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Abstract

We prove a correlation type inequality for spin systems with quenched symmetric

random interactions. This gives monotonicity of the pressure with respect to the

strength of the interaction for a class of spin glass models. Consequences include

existence of the thermodynamic limit for the pressure and bounds on the surface

pressure. We also describe other conjectured inequalities for such systems.
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1 Introduction

Correlation inequalities have played and continue to play an important role in many

areas of statistical mechanics. In addition to describing microscopic structure they also

provide information about macroscopic properties: for ferromagnetic spin systems they

give monotonicity of the critical temperature, inequalities for critical exponents, etc.

It would clearly be desirable to obtain similar results also for disordered systems, like

spin glasses, in which both ferromagnetic and anti-ferromagnetic interactions are present

with assigned probabilities. In this note we obtain some correlation type inequalities for

such systems. These yield various results usually obtained for ferromagnetic systems from

the first GKS inequalities ([Gr, Gr2, KS]), e.g. monotonicity and hence existence of the

thermodynamic limit of the pressure, and bounds on the surface pressure. We also discuss

intriguing examples of versions of the second type GKS inequalities, but at the moment

a general proof is still lacking.

2 Definitions and Results

Let σn = ±1, n ∈ Λ ⊂ Z
d, and denote by ΣΛ the set of all σ = {σn}n∈Λ, and |ΣΛ| = 2|Λ|.

To each X ⊂ Λ we associate the spin product σX =
∏

i∈X σi and random variable JX .

The J ’s, denoted collectively by J, are a family of independent unit symmetric random

variables:

Av (JX) = 0 , (2.1)

Av (JXJY ) = δX,Y , (2.2)

where the Av () denotes the average over the distributions of the J ’s. The energy of a

configuration σ is given by

UΛ(σ) = −
∑

X⊂Λ

λXJXσX + ŪΛ(σ) , (2.3)

where ŪΛ is a non-random (reference) interaction which we need not specify in any detail

for the moment. It can in particular be set equal to zero.The {λX}, denoted collec-
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tively by λ, are auxiliary parameters which are used to tune the strength of the different

interactions. Some can be set (at the end) equal to zero.

The probability distribution for specified λ and J is given by µ = Z−1
Λ e−UΛ with

random partition function

ZΛ =
∑

σ

e−UΛ(σ). (2.4)

The quenched pressure is given by

PΛ = Av (log ZΛ) . (2.5)

We define the thermal correlations for a given J by

ωA =

∑

σ σAe−UΛ(σ)

∑

σ e−UΛ(σ)
. (2.6)

The quenched correlations ω̄A are given by Av (ωA) and we also define (dropping the

subscript Λ)

ρA = Av (JAωA) =
∂P

∂λA

, (2.7)

The pressure (and the ω̄A) is clearly an even function of each λX and hence ρA is an odd

function of λA and an even function of λX , X 6= A.

Theorem 1 Let λA ≥ 0, then ρA ≥ 0. Consequently the quenched pressure P is monotone

increasing with respect to each λA. i.e.

∂P

∂λA

= ρA ≥ 0, ∀A with λA ≥ 0 . (2.8)

Remark Theorem 1 immediately implies that the pressure P (λ) has a minimum for

λA = 0, for any A ∈ Λ. E.g. the pressure of a system with symmetric nearest-neighbor

random interactions is smaller than the one with added next nearest neighbor interactions.

Another consequence is that in the case when ŪΛ = 0 or containing only one site potentials,

e.g. for standard spin glasses, the pressure for periodic boundary conditions is larger than

the one with free boundary conditions.

Proof: The function P is symmetric and convex with respect to λA, i.e.

ρA =
∂P

∂λA

= 0 for λA = 0. (2.9)
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and
∂2P

∂λ2
A

= Av
(

J2
A[1 − ω2

A]
)

≥ 0 . (2.10)

The first equality follows from symmetry and the second from the fact that ω2
A ≤ 1.

Consequently from (2.10)

ρA(λ
(1)
A ) ≥ ρA(λ

(2)
A ) , ∀ λ

(1)
A ≥ λ

(2)
A ≥ 0 (2.11)

and the theorem follows by chosing λ
(2)
A = 0 and from (2.9). �

Theorem 2 When ŪΛ is just a sum of one site potentials, i.e. ŪΛ =
∑

i∈Λ hiσi, the

pressure P is super-additive, i.e., for all disjoint decompositions Λ = ∪K
h=1Λh, Λl∩Λm = ∅

l 6= m

PΛ ≥
K

∑

h=1

PΛh
. (2.12)

Remark These properties of P are similar to those for the ferromagnetic case [Gr2] with

the ρA ≥ 0 playing the role of the first GKS inequality. This result generalizes the one

obtained for the Gaussian case in [CG].

Corollary 2.1 Assuming thermodynamic stability,

Av
(

e−U
)

≤ ec|Λ| , (2.13)

the super-additivity provided by Theorem 2 implies, by standard methods, monotonicity

and existence of the thermodynamic limit for the pressure with free boundary conditions.

In particular

p = lim
ΛրZd

PΛ

|Λ|
= sup

Λ

PΛ

|Λ|
. (2.14)

Remark Decomposing a d-dimensional hypercube Λ into (d−1)-dimensional hypercubes

(2.12) immediately implies that the pressure in dimension d, p(d) is an increasing function

of d

p(d+1) ≥ p(d) (2.15)
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Corollary (2.1) admits the following proof: to each partition of Λ we associate the inter-

polating potential for 0 ≤ t ≤ 1

UΛ(t) =

K
∑

h=0

thU
(h)
Λh

, Λ0 = Λ , (2.16)

with t0 = t and th = (1 − t) for 1 ≤ h ≤ K,

U
(h)
Λh

= −
∑

X⊂Λh

λXJ
(h)
X σX (2.17)

and we have dropped the argument σ and set Ūn = 0, for notational convenience. The

J
(h)
X are centered independent unit random variables

Av
(

J
(l)
X J

(m)
Y

)

= δl,mδX,Y . (2.18)

We define the interpolating partition function

ZΛ(t) =
∑

σ∈ΣN

e−UΛ(t) , (2.19)

and we observe that

ZΛ(0) =
K
∏

h=1

ZΛh
(J (h)) , ZΛ(1) = ZΛ(J) . (2.20)

We consider the interpolating pressure

PΛ(t) := Av (ln ZΛ(t)) . (2.21)

Using (2.20) we get

PΛ(0) =

K
∑

h=1

PΛh
, PΛ(1) = PΛ . (2.22)

Considering CΛ the set of all subsets of Λ with non empty intersection with more than

one Λh a straightforward computation gives

d

dt
PΛ(t) =

∑

X∈CΛ

λ2
XρX ≥ 0 , (2.23)

where the last inequality comes from theorem 1. Hence (2.20) and (2.23), imply (2.12).

�

5



Theorem 3 For finite range interactions, i.e. λX = 0 for |X| ≥ r (e.g. the nearest

neighbor case) the first correction to the leading term of the pressure, TΛ defined by:

PΛ = p|Λ| + TΛ (2.24)

has a non positive value and is of surface size:

c|∂Λ| ≤ TΛ ≤ 0. (2.25)

Remark The result (2.25) is analogous to that for the ferromagnetic case in [FL, FC].

The theorem generalizes to all symmetric distributions of the JX the result obtained for

the Gaussian case in [CG2].

Proof: We give the proof for nearest-neighbor interactions, r = 2, UΛ(σ) =
∑

b λbJbσb

where b represents a bond of the lattice b = (n, n′), |n − n′| = 1. The extension to the

general case is straightforward and only changes the value of the constant of (2.25). Given

the d-dimensional cube Λ, |Λ| = Ld consider its magnification |Λk| = (kL)d. Clearly Λk

can be partitioned into kd disjoint cubes Λs all congruent to Λ. We call CΛ the set of

bonds connecting the different Λs. In finite volume and with free boundary conditions we

have by definition

PΛ = Av (ln ZΛ) = k−dAv
(

ln Zkd

Λ

)

. (2.26)

Since the limiting pressure per particle is independent of the boundary conditions we

have, indicating by Π the periodic boundary conditions (see [FL])

p|Λ| = lim
k→∞

k−dAv
(

ln Z
(Π)
kΛ

)

(2.27)

By (2.26) and (2.27) we obtain

TΛ = (PΛ − p|Λ|)

= lim
k→∞

k−dAv
(

lnZkd

Λ − ln Z
(Π)
kΛ

)

. (2.28)

We chose now the λ’s in such a way that

λb =







λ, if b ∈ CΛ,

1, otherwise .
(2.29)
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(2.28) then becomes, using the fundamental theorem of calculus,

TΛ = lim
k→∞

k−d
[

P
(Π)
Λ (0) − P

(Π)
Λ (1)

]

= − lim
k→∞

k−d

∫ 1

0

d

dλ
P

(Π)
Λ (λ)dλ . (2.30)

By a simple computation

d

dλ
P

(Π)
Λ (λ) =

∑

b∈CΛ

ρ
(Π)
b (λ) = |CΛ|ρ

(Π)
b (λ) , (2.31)

where we have used the translation symmetry over the torus. By the identity

2|CΛ| = kd|∂Λ| (2.32)

we obtain

TΛ = −
|∂Λ|

2
lim
k→∞

∫ 1

0

ρ
(Π)
b (λ)dλ , (2.33)

which immediately entails the theorem. �

3 Other Inequalities

We have seen that Theorem 1 expresses for spin glasses a monotonicity property that en-

tails the same consequences that the first GKS inequality does for ferromagnetic systems.

From this perspective it is interesting to examine whether the quantity

∂2P

∂λA∂λB

= Av (JAJB[ωAB − ωAωB]) (3.34)

has a definite sign when A 6= B (for A = B, ωAB = 1 and the sign is positive). We

have some evidence based on explicit calculations (work in progress with F.Unguendoli)

that for A 6= B with the J ’s satisfying (2.2), the sign is negative, but are unable at

this time to produce a general proof or find a counter example. A simple computation

based on integration by parts shows that such an inequality would imply that the overlap

expectations in Gaussian spin glasses would be monotonic non decreasing with the volume,

similar to spin expectations in ferromagnetic systems.

Another interesting question is the case where the J ’s are not centered random vari-

ables but with Av (JA) = µA > 0. We then ask whether Av (ωA) ≥ 0. This is essentially
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the same question as whether Av (ωA) ≥ 0 when ŪΛ is ferromagnetic. In that case ωA ≥ 0

when ΛX = 0 for all X ⊂ Λ and it seems very reasonable to expect that this will be

preserved when we add symmetric random interactions. Also in this case we have evi-

dence that the inequality hold for specific cases (work in progress with F.Unguendoli) but

unfortunately we don’t have a general proof or a counter example. It is interesting to note

that in a subspace of the random parameter space in which variance and mean of the J ’s

are chosen to be identical (Nishimori line) a suitable version of the GKS inequalities can

be proved with consequences similar to those obtained here for the surface pressure (see

[MNC, CMN]).
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