ∈ N−
N exists such that P ρQ (and vice

versa), and that an analogous relation holds for the sets N−
M and N+N . For every sequence of

homeomorphisms in SH (M, N) the sets NM = N+M∪N−
M and NN = N+N ∪N−

N are non-empty
because of the compactness of the manifolds and the continuity of the measuring functions.

Now we shall define the concept of “train” for a d -approximating sequence:

Definition 3.1. Let (N0, N1, . . . , Nk ) be an ordered (k + 1)-tuple of points in M ∪ N with
k ≥ 1 such that, for i = 0, . . . , k − 1 the following properties hold:

a) ω(Ni+1) = ω(Ni)+ d ;
b) Ni ρNi+1.

In this case the ordered set (N0, N1, . . . , Nk ) will be called a train of limit d -jumps for the
sequence (fn) (or, in short, a train) and its points will be called nodes. The pairs (Ni, Ni+1)
will be known as the wagons of the train. The number k will be called length of the train and
each train that is not included in any other train will be said to be maximal. If (N0, . . . , Nk)
is a maximal train, its wagons (N0, N1) and (Nk−1, Nk ) will be called initial and final
train wagons (respectively), while N0 and Nk will be the initial and final train nodes. The
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Figure 3 A train of limit d-jumps given by the quadruple (A, B, C, D).

remaining nodes will be called internal nodes. The symbol W
(
(fn)
)

will denote the set of
all the train wagons (for all the existing trains).

Since each point belonging either to NM or to NN is a node for at least one train, the set of
all trains is not empty. Notice that the point P is an initial node for at least a maximal train
if and only if either P ∈ N+M − N−

M or P ∈ N+N − N−
N , whereas it is a final node if and only

if either P ∈ N−
M − N+M or P ∈ N−

N − N+N .
In Figure 3 we provide a graphic representation of a maximal train (A, B, C, D). In this

particular case, we have that A ∈ N+N , B ∈ N+M ∩ N−
M, C ∈ N+N ∩ N−

N and D ∈ N−
M. Hence A

is the initial node and D is the final train node, while B and C are internal nodes. The three
ordered pairs (A, B), (B, C), (C, D) are the three wagons in the train; (A, B) and (C, D) are
its initial and final wagon, respectively.

In Figure 4 we find the maximal train (B, G, A) associated to the d -approximating se-
quence we described in Example 2.7. In fact we can easily prove that BρG, GρA, z(G) −
z(B) = d and z(A) − z(G) = d . Hence B ∈ N+M, G ∈ N+N ∩ N−

N and A ∈ N−
M.

Remark 3.2. The example described in Figure 4 shows that the existence of a train of
length 2, such that its initial node (in this case B) and its final node (in this case A) are
critical points of the measuring function z, guarantees that the natural pseudo-distance
equals half the distance between two critical values of the measuring function.

Our main goal will be to show that in the case of closed curves it is always possible to
construct a sequence of d -approximating homeomorphisms for which we can demonstrate
the existence of a train of length 1 or 2, beginning and ending at critical heights for the
measuring functions. We shall do that in the next Subsection 3.2 and in Section 4. The
example we have just seen justifies our task, since it points out a simple relation between d
and the critical values of z.

Now, in order to attain our goal, we need to introduce the concept of minimal d -approxi-
mating sequence.
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Figure 4 An example of a train of limit d-jumps given by the triple (B, G, A).

3.2 Minimal d-approximating sequences

The concept of train that we have just mentioned allows us to prove Theorem 2.4 cited in
Section 2, and will be central in the following sections, devoted to the proof of the main
result in this paper (Theorem 4.5).

In this subsection we shall assume that M, N are smooth homeomorphic closed manifolds
and ϕ, ψ are Morse functions.

As we explained in the introduction, the main goal of this paper is to show that the analytic
folding number is either 1 or 2 in the case of closed curves.

The idea is proving that we can always get the existence of a train like the one shown
in Remark 3.2. In order to obtain that, from a constructive point of view we need to take a
d -approximating sequence and improve it by shortening its trains as much as possible, until
we get a train of length 1 or 2, beginning and ending at critical heights for the measuring
functions.

This procedure will be carried out in two steps. The former will consist in a reduction
of the trains applicable in any dimension, which has been developed and applied in [7]
(Lemma 3.6 in this paper) in order that only trains beginning and ending at critical points
for the measuring functions remain.

The latter will be a reduction process, expressly developed for the case of curves, allowing
us to get a further shortening of trains.

Our goal requires a formal definition of “improving” a d -approximating sequence.
Hence we need to define the following preordering � on the set SH (M, N) of the d -

approximating sequences.

Definition 3.3. If (fn) and (gn) are two d -approximating sequences, we set

(gn) � (fn) (or, equivalently, (fn) � (gn))

if ϕ
(
N+M
(
(gn)
)) ⊆ ϕ

(
N+M
(
(fn)
))

and ϕ
(
N−

M
(
(gn)
)) ⊆ ϕ

(
N−

M
(
(fn)
))

.
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Definition 3.4. Let (fn) and (gn) be two d -approximating sequences. We say that (gn) ≺ (fn)
(or, equivalently, (fn) � (gn)) if (gn ) � (fn) and either ϕ

(
N+M
(
(gn)
)) �= ϕ

(
N+M
(
(fn)
))

or
ϕ
(
N−

M
(
(gn)
)) �= ϕ

(
N−

M
(
(fn)
))

(i.e., at least one of the two inclusions in Definition 3.3 is
proper).

We shall say that (fn) ∈ SH (M, N) is a minimal sequence if no sequence (gn) ∈ SH (M, N)
exists such that (gn) ≺ (fn).

Remark 3.5. The relations � and ≺ could be defined by referring to the nodes in
N in place of the nodes in M. In fact, our definitions immediately imply that the in-
clusion ϕ

(
N+M
(
(gn)
)) ⊆ ϕ

(
N+M
(
(fn)
))

is equivalent to the inclusion ψ
(
N−

N
(
(gn)
)) ⊆

ψ
(
N−

N
(
(fn)
))

and the inclusionϕ
(
N−

M
(
(gn)
)) ⊆ ϕ

(
N−

M
(
(fn)
))

is equivalent to the inclusion
ψ
(
N+N
(
(gn)
)) ⊆ ψ

(
N+N
(
(fn)
))

. An analogous statement holds for proper inclusions.

We observe that, in our definition, (gn) � (fn) does not mean that either (gn) ≺ (fn) or
(gn) = (fn).

The minimal sequences for ≺ are, in some ways, the best sequences of homeomorphisms
whose measure approximates the natural size pseudo-distance, since they minimize the sets
ϕ
(
N+M
)

and ϕ
(
N−

M
)

(and hence the setsψ
(
N+N
)

and ψ
(
N−

N
)
, too, i.e. the sets of node heights

for the four types of node we have considered). Afterwards, we shall see that it is always
possible to construct a d -approximating sequence of homeomorphisms such that the sets
ϕ
(
NM
)

and ψ
(
NN
)

are finite, and that this can be done by using minimal sequences, too.
The existence of minimal sequences with respect to the preordering ≺ will be important

in the following Section 4.
The main tool used in [7] for proving Theorem 2.4 is the following

Lemma 3.6. Assume that 0 < d < +∞ and the measuring functions ϕ, ψ are Morse.
For every sequence of homeomorphisms (fn) in SH (M, N) a new sequence (gn) exists in
SH (M, N) such that all maximal trains begin and end at critical points of the measuring
functions and W

(
(gn)
) ⊆ W

(
(fn)
)
.

Remark 3.7. We observe that in Lemma 3.6 the relation (gn) � (fn) is easily implied by
the inclusion W

(
(gn)
) ⊆ W

(
(fn)
)
.

The following proposition (also used in [9]) shows some properties of the minimal sequences
we are going to exploit, under the hypotheses that our measuring functions are Morse. We
recall the proof for the reader’s convenience.

Proposition 3.8. Assume that 0 < d < +∞ and the measuring functionsϕ, ψ are Morse,
and set A = {z ∈ R|∃c1, c2 ∈ ϕ(Kϕ) ∪ψ(Kψ), r, s ∈ N : z − c1 = rd , c2 − z = sd}. Then
the following statements hold:
(a) If a train for a d -approximating sequence begins and ends at critical points of the

measuring functions, the heights of its nodes belong to the finite set A.
(b) For every d -approximating sequence (fn), a minimal sequence (hn ) � (fn) exists whose

maximal trains begin and end at critical points of the measuring functions.
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(c) If a d -approximating sequence (gn) is minimal, the height of every node of its trains
belongs to the finite set A.

Proof. (a) It trivially follows from the definition of train. The finiteness of A follows from
the finiteness of the sets Kϕ and Kψ (here we are using the hypothesis that the measuring
functions are Morse).

(b) Lemma 3.6 ensures that we can take a sequence (gn) � (fn) whose maximal trains
begin and end at critical points of the measuring functions. The previous statement (a) and
the definition of the relation ≺ imply that no infinite descending chain

(
(gn) � (g1

n) �
(g2

n) � . . .
)

beginning at (gn) can exist. Let us consider the last term (g′
n) in a maximal

descending chain beginning at (gn). Obviously, (g′
n) is a minimal d -approximating sequence.

Unfortunately, statement (b) is still not proved, since some maximal train of (g′
n) could either

begin or end at regular points of the measuring functions, contrary to what happens for (gn).
However, by applying Lemma 3.6 to (g′

n ) we get a new d -approximating sequence (hn ) that
is still minimal and has the required property about maximal trains.

(c) Because of previous statement (b), a minimal sequence (hn ) � (gn) exists whose max-
imal trains begin and end at critical points of the measuring functions. Since (gn) is already
minimal, it follows thatϕ

(
N+M
(
(hn)
))
= ϕ
(
N+M
(
(gn)
))

andϕ
(
N−

M
(
(hn)
))
= ϕ
(
N−

M
(
(gn)
))

(and hence ψ
(
N+N
(
(hn )
))
= ψ
(
N+N
(
(gn)
))

and ψ
(
N−

N
(
(hn)
))
= ψ
(
N−

N
(
(gn)
))

). Statement
(a) ensures that ϕ

(
NM(hn)

) ∪ ψ(NN(hn )
)

is included in the finite set A, and therefore the
same happens to the set ϕ

(
NM
(
(gn)
)) ∪ ψ(NN

(
(gn)
))

.

4 Our main result

In Section 2 we have recalled (Theorem 2.4) that the natural pseudo-distance between two
size pairs is always related to the critical values of their measuring functions.

However, the examples we have displayed suggest that our results can be improved. In
fact our examples show an analytic folding number k that is never greater than 2. In the first
part of this section we shall prove (Theorem 4.3) that this condition always holds, under the
assumption that M and N are two homeomorphic smooth closed curves and the measuring
functions ϕ, ψ are Morse.

These hypotheses will make our proofs easier from a technical point of view. In Subsec-
tion 4.1 we shall weaken our assumptions and come back to the case of class C1 (Theo-
rem 4.5).

So, from now to Subsection 4.1, assume that M, N are smooth homeomorphic closed
curves and ϕ, ψ are Morse functions.

Now we introduce two useful lemmas. The former clarifies the local nature of the concept
of node.

Lemma 4.1. Assume 0 < d < +∞. Let U be an open subset of M and (fn) and (gn) be
two d -approximating sequences such that, for every n ∈ N, fn coincides with gn in U. Then
N+M
(
(fn)
) ∩ U = N+M

(
(gn)
) ∩ U and N−

M
(
(fn)
) ∩ U = N−

M
(
(gn)
) ∩ U.

Proof. It immediately follows from the definitions of the sets N+M and N−
M.
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A similar result obviously holds for an open subset V of N, and can easily be obtained by
interchanging the roles of the sequences (fn), (gn) and (f −1

n ), (g−1
n ) in Lemma 4.1.

The useful property described by the following lemma justifies the introduction of the
concept of minimal sequence in the case of closed curves.

Lemma 4.2. Let M and N be two homeomorphic closed curves for which 0 < d < +∞,
and (fn) be a minimal d -approximating sequence. Then, for every N ∈ N+M, either ϕ(N )
is a critical value for the function ϕ, or the number ϕ(N ) + d is a critical value for the
function ψ.

In other words, under the hypotheses of the lemma (possibly by exchanging the roles of the
two curves), if we consider the heights of two consecutive nodes in a train of a minimal
sequence, at least one of them is a critical value.
Proof. We shall prove that, if ϕ(N ) is not a critical value for ϕ and ϕ(N )+d is not a critical
value for the function ψ, then we can get a new d -approximating sequence (f̂n) such that
(f̂n) ≺ (fn), contradicting the assumption that (fn) is minimal.

Let us call Dϕε the open set {P ∈ M : |ϕ(P) − ϕ(N )| < ε} and Dψ2ε the open set
{Q ∈ N : |ψ(Q) − (ϕ(N )+ d )| < 2ε}, and choose ε > 0 so small that

i) D
ϕ
ε does not contain critical points for ϕ;

ii) ∂D
ϕ
ε does not contain nodes belonging to N+M

(
(fn)
)
;

iii) Dψ2ε does not contain critical points for ψ.

The existence of such an ε is ensured by the assumption that ϕ(N ) is not a critical value
for ϕ and ϕ(N ) + d is not a critical value for the function ψ, and by the fact that the set of
heights of the nodes is finite (see Proposition 3.8(c)).

Condition ii) implies that an η > 0 exists such that, for any large enough n, ψ(fn(P)) −
ϕ(P) ≤ d − η for every P in the set ∂D

ϕ
ε . In fact, if that inequality did not hold, at least one

of the points in the set ∂Dϕε should be a node belonging to N+M
(
(fn)
)
, contradicting ii). This

is a consequence of the compactness (actually finiteness, since ψ is Morse) of the set ∂D
ϕ
ε

(cf. [7], Lemma 4.1).
Now, before constructing the required sequence (f̂n), let us prove that a sequence (f̃n) ∈

SH (M, N) exists such that f̃n = fn in the closed set M − D
ϕ
ε and N+M

(
(f̃n)
) ∩ D

ϕ
ε = ∅ (in

other words, we can eliminate all “upwards” wagons from M to N, beginning in Dϕε ). We
shall use (f̃n) as an intermediate step to define (f̂n).

So, we set f̃n(P) = fn(P) for P ∈ M − D
ϕ
ε .

Let us define f̃n(P) in the case P ∈ D
ϕ
ε .

If P ∈ D
ϕ
ε and fn(P) is not a critical point for ψ, consider the open set �, defined as the

connected component of fn(Dϕε ) −Kψ containing fn(P). Then call E1 and E2 the ends of the
closure of the arc �. By construction, each of them is either a point belonging to fn(∂Dϕε ) or
a critical point for ψ belonging to fn(Dϕε ) (see Figure 5).

It is easy to see that, since D
ϕ
ε ∩ Kϕ = ∅ and � ∩ Kψ = ∅, a real number λP in the open

interval (0, 1) and a point Q = Q(P) ∈ � exist (and are uniquely defined) such that

ϕ(P) = λPϕ(f −1
n (E1))+ (1 − λP)ϕ(f −1

n (E2))
ψ(Q) = λPψ(E1)+ (1 − λP)ψ(E2).

Hence, we shall set f̃n(P) = Q.
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Figure 5 In this example a connected component � of the set fn (Dϕε ) − Kψ , containing P, is repre-
sented on the right (thick line).

If P ∈ D
ϕ
ε but fn(P) is a critical point for ψ, we shall simply set f̃n(P) = fn(P) (so the

two homeomorphisms f̃n and fn will even coincide in the set M − (Dϕε − f −1
n (Kψ))).

In practice, we proceed this way in order to get the function ψ ◦ f̃n ◦ ϕ−1 to be linear
on the interval ϕ(f −1

n (�)) for each connected component � of fn(Dϕε ) − Kψ (note that the
restriction ofϕ to f −1

n (�) is invertible).This relaxing procedure is the tool we use to eliminate
all “upwards” wagons from M to N, beginning in D

ϕ
ε .

From the linearity of ψ ◦ f̃n ◦ ϕ−1 (and hence of ψ ◦ f̃n ◦ ϕ−1 − id ) on the interval
ϕ(f −1

n (�)), for each connected component � in fn(Dϕε ) − Kψ , it follows that the extrema of
ψ ◦ f̃n ◦ϕ−1 − id are taken at the two points on the boundary of ϕ(f −1

n (�)), that is, two points
ϕ(A), ϕ(B) with A, B ∈ ∂(f −1

n (�)).
This means that, for every P ∈ D

ϕ
ε , two points A and B exist (A = B = P if fn(P) ∈ Kψ)

such that each of them is either a point belonging to ∂D
ϕ
ε or a point of D

ϕ
ε that is also the

inverse image by fn of a critical point for ψ, and

ψ(fn(A)) − ϕ(A) = ψ(f̃n(A)) − ϕ(A)(1)

≤ ψ(f̃n(P)) − ϕ(P)

≤ ψ(f̃n(B)) − ϕ(B) = ψ(fn (B)) − ϕ(B).

Hence Θ(f̃n) ≤ Θ(fn), and so the new sequence (f̃n) is a d -approximating sequence, too.
Since fn and f̃n coincide outside D

ϕ
ε , and in particular outside the closed set D

ϕ
ε , by

construction, Lemma 4.1 guarantees that the equalities

N+M
(
(f̃n)
) ∩ (M − Dϕε ) = N+M

(
(fn)
) ∩ (M − Dϕε )(2)

N−
M
(
(f̃n)
) ∩ (M − D

ϕ
ε ) = N−

M
(
(fn)
) ∩ (M − D

ϕ
ε )

hold, i.e., every upwards (downwards) wagon for (fn) arriving from M − D
ϕ
ε at the set N is

also an upwards (downwards) wagon for (f̃n) arriving from M − D
ϕ
ε at N, and vice versa.
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Now we are going to prove the equality

N+M
(
(f̃n)
) ∩ D

ϕ
ε = ∅,(3)

saying that no upwards wagon from M to N beginning in D
ϕ
ε exists.

If a N ′ ∈ N+M
(
(f̃n)
) ∩ Dϕε existed, then a sequence (Pn) in Dϕε would exist such that,

possibly by extracting a subsequence, ψ(f̃n(Pn))−ϕ(Pn) → d . (The possibility of assuming
Pn ∈ D

ϕ
ε can easily be obtained in the case N ′ ∈ D

ϕ
ε ; in the case N ′ ∈ ∂D

ϕ
ε this is ensured

by the coincidence of fn and f̃n outside D
ϕ
ε and by hypothesis ii), which states that ∂D

ϕ
ε does

not contain nodes belonging to N+M
(
(fn)
)
).

Hence, because of (1), a sequence (Bn ) would also exist such thatψ(fn(Bn ))−ϕ(Bn ) → d ,
where each Bn is either a point belonging to ∂D

ϕ
ε or a point of D

ϕ
ε that is also the inverse

image by fn of a critical point for ψ.

Since we have seen that, for any large enough n, ψ ◦ fn −ϕ ≤ d −η in ∂D
ϕ
ε , then Bn �∈ ∂D

ϕ
ε ,

and hence it is the inverse image by fn of a critical point forψ belonging to fn(Dϕε ).Therefore,
Bn ∈ Dϕε , and so |ϕ(Bn) − ϕ(N )| < ε, for any large enough n (where N is the node cited in
the statement of our Lemma 4.2). Moreover,

|ψ(fn (Bn)) − (ϕ(N )+ d )| ≤ |ψ(fn(Bn)) − ϕ(Bn ) − d |+ |ϕ(Bn) − ϕ(N )|.
Therefore, for any large enough n the inequality

|ψ(fn (Bn)) − (ϕ(N )+ d )| < 2ε

holds, contradicting property iii), since fn(Bn ) is a critical point of ψ.
So we have proved that the new d -approximating sequence (f̃n) has no wagon going

upwards from Dϕε to N.
Unfortunately, we cannot ensure that (f̃n) � (fn), since the inclusion N−

M
(
(f̃n)
) ⊆ N−

M
(
(fn)
)

is not guaranteed (in fact, it could be N−
M
(
(f̃n)
) ∩ D

ϕ
ε �⊆ N−

M
(
(fn)
) ∩ D

ϕ
ε ).

We can remedy this problem by applying Lemma 3.6 to (f̃n). In this way we get a new
sequence (f̂n) whose wagons are wagons for (f̃n), too. Therefore (2) and (3) imply that the
equalities

N+M
(
(f̂n)
) ∩ (M − D

ϕ
ε ) ⊆ N+M

(
(fn)
) ∩ (M − D

ϕ
ε )

N−
M
(
(f̂n)
) ∩ (M − Dϕε ) ⊆ N−

M
(
(fn)
) ∩ (M − Dϕε )

N+M
(
(f̂n)
) ∩ D

ϕ
ε = ∅

hold.
Since all maximal trains for (f̂n) begin and end at critical points of the measuring functions,

and the set Dϕε does not contain critical points for ϕ (Property i)), the equality N+M
(
(f̂n)
) ∩

Dϕε = ∅ implies the equality N−
M
(
(f̂n)
) ∩ Dϕε = ∅.

It follows that (f̂n) � (fn).
Since D

ϕ
ε does not meet N+M

(
(f̂n)
)
, but contains at least one node of N+M

(
(fn)
)
, it follows

that (f̂n) ≺ (fn), contradicting the hypothesis that (fn) is a minimal sequence.
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Let us apply Lemma 4.2 to prove that the analytic folding number is never greater than 2
for the closed curves.

Theorem 4.3. Assume that M and N are two homeomorphic smooth closed curves and that
ϕ : M → R and ψ : N → R are two Morse functions. Then, if d denotes the natural
pseudo-distance between the size pairs (M,ϕ) and (N,ψ), at least one of the following
properties holds:
a) d equals the distance between a critical value of ϕ and a critical value of ψ.
b) d equals half the distance between two critical values of ϕ.
c) d equals half the distance between two critical values of ψ.

Proof. If d = 0, then ϕ and ψ have the same global minimumμ. Hence, d = |μ−μ| and the
statement is trivial. So let us assume d > 0. Let (fn) be a minimal sequence whose maximal
trains begin and end at critical points of the measuring functions (Proposition 3.8(b)) and
suppose N ′ ∈ N is the initial node of a maximal train (if no maximal train begins in N,
it is sufficient to exchange the roles of our curves). Therefore ψ(N ′) is a critical value for
the measuring function ψ. Let N ∈ N be the next node in the train. If ϕ(N ) ∈ ϕ(Kϕ), then
condition a) holds. Otherwise, call N ′′ ∈ N the next node (N ′′ exists becauseϕ(N ) �∈ ϕ(Kϕ),
and so it is not the final node of the train). Lemma 4.2 ensures that ψ(N ′′) = ϕ(N ) + d ∈
ψ(Kψ). Therefore d = 1

2 |ψ(N ′′) − ψ(N ′)| and property c) holds.

Remark 4.4. Lemma 4.2 may be considered analogous to Lemma 5.2 proved in [9] for
surfaces, but the techniques used in the proof are different, since here we can use linear
maps in place of harmonic maps. Consequently, we succeed in getting more information
about the position of the images of critical points. As a result, in both the 1-dimensional
and the 2-dimensional case, we can prove that if we consider the heights of m consecutive
nodes in a train of a minimal sequence, at least one of them is a critical value, but we have to
suppose m ≥ 2 for curves and m ≥ 3 for surfaces, depending on the different techniques and
dimensional constraints involved in our proofs. This difference explains why the statement
of Theorem 5.7 in [9] (for surfaces) is weaker than the statement of Theorem 4.5 in this
paper, concerning curves.

4.1 Weakening the hypotheses about the regularity of curves and measuring functions

Until now we have considered smooth closed curves and Morse measuring functions. By
repeating the same proofs we have used in [7] to weaken our hypotheses about regularity,
we can get our main result via an approximation procedure:

Theorem 4.5. Assume that M and N are two homeomorphic closed curves of class C1

and that ϕ : M → R and ψ : N → R are two functions of class C1. Then, if d denotes
the natural pseudo-distance between the size pairs (M,ϕ) and (N,ψ), at least one of the
following properties holds:
a) d equals the distance between a critical value of ϕ and a critical value of ψ.
b) d equals half the distance between two critical values of ϕ.
c) d equals half the distance between two critical values of ψ.
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Examples 2.6 and 2.7, showing two cases for which the analytic folding number equals 1
and 2 respectively, demonstrate that the result of Theorem 4.5 is the best possible result for
closed curves.

5 Conclusions and further research

In this paper we have proved that for closed curves the relation between the natural pseudo-
distance and the critical values of the measuring functions is stronger than the one we
proved in [7] for the general dimensions and the one we proved in [9] for surfaces. In fact,
Theorem 4.5 shows that the natural pseudo-distance between two closed curves is always
either the distance or half the distance between two suitable critical values of the measuring
functions. The examples we have given in this paper show that our result cannot be further
improved.ThereforeTheorem 4.5 completely solves the problem of determining the possible
values for the natural pseudo-distance in the 1-dimensional case.

Unfortunately, both the linearization technique used in this paper and the one used in [9]
do not seem to be suitable for studying the n-dimensional case. Hence the following question
naturally arises. Do two n-manifolds associated with two regular measuring functions ϕ, ψ
exist such that their pseudo-distance equals neither D, D/2 nor D/3, for D varying in the
set of all distances between the critical values of ϕ and ψ?

In our further research we intend to study this problem and the availability of new tech-
niques to consider the general n-dimensional case. However, it is interesting to note that we
do not know of examples where the analytic folding number is strictly greater than 2, even
in the bidimensional case.

The difficulty in finding examples where the analytic folding number equals 3, if any
exist, deserves some further remarks. One technique that can be used for computing natural
size pseudo-distances is based on size functions (cf. [8]). The computation of size functions
is usually easy, and gives us a lower bound s for natural size pseudo-distances. Obviously,
when we are able to show a sequence (fi) of homeomorphisms for which limi Θ(fi) = s,
we can claim that the natural size pseudo-distance equals s. The key point is that the best
lower bound s we can obtain is either the distance, or half the distance, between two suitable
critical values of the measuring functions (cf. Theorem 2 in [8]). Therefore, even though an
example where the analytic folding number equals 3 may exist, we are not able to find and
recognize it using the previously described technique. Apparently, new techniques should
be developed.

As regards the use of a linearization procedure in our study, this corresponds to the prop-
erty that the deformation due to tension fields decreases both the energy and the maximum
change of the measuring functions, provided that we are far from their critical points. In
higher dimensions, the use of different kinds of deformation (e.g. curvature evolution of the
level lines of the measuring functions) might be investigated. The main problem seems to
be the possible birth of degeneracies.

As another line of research, it might be interesting to examine the possibility of moving
from the study of trains of limit d -jumps to the study of relations obtained as limits of the
d -approximating sequences of homeomorphisms, with respect to the Hausdorff (or another
more suitable) topology.
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In conclusion, various interesting questions remain open and deserve further study and
research.
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