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Geometric deep learning:
going beyond Euclidean data

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

Many scientific fields study data with an underlying struc-
ture that is a non-Euclidean space. Some examples include
social networks in computational social sciences, sensor net-
works in communications, functional networks in brain imag-
ing, regulatory networks in genetics, and meshed surfaces
in computer graphics. In many applications, such geometric
data are large and complex (in the case of social networks,
on the scale of billions), and are natural targets for machine
learning techniques. In particular, we would like to use deep
neural networks, which have recently proven to be powerful
tools for a broad range of problems from computer vision,
natural language processing, and audio analysis. However,
these tools have been most successful on data with an un-
derlying Euclidean or grid-like structure, and in cases where
the invariances of these structures are built into networks used
to model them.

Geometric deep learning is an umbrella term for emerging
techniques attempting to generalize (structured) deep neural
models to non-Euclidean domains such as graphs and man-
ifolds. The purpose of this paper is to overview different
examples of geometric deep learning problems and present
available solutions, key difficulties, applications, and future
research directions in this nascent field.

I. INTRODUCTION

“Deep learning” refers to learning complicated concepts
by building them from simpler ones in a hierarchical or
multi-layer manner. Artificial neural networks are popular
realizations of such deep multi-layer hierarchies. In the past
few years, the growing computational power of modern GPU-
based computers and the availability of large training datasets
have allowed successfully training neural networks with many
layers and degrees of freedom [1]. This has led to qualitative
breakthroughs on a wide variety of tasks, from speech recog-
nition [2], [3] and machine translation [4] to image analysis
and computer vision [5], [6], [7], [8], [9], [10], [11] (the
reader is referred to [12], [13] for many additional examples
of successful applications of deep learning). Nowadays, deep
learning has matured into a technology that is widely used in
commercial applications, including Siri speech recognition in
Apple iPhone, Google text translation, and Mobileye vision-
based technology for autonomously driving cars.

One of the key reasons for the success of deep neural
networks is their ability to leverage statistical properties of
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the data such as stationarity and compositionality through
local statistics, which are present in natural images, video, and
speech [14], [15]. These statistical properties have been related
to physics [16] and formalized in specific classes of convo-
lutional neural networks (CNNs) [17], [18], [19]. In image
analysis applications, one can consider images as functions
on the Euclidean space (plane), sampled on a grid. In this
setting, stationarity is owed to shift-invariance, locality is due
to the local connectivity, and compositionality stems from
the multi-resolution structure of the grid. These properties
are exploited by convolutional architectures [20], which are
built of alternating convolutional and downsampling (pooling)
layers. The use of convolutions has a two-fold effect. First,
it allows extracting local features that are shared across the
image domain and greatly reduces the number of parameters
in the network with respect to generic deep architectures
(and thus also the risk of overfitting), without sacrificing the
expressive capacity of the network. Second, the convolutional
architecture itself imposes some priors about the data, which
appear very suitable especially for natural images [21], [18],
[17], [19].

While deep learning models have been particularly success-
ful when dealing with signals such as speech, images, or video,
in which there is an underlying Euclidean structure, recently
there has been a growing interest in trying to apply learning
on non-Euclidean geometric data. Such kinds of data arise
in numerous applications. For instance, in social networks,
the characteristics of users can be modeled as signals on the
vertices of the social graph [22]. Sensor networks are graph
models of distributed interconnected sensors, whose readings
are modelled as time-dependent signals on the vertices. In
genetics, gene expression data are modeled as signals defined
on the regulatory network [23]. In neuroscience, graph models
are used to represent anatomical and functional structures of
the brain. In computer graphics and vision, 3D objects are
modeled as Riemannian manifolds (surfaces) endowed with
properties such as color texture.

The non-Euclidean nature of such data implies that there
are no such familiar properties as global parameterization,
common system of coordinates, vector space structure, or
shift-invariance. Consequently, basic operations like convo-
lution that are taken for granted in the Euclidean case are
even not well defined on non-Euclidean domains. The purpose
of our paper is to show different methods of translating the
key ingredients of successful deep learning methods such as
convolutional neural networks to non-Euclidean data.
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II. GEOMETRIC LEARNING PROBLEMS

Broadly speaking, we can distinguish between two classes
of geometric learning problems. In the first class of problems,
the goal is to characterize the structure of the data. The second
class of problems deals with analyzing functions defined on a
given non-Euclidean domain. These two classes are related,
since understanding the properties of functions defined on
a domain conveys certain information about the domain,
and vice-versa, the structure of the domain imposes certain
properties on the functions on it.

Structure of the domain: As an example of the first
class of problems, assume to be given a set of data points
with some underlying lower dimensional structure embedded
into a high-dimensional Euclidean space. Recovering that
lower dimensional structure is often referred to as manifold
learning1 or non-linear dimensionality reduction, and is an
instance of unsupervised learning. Many methods for non-
linear dimensionality reduction consist of two steps: first,
they start with constructing a representation of local affinity
of the data points (typically, a sparsely connected graph).
Second, the data points are embedded into a low-dimensional
space trying to preserve some criterion of the original affinity.
For example, spectral embeddings tend to map points with
many connections between them to nearby locations, and
MDS-type methods try to preserve global information such
as graph geodesic distances. Examples of manifold learning
include different flavors of multidimensional scaling (MDS)
[26], locally linear embedding (LLE) [27], stochastic neighbor
embedding (t-SNE) [28], spectral embeddings such as Lapla-
cian eigenmaps [29] and diffusion maps [30], and deep models
[31]. Most recent approaches [32], [33], [34] tried to apply the
successful word embedding model [35] to graphs. Instead of
embedding the vertices, the graph structure can be processed
by decomposing it into small sub-graphs called motifs [36] or
graphlets [37].

In some cases, the data are presented as a manifold or graph
at the outset, and the first step of constructing the affinity
structure described above is unnecessary. For instance, in
computer graphics and vision applications, one can analyze 3D
shapes represented as meshes by constructing local geometric
descriptors capturing e.g. curvature-like properties [38], [39].
In network analysis applications such as computational sociol-
ogy, the topological structure of the social graph representing
the social relations between people carries important insights
allowing, for example, to classify the vertices and detect
communities [40]. In natural language processing, words in a
corpus can be represented by the co-occurrence graph, where
two words are connected if they often appear near each other
[41].

Data on a domain: Our second class of problems deals with
analyzing functions defined on a given non-Euclidean domain.
We can further break down such problems into two subclasses:
problems where the domain is fixed and those where multiple
domains are given. For example, assume that we are given
the geographic coordinates of the users of a social network,

1Note that the notion of “manifold” in this setting can be considerably more
general than a classical smooth manifold; see e.g. [24], [25]

represented as a time-dependent signal on the vertices of the
social graph. An important application in location-based social
networks is to predict the position of the user given his or
her past behavior, as well as that of his or her friends [42].
In this problem, the domain (social graph) is assumed to be
fixed; methods of signal processing on graphs, which have
previously been reviewed in this Magazine [43], can be applied
to this setting, in particular, in order to define an operation
similar to convolution in the spectral domain. This, in turn,
allows generalizing CNN models to graphs [44], [45].

In computer graphics and vision applications, finding sim-
ilarity and correspondence between shapes are examples of
the second sub-class of problems: each shape is modeled as
a manifold, and one has to work with multiple such domains.
In this setting, a generalization of convolution in the spatial
domain using local charting [46], [47], [48] appears to be more
appropriate.

Brief history: The main focus of this review is on this
second class of problems, namely learning functions on non-
Euclidean structured domains, and in particular, attempts to
generalize the popular CNNs to such settings. First attempts
to generalize neural networks to graphs we are aware of are
due to Scarselli et al. [49], who proposed a scheme combining
recurrent neural networks and random walk models. This
approach went almost unnoticed, re-emerging in a modern
form in [50], [51] due to the renewed recent interest in deep
learning. The first formulation of CNNs on graphs is due to
Bruna et al. [52], who used the definition of convolutions in
the spectral domain. Their paper, while being of conceptual
importance, came with significant computational drawbacks
that fell short of a truly useful method. These drawbacks were
subsequently addressed in the followup works of Henaff et al.
[44] and Defferrard et al. [45]. In the latter paper, graph CNNs
allowed achieving some state-of-the-art results.

In a parallel effort in the computer vision and graphics
community, Masci et al. [47] showed the first CNN model
on meshed surfaces, resorting to a spatial definition of the
convolution operation based on local intrinsic patches. Among
other applications, such models were shown to achieve state-
of-the-art performance in finding correspondence between
deformable 3D shapes. Followup works proposed different
construction of intrinsic patches on point clouds [53], [48]
and general graphs [54].

The interest in deep learning on graphs or manifolds has
exploded in the past year, resulting in numerous attempts to
apply these methods in a broad spectrum of problems ranging
from biochemistry [55] to recommender systems [56]. Since
such applications originate in different fields that usually do
not cross-fertilize, publications in this domain tend to use
different terminology and notation, making it difficult for a
newcomer to grasp the foundations and current state-of-the-art
methods. We believe that our paper comes at the right time
attempting to systemize and bring some order into the field.

Structure of the paper: We start with an overview of
traditional Euclidean deep learning in Section III, summarizing
the important assumptions about the data, and how they are
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realized in convolutional network architectures.2

Going to the non-Euclidean world in Section IV, we then
define basic notions in differential geometry and graph theory.
These topics are insufficiently known in the signal processing
community, and to our knowledge, there is no introductory-
level reference treating these so different structures in a
common way. One of our goals is to provide an accessible
overview of these models resorting as much as possible to the
intuition of traditional signal processing.

In Sections V–VIII, we overview the main geometric deep
learning paradigms, emphasizing the similarities and the differ-
ences between Euclidean and non-Euclidean learning methods.
The key difference between these approaches is in the way a
convolution-like operation is formulated on graphs and mani-
folds. One way is to resort to the analogy of the Convolution
Theorem, defining the convolution in the spectral domain. An
alternative is to think of the convolution as a template matching
in the spatial domain. Such a distinction is, however, far from
being a clear-cut: as we will see, some approaches though
draw their formulation from the spectral domain, essentially
boil down to applying filters in the spatial domain. It is
also possible to combine these two approaches resorting to
spatio-frequency analysis techniques, such as wavelets or the
windowed Fourier transform.

In Section IX, we show examples of selected problems from
the fields of network analysis, particle physics, recommender
systems, computer vision, and graphics. In Section X, we
draw conclusions and outline current main challenges and
potential future research directions in geometric deep learning.
To make the paper more readable, we use inserts to illustrate
important concepts. Finally, the readers are invited to visit
a dedicated website geometricdeeplearning.com for
additional materials, data, and examples of code.

III. DEEP LEARNING ON EUCLIDEAN DOMAINS

Geometric priors: Consider a compact d-dimensional
Euclidean domain Ω = [0, 1]d ⊂ Rd on which square-
integrable functions f ∈ L2(Ω) are defined (for example,
in image analysis applications, images can be thought of
as functions on the unit square Ω = [0, 1]2). We consider
a generic supervised learning setting, in which an unknown
function y : L2(Ω)→ Y is observed on a training set

{fi ∈ L2(Ω), yi = y(fi)}i∈I . (1)

In a supervised classification setting, the target space Y can
be thought discrete with |Y| being the number of classes. In
a multiple object recognition setting, we can replace Y by the
K-dimensional simplex, which represents the posterior class
probabilities p(y|x). In regression tasks, we may consider Y =
Rm.

In the vast majority of computer vision and speech analysis
tasks, there are several crucial prior assumptions on the
unknown function y. As we will see in the following, these
assumptions are effectively exploited by convolutional neural
network architectures.

2For a more in-depth review of CNNs and their applications, we refer the
reader to [12], [1], [13] and references therein.

Notation
Rm m-dimensional Euclidean space
a,a,A Scalar, vector, matrix
ā Complex conjugate of a
Ω, x Arbitrary domain, coordinate on it
f ∈ L2(Ω) Square-integrable function on Ω
δx′(x), δij Delta function at x′, Kronecker delta
{fi, yi}i∈I Training set
Tv Translation operator
τ,Lτ Deformation field, operator
f̂ Fourier transform of f
f ? g Convolution of f and g
X , TX , TxX Manifold, its tangent bundle, tangent

space at x
〈·, ·, 〉TX Riemannian metric
f ∈ L2(X ) Scalar field on manifold X
F ∈ L2(TX ) Tangent vector field on manifold X
A∗ Adjoint of operator A
∇,div,∆ Gradient, divergence, Laplace operators
V, E ,F Vertices and edges of a graph,

faces of a mesh
wij ,W Weight matrix of a graph,
f ∈ L2(V) Functions on vertices of a graph
F ∈ L2(E) Functions on edges of a graph
φi, λi Laplacian eigenfunctions, eigenvalues
ht(·, ·) Heat kernel
Φk Matrix of first k Laplacian eigenvectors
Λk Diagonal matrix of first k Laplacian

eigenvalues
ξ Point-wise nonlinearity (e.g. ReLU)
γl,l′(x),Γl,l′ Convolutional filter in spatial

and spectral domain

Stationarity: Let

Tvf(x) = f(x− v), x, v ∈ Ω, (2)

be a translation operator3 acting on functions f ∈ L2(Ω).
Our first assumption is that the function y is either invariant or
equivariant with respect to translations, depending on the task.
In the former case, we have y(Tvf) = y(f) for any f ∈ L2(Ω)
and v ∈ Ω. This is typically the case in object classification
tasks. In the latter, we have y(Tvf) = Tvy(f), which is well-
defined when the output of the model is a space in which
translations can act upon (for example, in problems of object
localization, semantic segmentation, or motion estimation).
Our definition of invariance should not be confused with the
traditional notion of translation invariant systems in signal
processing, which corresponds to translation equivariance in
our language (since the output translates whenever the input
translates).

Local deformations and scale separation: Similarly, a
deformation Lτ , where τ : Ω → Ω is a smooth vector field,
acts on L2(Ω) as Lτf(x) = f(x − τ(x)). Deformations can

3 We assume periodic boundary conditions to ensure that the operation is
well-defined over L2(Ω).
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model local translations, changes in point of view, rotations
and frequency transpositions [18].

Most tasks studied in computer vision are not only transla-
tion invariant/equivariant, but also stable with respect to local
deformations [57], [18]. In tasks that are translation invariant
we have

|y(Lτf)− y(f)| ≈ ‖∇τ‖, (3)

for all f, τ . Here, ‖∇τ‖ measures the smoothness of a given
deformation field. In other words, the quantity to be predicted
does not change much if the input image is slightly deformed.
In tasks that are translation equivariant, we have

|y(Lτf)− Lτy(f)| ≈ ‖∇τ‖. (4)

This property is much stronger than the previous one, since
the space of local deformations has a high dimensionality, as
opposed to the d-dimensional translation group.

It follows from (3) that we can extract sufficient statistics
at a lower spatial resolution by downsampling demodulated
localized filter responses without losing approximation power.
An important consequence of this is that long-range depen-
dencies can be broken into multi-scale local interaction terms,
leading to hierarchical models in which spatial resolution is
progressively reduced. To illustrate this principle, denote by

Y (x1, x2; v) = Prob(f(u) = x1 and f(u+ v) = x2) (5)

the joint distribution of two image pixels at an offset v from
each other. In the presence of long-range dependencies, this
joint distribution will not be separable for any v. However,
the deformation stability prior states that Y (x1, x2; v) ≈
Y (x1, x2; v(1 + ε)) for small ε. In other words, whereas
long-range dependencies indeed exist in natural images and
are critical to object recognition, they can be captured and
down-sampled at different scales. This principle of stability
to local deformations has been exploited in the computer
vision community in models other than CNNs, for instance,
deformable parts models [58].

In practice, the Euclidean domain Ω is discretized using
a regular grid with n points; the translation and deformation
operators are still well-defined so the above properties hold in
the discrete setting.

Convolutional neural networks: Stationarity and sta-
bility to local translations are both leveraged in convolutional
neural networks (see insert IN1). A CNN consists of several
convolutional layers of the form g = CΓ(f), acting on a p-
dimensional input f(x) = (f1(x), . . . , fp(x)) by applying a
bank of filters Γ = (γl,l′), l = 1, . . . , q, l′ = 1, . . . , p and
point-wise non-linearity ξ,

gl(x) = ξ

(
p∑

l′=1

(fl′ ? γl,l′)(x)

)
, (6)

producing a q-dimensional output g(x) = (g1(x), . . . , gq(x))
often referred to as the feature maps. Here,

(f ? γ)(x) =

∫
Ω

f(x− x′)γ(x′)dx′ (7)

denotes the standard convolution. According to the local
deformation prior, the filters Γ have compact spatial support.

Additionally, a downsampling or pooling layer g = P (f)
may be used, defined as

gl(x) = P ({fl(x′) : x′ ∈ N (x)}), l = 1, . . . , q, (8)

where N (x) ⊂ Ω is a neighborhood around x and P is a
permutation-invariant function such as a Lp-norm (in the latter
case, the choice of p = 1, 2 or ∞ results in average-, energy-,
or max-pooling).

A convolutional network is constructed by composing sev-
eral convolutional and optionally pooling layers, obtaining a
generic hierarchical representation

UΘ(f) = (CΓ(K) · · ·P · · · ◦ CΓ(2) ◦ CΓ(1))(f) (9)

where Θ = {Γ(1), . . . ,Γ(K)} is the hyper-vector of the
network parameters (all the filter coefficients). The model is
said to be deep if it comprises multiple layers, though this
notion is rather vague and one can find examples of CNNs with
as few as a couple and as many as hundreds of layers [11].
The output features enjoy translation invariance/covariance
depending on whether spatial resolution is progressively lost
by means of pooling or kept fixed. Moreover, if one spec-
ifies the convolutional tensors to be complex wavelet de-
composition operators and uses complex modulus as point-
wise nonlinearities, one can provably obtain stability to local
deformations [17]. Although this stability is not rigorously
proved for generic compactly supported convolutional tensors,
it underpins the empirical success of CNN architectures across
a variety of computer vision applications [1].

In supervised learning tasks, one can obtain the CNN
parameters by minimizing a task-specific cost L on the training
set {fi, yi}i∈I ,

min
Θ

∑
i∈I

L(UΘ(fi), yi), (10)

for instance, L(x, y) = ‖x − y‖. If the model is sufficiently
complex and the training set is sufficiently representative,
when applying the learned model to previously unseen data,
one expects U(f) ≈ y(f). Although (10) is a non-convex
optimization problem, stochastic optimization methods offer
excellent empirical performance. Understanding the structure
of the optimization problems (10) and finding efficient strate-
gies for its solution is an active area of research in deep
learning [62], [63], [64], [65], [66].

A key advantage of CNNs explaining their success in
numerous tasks is that the geometric priors on which CNNs
are based result in a learning complexity that avoids the
curse of dimensionality. Thanks to the stationarity and local
deformation priors, the linear operators at each layer have a
constant number of parameters, independent of the input size
n (number of pixels in an image). Moreover, thanks to the
multiscale hierarchical property, the number of layers grows
at a rate O(log n), resulting in a total learning complexity of
O(log n) parameters.

IV. THE GEOMETRY OF MANIFOLDS AND GRAPHS

Our main goal is to generalize CNN-type constructions
to non-Euclidean domains. In this paper, by non-Euclidean
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[IN1] Convolutional neural networks: CNNs are currently
among the most successful deep learning architectures in a
variety of tasks, in particular, in computer vision. A typical
CNN used in computer vision applications (see FIGS1) con-
sists of multiple convolutional layers (6), passing the input
image through a set of filters Γ followed by point-wise non-
linearity ξ (typically, half-rectifiers ξ(z) = max(0, z) are used,
although practitioners have experimented with a diverse range
of choices [13]). The model can also include a bias term, which
is equivalent to adding a constant coordinate to the input.
A network composed of K convolutional layers put together
U(f) = (CΓ(K) . . . ◦ CΓ(2) ◦ CΓ(1))(f) produces pixel-wise
features that are covariant w.r.t. translation and approximately
covariant to local deformations. Typical computer vision appli-

cations requiring covariance are semantic image segmentation
[8] or motion estimation [59].
In applications requiring invariance, such as image classifi-
cation [7], the convolutional layers are typically interleaved
with pooling layers (8) progressively reducing the resolution
of the image passing through the network. Alternatively, one
can integrate the convolution and downsampling in a single
linear operator (convolution with stride). Recently, some au-
thors have also experimented with convolutional layers which
increase the spatial resolution using interpolation kernels [60].
These kernels can be learnt efficiently by mimicking the so-
called algorithme à trous [61], also referred to as dilated
convolution.

Red Green Blue

Samoyed (16) ; ; ; Arctic fox (1.0) ; Eskimo dog (0.6) ; White wolf (0.4) ; Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

Papillon (5.7) Pomeranzian (2.7)

[FIGS1] Typical convolutional neural network architecture used in computer vision applications (figure reproduced from [1]).

domains, we refer to two prototypical structures: manifolds and
graphs. While arising in very different fields of mathematics
(differential geometry and graph theory, respectively), in our
context, these structures share several common characteristics
that we will try to emphasize throughout our review.

Manifolds: Roughly, a manifold is a space that is locally
Euclidean. One of the simplest examples is a spherical surface
modeling our planet: around a point, it seems to be planar,
which has led generations of people to believe in the flatness of
the Earth. Formally speaking, a (differentiable) d-dimensional
manifold X is a topological space where each point x has a
neighborhood that is topologically equivalent (homeomorphic)
to a d-dimensional Euclidean space, called the tangent space
and denoted by TxX (see Figure 1, top). The collection of
tangent spaces at all points (more formally, their disjoint
union) is referred to as the tangent bundle and denoted by
TX . On each tangent space, we define an inner product
〈·, ·〉TxX : TxX × TxX → R, which is additionally assumed
to depend smoothly on the position x. This inner product

is called a Riemannian metric in differential geometry and
allows performing local measurements of angles, distances,
and volumes. A manifold equipped with a metric is called a
Riemannian manifold.

It is important to note that the definition of a Rieman-
nian manifold is completely abstract and does not require a
geometric realization in any space. However, a Riemannian
manifold can be realized as a subset of a Euclidean space (in
which case it is said to be embedded in that space) by using
the structure of the Euclidean space to induce a Riemannian
metric. The celebrated Nash Embedding Theorem guarantees
that any sufficiently smooth Riemannian manifold can be
realized in a Euclidean space of sufficiently high dimension
[67]. An embedding is not necessarily unique; two different
realizations of a Riemannian metric are called isometries.

Two-dimensional manifolds (surfaces) embedded into R3

are used in computer graphics and vision to describe boundary
surfaces of 3D objects, colloquially referred to as ‘3D shapes’.
This term is somewhat misleading since ‘3D’ here refers to the
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TxX x

F (x)

Tx′X

x′

F (x′)

Fig. 1. Top: tangent space and tangent vectors on a two-dimensional manifold
(surface). Bottom: Examples of isometric deformations.

dimensionality of the embedding space rather than that of the
manifold. Thinking of such a shape as made of infinitely thin
material, inelastic deformations that do not stretch or tear it are
isometric. Isometries do not affect the metric structure of the
manifold and consequently, preserve any quantities that can be
expressed in terms of the Riemannian metric (called intrinsic).
Conversely, properties related to the specific realization of the
manifold in the Euclidean space are called extrinsic.

As an intuitive illustration of this difference, imagine an
insect that lives on a two-dimensional surface (Figure 1,
bottom). A human observer, on the other hand, sees a surface
in 3D space - this is an extrinsic point of view.

Calculus on manifolds: Our next step is to consider
functions defined on manifolds. We are particularly interested
in two types of functions: A scalar field is a smooth real
function f : X → R on the manifold. A tangent vector field
F : X → TX is a mapping attaching a tangent vector F (x) ∈
TxX to each point x. As we will see in the following, tangent
vector fields are used to formalize the notion of infinitesimal
displacements on the manifold. We define the Hilbert spaces
of scalar and vector fields on manifolds, denoted by L2(X )
and L2(TX ), respectively, with the following inner products:

〈f, g〉L2(X ) =

∫
X
f(x)g(x)dx; (15)

〈F,G〉L2(TX ) =

∫
X
〈F (x), G(x)〉TxXdx; (16)

dx denotes here a d-dimensional volume element induced by
the Riemannian metric.

In calculus, the notion of derivative describes how the value
of a function changes with an infinitesimal change of its
argument. One of the big differences distinguishing classical
calculus from differential geometry is a lack of vector space

structure on the manifold, prohibiting us from naı̈vely using
expressions like f(x+dx). The conceptual leap that is required
to generalize such notions to manifolds is the need to work
locally in the tangent space.

To this end, we define the differential of f as an operator
df : TX → R acting on tangent vector fields. At each
point x, the differential can be defined as a linear functional
(1-form) df(x) = 〈∇f(x), · 〉TxX acting on tangent vectors
F (x) ∈ TxX , which model a small displacement around
x. The change of the function value as the result of this
displacement is given by applying the form to the tangent
vector, df(x)F (x) = 〈∇f(x), F (x)〉TxX , and can be thought
of as an extension of the notion of the classical directional
derivative.

The operator ∇f : L2(X ) → L2(TX ) in the definition
above is called the intrinsic gradient, and is similar to the
classical notion of the gradient defining the direction of the
steepest change of the function at a point, with the only differ-
ence that the direction is now a tangent vector. Similarly, the
intrinsic divergence is an operator div : L2(TX ) → L2(X )
acting on tangent vector fields and (formal) adjoint to the
gradient operator [71],

〈F,∇f〉L2(TX ) = 〈∇∗F, f〉L2(X ) = 〈−divF, f〉L2(X ). (17)

Physically, a tangent vector field can be thought of as a
flow of material on a manifold. The divergence measures
the net flow of a field at a point, allowing to distinguish
between field ‘sources’ and ‘sinks’. Finally, the Laplacian
(or Laplace-Beltrami operator in differential geometric jargon)
∆ : L2(X )→ L2(X ) is an operator

∆f = −div(∇f) (18)

acting on scalar fields. Employing relation (17), it is easy to
see that the Laplacian is self-adjoint (symmetric),

〈∇f,∇f〉L2(TX ) = 〈∆f, f〉L2(X ) = 〈f,∆f〉L2(X ). (19)

The lhs in equation (19) is known as the Dirichlet energy in
physics and measures the smoothness of a scalar field on the
manifold (see insert IN3). The Laplacian can be interpreted
as the difference between the average of a function on an
infinitesimal sphere around a point and the value of the
function at the point itself. It is one of the most important oper-
ators in mathematical physics, used to describe phenomena as
diverse as heat diffusion (see insert IN4), quantum mechanics,
and wave propagation. As we will see in the following, the
Laplacian plays a center role in signal processing and learning
on non-Euclidean domains, as its eigenfunctions generalize the
classical Fourier bases, allowing to perform spectral analysis
on manifolds and graphs.

It is important to note that all the above definitions are
coordinate free. By defining a basis in the tangent space, it is
possible to express tangent vectors as d-dimensional vectors
and the Riemannian metric as a d × d symmetric positive-
definite matrix.

Graphs and discrete differential operators: Another
type of constructions we are interested in are graphs, which
are popular models of networks, interactions, and similarities
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[FIGS2] Two commonly used discretizations of a two-dimensional
manifold: a graph and a triangular mesh.

[IN2] Laplacian on discrete manifolds: In computer graph-
ics and vision applications, two-dimensional manifolds are
commonly used to model 3D shapes. There are several com-
mon ways of discretizing such manifolds. First, the manifold
is assumed to be sampled at n points. Their embedding
coordinates x1, . . . ,xn are referred to as point cloud. Second,
a graph is constructed upon these points, acting as its vertices.
The edges of the graph represent the local connectivity of the
manifold, telling whether two points belong to a neighborhood
or not, e.g. with Gaussian edge weights

wij = e−‖xi−xj‖2/2σ2

. (11)

This simplest discretization, however, does not capture cor-
rectly the geometry of the underlying continuous manifold (for
example, the graph Laplacian would typically not converge
to the continuous Laplacian operator of the manifold with
the increase of the sampling density [68]). A geometrically
consistent discretization is possible with an additional structure
of faces F ∈ V × V × V , where (i, j, k) ∈ F implies
(i, j), (i, k), (k, j) ∈ E . The collection of faces represents the
underlying continuous manifold as a polyhedral surface con-

sisting of small triangles glued together. The triplet (V, E ,F)
is referred to as triangular mesh. To be a correct discretization
of a manifold (a manifold mesh), every edge must be shared by
exactly two triangular faces; if the manifold has a boundary,
any boundary edge must belong to exactly one triangle.
On a triangular mesh, the simplest discretization of the Rie-
mannian metric is given by assigning each edge a length
`ij > 0, which must additionally satisfy the triangle inequality
in every triangular face. The mesh Laplacian is given by
formula (25) with

wij =
−`2ij + `2jk + `2ik

8aijk
+
−`2ij + `2jh + `2ih

8aijh
; (12)

ai = 1
3

∑
jk:(i,j,k)∈F

aijk, (13)

where aijk =
√
sijk(sijk − `ij)(sijk − `jk)(sijk − `ik) is

the area of triangle ijk given by the Heron formula, and
sijk = 1

2 (`ij + `jk + `ki) is the semi-perimeter of triangle
ijk. The vertex weight ai is interpreted as the local area
element (shown in red in FIGS2). Note that the weights (12-
13) are expressed solely in terms of the discrete metric ` and
are thus intrinsic. When the mesh is infinitely refined under
some technical conditions, such a construction can be shown
to converge to the continuous Laplacian of the underlying
manifold [69].
An embedding of the mesh (amounting to specifying the
vertex coordinates x1, . . . ,xn) induces a discrete metric `ij =
‖xi − xj‖2, whereby (12) become the cotangent weights

wij = 1
2 (cotαij + cotβij) (14)

ubiquitously used in computer graphics [70].

between different objects. For simplicity, we will consider
weighted undirected graphs, formally defined as a pair (V, E),
where V = {1, . . . , n} is the set of n vertices, and E ⊆ V ×V
is the set of edges, where the graph being undirected implies
that (i, j) ∈ E iff (j, i) ∈ E . Furthermore, we associate a
weight ai > 0 with each vertex i ∈ V , and a weight wij ≥ 0
with each edge (i, j) ∈ E .

Real functions f : V → R and F : E → R on the
vertices and edges of the graph, respectively, are roughly the
discrete analogy of continuous scalar and tangent vector fields
in differential geometry.4 We can define Hilbert spaces L2(V)
and L2(E) of such functions by specifying the respective inner
products,

〈f, g〉L2(V) =
∑
i∈V

aifigi; (20)

〈F,G〉L2(E) =
∑
i∈E

wijFijGij . (21)

Let f ∈ L2(V) and F ∈ L2(E) be functions on the

4It is tacitly assumed here that F is alternating, i.e., Fij = −Fji.

vertices and edges of the graphs, respectively. We can define
differential operators acting on such functions analogously to
differential operators on manifolds [72]. The graph gradient
is an operator ∇ : L2(V)→ L2(E) mapping functions defined
on vertices to functions defined on edges,

(∇f)ij = fi − fj , (22)

automatically satisfying (∇f)ij = −(∇f)ji. The graph diver-
gence is an operator div : L2(E)→ L2(V) doing the converse,

(divF )i =
1

ai

∑
j:(i,j)∈E

wijFij . (23)

It is easy to verify that the two operators are adjoint w.r.t. the
inner products (20)–(21),

〈F,∇f〉L2(E) = 〈∇∗F, f〉L2(V) = 〈−divF, f〉L2(V). (24)

The graph Laplacian is an operator ∆ : L2(V) → L2(V)
defined as ∆ = −div∇. Combining definitions (22)–(23), it
can be expressed in the familiar form

(∆f)i =
1

ai

∑
(i,j)∈E

wij(fi − fj). (25)
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Note that formula (25) captures the intuitive geometric inter-
pretation of the Laplacian as the difference between the local
average of a function around a point and the value of the
function at the point itself.

Denoting by W = (wij) the n × n matrix of edge
weights (it is assumed that wij = 0 if (i, j) /∈ E), by
A = diag(a1, . . . , an) the diagonal matrix of vertex weights,
and by D = diag(

∑
j:j 6=i wij) the degree matrix, the graph

Laplacian application to a function f ∈ L2(V) represented as
a column vector f = (f1, . . . , fn)> can be written in matrix-
vector form as

∆f = A−1(D−W)f . (26)

The choice of A = I in (26) is referred to as the unnormalized
graph Laplacian; another popular choice is A = D producing
the random walk Laplacian [73].

Discrete manifolds: As we mentioned, there are many
practical situations in which one is given a sampling of
points arising from a manifold but not the manifold itself.
In computer graphics applications, reconstructing a correct
discretization of a manifold from a point cloud is a difficult
problem of its own, referred to a meshing (see insert IN2).
In manifold learning problems, the manifold is typically ap-
proximated as a graph capturing the local affinity structure. We
warn the reader that the term “manifold” as used in the context
of generic data science is not geometrically rigorous, and can
have less structure than a classical smooth manifold we have
defined beforehand. For example, a set of points that “looks
locally Euclidean” in practice may have self intersections,
infinite curvature, different dimensions depending on the scale
and location at which one looks, extreme variations in density,
and “noise” with confounding structure.

Fourier analysis on non-Euclidean domains: The
Laplacian operator is a self-adjoint positive-semidefinite oper-
ator, admitting on a compact domain5 an eigendecomposition
with a discrete set of orthonormal eigenfunctions φ0, φ1, . . .
(satisfying 〈φi, φj〉L2(X ) = δij) and non-negative real eigen-
values 0 = λ0 ≤ λ1 ≤ . . . (referred to as the spectrum of the
Laplacian),

∆φi = λiφi, i = 0, 1, . . . (31)

The eigenfunctions are the smoothest functions in the sense
of the Dirichlet energy (see insert IN3) and can be interpreted
as a generalization of the standard Fourier basis (given, in
fact, by the eigenfunctions of the 1D Euclidean Laplacian,
− d2

x2 e
iωx = ω2eiωx) to a non-Euclidean domain. It is impor-

tant to emphasize that the Laplacian eigenbasis is intrinsic due
to the intrinsic construction of the Laplacian itself.

A square-integrable function f on X can be decomposed
into Fourier series as

f(x) =
∑
i≥0

〈f, φi〉L2(X )︸ ︷︷ ︸
f̂i

φi(x), (32)

5In the Euclidean case, the Fourier transform of a function defined on a
finite interval (which is a compact set) or its periodic extension is discrete.
In practical settings, all domains we are dealing with are compact.

where the projection on the basis functions producing a
discrete set of Fourier coefficients (f̂i) generalizes the analysis
(forward transform) stage in classical signal processing, and
summing up the basis functions with these coefficients is the
synthesis (inverse transform) stage.

A centerpiece of classical Euclidean signal processing is
the property of the Fourier transform diagonalizing the con-
volution operator, colloquially referred to as the Convolution
Theorem. This property allows to express the convolution f ?g
of two functions in the spectral domain as the element-wise
product of their Fourier transforms,

(f̂ ? g)(ω) =

∫ ∞
−∞

f(x)e−iωxdx

∫ ∞
−∞

g(x)e−iωxdx.(33)

Unfortunately, in the non-Euclidean case we cannot even
define the operation x − x′ on the manifold or graph, so the
notion of convolution (7) does not directly extend to this case.
One possibility to generalize convolution to non-Euclidean
domains is by using the Convolution Theorem as a definition,

(f ? g)(x) =
∑
i≥0

〈f, φi〉L2(X )〈g, φi〉L2(X )φi(x). (34)

One of the key differences of such a construction from the
classical convolution is the lack of shift-invariance. In terms of
signal processing, it can be interpreted as a position-dependent
filter. While parametrized by a fixed number of coefficients in
the frequency domain, the spatial representation of the filter
can vary dramatically at different points (see FIGS4).

The discussion above also applies to graphs instead of
manifolds, where one only has to replace the inner product
in equations (32) and (34) with the discrete one (20). All the
sums over i would become finite, as the graph Laplacian ∆
has n eigenvectors. In matrix-vector notation, the generalized
convolution f ? g can be expressed as Gf = Φ diag(ĝ)Φ>f ,
where ĝ = (ĝ1, . . . , ĝn) is the spectral representation of
the filter and Φ = (φ1, . . . ,φn) denotes the Laplacian
eigenvectors (30). The lack of shift invariance results in the
absence of circulant (Toeplitz) structure in the matrix G,
which characterizes the Euclidean setting. Furthermore, it is
easy to see that the convolution operation commutes with the
Laplacian, G∆f = ∆Gf .

Uniqueness and stability: Finally, it is important to note
that the Laplacian eigenfunctions are not uniquely defined. To
start with, they are defined up to sign, i.e., ∆(±φ) = λ(±φ).
Thus, even isometric domains might have different Laplacian
eigenfunctions. Furthermore, if a Laplacian eigenvalue has
multiplicity, then the associated eigenfunctions can be de-
fined as orthonormal basis spanning the corresponding eigen-
subspace (or said differently, the eigenfunctions are defined
up to an orthogonal transformation in the eigen-subspace).
A small perturbation of the domain can lead to very large
changes in the Laplacian eigenvectors, especially those asso-
ciated with high frequencies. At the same time, the definition
of heat kernels (36) and diffusion distances (38) does not suffer
from these ambiguities – for example, the sign ambiguity
disappears as the eigenfunctions are squared. Heat kernels also
appear to be robust to domain perturbations.
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[IN3] Physical interpretation of Laplacian eigenfunctions:
Given a function f on the domain X , the Dirichlet energy

EDir(f) =

∫
X
‖∇f(x)‖2TxXdx =

∫
X
f(x)∆f(x)dx,(27)

measures how smooth it is (the last identity in (27) stems
from (19)). We are looking for an orthonormal basis on X ,
containing k smoothest possible functions (FIGS3), by solving
the optimization problem

min
φ0

EDir(φ0) s.t. ‖φ0‖ = 1 (28)

min
φi
EDir(φi) s.t. ‖φi‖ = 1, i = 1, 2, . . . k − 1

φi ⊥ span{φ0, . . . , φi−1}.

In the discrete setting, when the domain is sampled at n points,
problem (28) can be rewritten as

min
Φk∈Rn×k

trace(Φ>k ∆Φk) s.t. Φ>k Φk = I, (29)

where Φk = (φ0, . . .φk−1). The solution of (29) is given by
the first k eigenvectors of ∆ satisfying

∆Φk = ΦkΛk, (30)

where Λk = diag(λ0, . . . , λk−1) is the diagonal matrix of
corresponding eigenvalues. The eigenvalues 0 = λ0 ≤ λ1 ≤
. . . λk−1 are non-negative due to the positive-semidefiniteness
of the Laplacian and can be interpreted as ‘frequencies’, where
φ0 = const with the corresponding eigenvalue λ0 = 0 play
the role of the DC.
The Laplacian eigendecomposition can be carried out in
two ways. First, equation (30) can be rewritten as a gen-
eralized eigenproblem (D − W)Φk = AΦkΛk, result-
ing in A-orthogonal eigenvectors, Φ>k AΦk = I. Alterna-
tively, introducing a change of variables Ψk = A1/2Φk,
we can obtain a standard eigendecomposition problem
A−1/2(D −W)A−1/2Ψk = ΨkΛk with orthogonal eigen-
vectors Ψ>k Ψk = I. When A = D is used, the matrix
∆ = A−1/2(D−W)A−1/2 is referred to as the normalized
symmetric Laplacian.
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[FIGS3] Example of the first four Laplacian eigenfunctions φ0, . . . , φ3 on a Euclidean domain (1D line, top left) and non-Euclidean domains
(human shape modeled as a 2D manifold, top right; and Minnesota road graph, bottom). In the Euclidean case, the result is the standard
Fourier basis comprising sinusoids of increasing frequency. In all cases, the eigenfunction φ0 corresponding to zero eigenvalue is constant
(‘DC’).

V. SPECTRAL METHODS

We have now finally got to our main goal, namely, con-
structing a generalization of the CNN architecture on non-
Euclidean domains. We will start with the assumption that the
domain on which we are working is fixed, and for the rest of
this section will use the problem of classification of a signal
on a fixed graph as the prototypical application.

We have seen that convolutions are linear operators that
commute with the Laplacian operator. Therefore, given a

weighted graph, a first route to generalize a convolutional
architecture is by first restricting our interest to linear operators
that commute with the graph Laplacian. This property, in turn,
implies operating on the spectrum of the graph weights, given
by the eigenvectors of the graph Laplacian.

Spectral CNN (SCNN) [52]: Similarly to the convolutional
layer (6) of a classical Euclidean CNN, Bruna et al. [52] define
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[IN4] Heat diffusion on non-Euclidean domains: An impor-
tant application of spectral analysis, and historically, the main
motivation for its development by Joseph Fourier, is the solu-
tion of partial differential equations (PDEs). In particular, we
are interested in heat propagation on non-Euclidean domains.
This process is governed by the heat diffusion equation, which
in the simplest setting of homogeneous and isotropic diffusion
has the form{

ft(x, t) = −c∆f(x, t)

f(x, 0) = f0(x) (Initial condition)
(35)

with additional boundary conditions if the domain has a
boundary. f(x, t) represents the temperature at point x at
time t. Equation (35) encodes the Newton’s law of cooling,
according to which the rate of temperature change of a
body (lhs) is proportional to the difference between its own
temperature and that of the surrounding (rhs). The proportion
coefficient c is referred to as the thermal diffusivity constant;
here, we assume it to be equal to one for the sake of simplicity.
The solution of (35) is given by applying the heat operator
Ht = e−t∆ to the initial condition and can be expressed in
the spectral domain as

f(x, t) = e−t∆f0(x) =
∑
i≥0

〈f0, φi〉L2(X )e
−tλiφi(x)(36)

=

∫
X
f0(x′)

∑
i≥0

e−tλiφi(x)φi(x
′)︸ ︷︷ ︸

ht(x,x′)

dx′.

ht(x, x
′) is known as the heat kernel and represents the

solution of the heat equation with an initial condition f0(x) =
δx′(x), or, in signal processing terms, an ‘impulse response’.
In physical terms, ht(x, x′) describes how much heat flows
from a point x to point x′ in time t. In the Euclidean case,
the heat kernel is shift-invariant, ht(x, x′) = ht(x − x′),
allowing to interpret the integral in (36) as a convolution
f(x, t) = (f0?ht)(x). In the spectral domain, convolution with
the heat kernel amounts to low-pass filtering with frequency
response e−tλ. Larger values of diffusion time t result in lower
effective cutoff frequency and thus smoother solutions in space
(corresponding to the intuition that longer diffusion smoothes

more the initial heat distribution).
The ‘cross-talk’ between two heat kernels positioned at points
x and x′ allows to measure an intrinsic distance

d2
t (x, x

′) =

∫
X

(ht(x, y)− ht(x′, y))2dy (37)

=
∑
i≥0

e−2tλi(φi(x)− φi(x′))2 (38)

referred to as the diffusion distance [30]. Note that interpret-
ing (37) and (38) as spatial- and frequency-domain norms
‖ · ‖L2(X ) and ‖ · ‖`2 , respectively, their equivalence is the
consequence of the Parseval identity. Unlike geodesic distance
that measures the length of the shortest path on the manifold
or graph, the diffusion distance has an effect of averaging over
different paths. It is thus more robust to perturbations of the
domain, for example, introduction or removal of edges in a
graph, or ‘cuts’ on a manifold.

max

0

[FIGS4] Examples of heat kernels on non-Euclidean domains (man-
ifold, top; and graph, bottom). Observe how moving the heat kernel
to a different location changes its shape, which is an indication of
the lack of shift-invariance.

a spectral convolutional layer as

gl = ξ

(
q∑

l′=1

ΦkΓl,l′Φ
>
k fl′

)
, (39)

where the n × p and n × q matrices F = (f1, . . . , fp) and
G = (g1, . . . ,gq) represent the p- and q-dimensional input
and output signals on the vertices of the graph, respectively
(we use n = |V| to denote the number of vertices in the
graph), Γl,l′ is a k× k diagonal matrix of spectral multipliers
representing a filter in the frequency domain, and ξ is a
nonlinearity applied on the vertex-wise function values. Using
only the first k eigenvectors in (39) sets a cutoff frequency

which depends on the intrinsic regularity of the graph and
also the sample size. Typically, k � n, since only the first
Laplacian eigenvectors describing the smooth structure of the
graph are useful in practice.

If the graph has an underlying group invariance, such a
construction can discover it. In particular, standard CNNs
can be redefined from the spectral domain (see insert IN5).
However, in many cases the graph does not have a group
structure, or the group structure does not commute with the
Laplacian, and so we cannot think of each filter as passing a
template across V and recording the correlation of the template
with that location.
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We should stress that a fundamental limitation of the spec-
tral construction is its limitation to a single domain. The reason
is that spectral filter coefficients (39) are basis dependent. It
implies that if we learn a filter w.r.t. basis Φk on one domain,
and then try to apply it on another domain with another basis
Ψk, the result could be very different (see Figure 2 and insert
IN6). It is possible to construct compatible orthogonal bases
across different domains resorting to a joint diagonalization
procedure [74], [75]. However, such a construction requires
the knowledge of some correspondence between the domains.
In applications such as social network analysis, for example,
where dealing with two time instances of a social graph
in which new vertices and edges have been added, such
a correspondence can be easily computed and is therefore
a reasonable assumption. Conversely, in computer graphics
applications, finding correspondence between shapes is in
itself a very hard problem, so assuming known correspondence
between the domains is a rather unreasonable assumption.

Domain
Basis
Signal

X
Φ

f

X
Φ

ΦWΦ>f

Y
Ψ

ΨWΨ>f

Fig. 2. A toy example illustrating the difficulty of generalizing
spectral filtering across non-Euclidean domains. Left: a function
defined on a manifold (function values are represented by color);
middle: result of the application of an edge-detection filter in the
frequency domain; right: the same filter applied on the same function
but on a different (nearly-isometric) domain produces a completely
different result. The reason for this behavior is that the Fourier basis
is domain-dependent, and the filter coefficients learnt on one domain
cannot be applied to another one in a straightforward manner.

Assuming that k = O(n) eigenvectors of the Laplacian
are kept, a convolutional layer (39) requires pqk = O(n)
parameters to train. We will see next how the global and local
regularity of the graph can be combined to produce layers with
constant number of parameters (i.e., such that the number of
learnable parameters per layer does not depend upon the size
of the input), which is the case in classical Euclidean CNNs.

The non-Euclidean analogy of pooling is graph coarsening,
in which only a fraction α < 1 of the graph vertices is
retained. The eigenvectors of graph Laplacians at two different
resolutions are related by the following multigrid property:
Let Φ, Φ̃ denote the n × n and αn × αn matrices of
Laplacian eigenvectors of the original and the coarsened graph,
respectively. Then,

Φ̃ ≈ PΦ

(
Iαn
0

)
, (40)

where P is a αn × n binary matrix whose ith row encodes
the position of the ith vertex of the coarse graph on the
original graph. It follows that strided convolutions can be
generalized using the spectral construction by keeping only
the low-frequency components of the spectrum. This property
also allows us to interpret (via interpolation) the local filters at
deeper layers in the spatial construction to be low frequency.
However, since in (39) the non-linearity is applied in the
spatial domain, in practice one has to recompute the graph
Laplacian eigenvectors at each resolution and apply them
directly after each pooling step.

The spectral construction (39) assigns a degree of free-
dom for each eigenvector of the graph Laplacian. In most
graphs, individual high-frequency eigenvectors become highly
unstable. However, similarly as the wavelet construction in
Euclidean domains, by appropriately grouping high frequency
eigenvectors in each octave one can recover meaningful and
stable information. As we shall see next, this principle also
entails better learning complexity.

Spectral CNN with smooth spectral multipliers [52], [44]:
In order to reduce the risk of overfitting, it is important
to adapt the learning complexity to reduce the number of
free parameters of the model. On Euclidean domains, this is
achieved by learning convolutional kernels with small spatial
support, which enables the model to learn a number of
parameters independent of the input size. In order to achieve
a similar learning complexity in the spectral domain, it is thus
necessary to restrict the class of spectral multipliers to those
corresponding to localized filters.

For that purpose, we have to express spatial localization
of filters in the frequency domain. In the Euclidean case,
smoothness in the frequency domain corresponds to spatial
decay, since

∫ +∞

−∞
|x|2k|f(x)|2dx =

∫ +∞

−∞

∣∣∣∣∣∂kf̂(ω)

∂ωk

∣∣∣∣∣
2

dω, (42)

by virtue of the Parseval Identity. This suggests that, in
order to learn a layer in which features will be not only
shared across locations but also well localized in the original
domain, one can learn spectral multipliers which are smooth.
Smoothness can be prescribed by learning only a subsampled
set of frequency multipliers and using an interpolation kernel
to obtain the rest, such as cubic splines.

However, the notion of smoothness also requires some
geometry in the spectral domain. In the Euclidean setting,
such a geometry naturally arises from the notion of frequency;
for example, in the plane, the similarity between two Fourier
atoms eiω

>x and eiω
′>x can be quantified by the distance

‖ω − ω′‖, where x denotes the two-dimensional planar co-
ordinates, and ω is the two-dimensional frequency vector. On
graphs, such a relation can be defined by means of a dual
graph with weights w̃ij encoding the similarity between two
eigenvectors φi and φj .

A particularly simple choice consists in choosing a one-
dimensional arrangement, obtained by ordering the eigenvec-
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[IN5] Rediscovering standard CNNs using correlation
kernels: In situations where the graph is constructed from
the data, a straightforward choice of the edge weights (11) of
the graph is the covariance of the data. Let F denote the input
data distribution and

Σ = E(F− EF)(F− EF)> (41)

be the data covariance matrix. If each point has the same
variance σii = σ2, then diagonal operators on the Laplacian
simply scale the principal components of F.
In natural images, since their distribution is approximately
stationary, the covariance matrix has a circulant structure
σij ≈ σi−j and is thus diagonalized by the standard Discrete
Cosine Transform (DCT) basis. It follows that the principal
components of F roughly correspond to the DCT basis vectors
ordered by frequency. Moreover, natural images exhibit a
power spectrum E|f̂(ω)|2 ∼ |ω|−2, since nearby pixels are
more correlated than far away pixels [14]. It results that
principal components of the covariance are essentially ordered
from low to high frequencies, which is consistent with the
standard group structure of the Fourier basis. When applied to
natural images represented as graphs with weights defined by
the covariance, the spectral CNN construction recovers the
standard CNN, without any prior knowledge [76]. Indeed,
the linear operators ΦΓl,l′Φ

> in (39) are by the previous

argument diagonal in the Fourier basis, hence translation
invariant, hence classical convolutions. Furthermore, Section
VI explains how spatial subsampling can also be obtained via
dropping the last part of the spectrum of the Laplacian, leading
to pooling, and ultimately to standard CNNs.

[FIG5a] Two-dimensional embedding of pixels in 16 × 16 image
patches using a Euclidean RBF kernel. The RBF kernel is constructed
as in (11), by using the covariance σij as Euclidean distance between
two features. The pixels are embedded in a 2D space using the
first two eigenvectors of the resulting graph Laplacian. The colors
in the left and right figure represent the horizontal and vertical
coordinates of the pixels, respectively. The spatial arrangement of
pixels is roughly recovered from correlation measurements.

tors according to their eigenvalues. 6 In this setting, the spectral
multipliers are parametrized as

diag(Γl,l′) = Bαl,l′ , (43)

where B = (bij) = (βj(λi)) is a k × q fixed interpolation
kernel (e.g., βj(λ) can be cubic splines) and α is a vector
of q interpolation coefficients. In order to obtain filters with
constant spatial support (i.e., independent of the input size
n), one should choose a sampling step γ ∼ n in the spectral
domain, which results in a constant number nγ−1 = O(1) of
coefficients αl,l′ per filter. Therefore, by combining spectral
layers with graph coarsening, this model has O(log n) total
trainable parameters for inputs of size n, thus recovering the
same learning complexity as CNNs on Euclidean grids.

Even with such a parametrization of the filters, the spec-
tral CNN (39) entails a high computational complexity of
performing forward and backward passes, since they require
an expensive step of matrix multiplication by Φk and Φ>k .
While on Euclidean domains such a multiplication can be
efficiently carried in O(n log n) operations using FFT-type
algorithms, for general graphs such algorithms do not exist and
the complexity is O(n2). We will see next how to alleviate

6 In the mentioned 2D example, this would correspond to ordering the
Fourier basis function according to the sum of the corresponding frequencies
ω1 +ω2. Although numerical results on simple low-dimensional graphs show
that the 1D arrangement given by the spectrum of the Laplacian is efficient at
creating spatially localized filters [52], an open fundamental question is how to
define a dual graph on the eigenvectors of the Laplacian in which smoothness
(obtained by applying the diffusion operator) corresponds to localization in
the original graph.

this cost by avoiding explicit computation of the Laplacian
eigenvectors.

VI. SPECTRUM-FREE METHODS

A polynomial of the Laplacian acts as a polynomial on the
eigenvalues. Thus, instead of explicitly operating in the fre-
quency domain with spectral multipliers as in equation (43), it
is possible to represent the filters via a polynomial expansion:

gα(∆) = Φgα(Λ)Φ>, (44)

corresponding to

gα(λ) =

r−1∑
j=0

αjλ
j . (45)

Here α is the r-dimensional vector of polynomial coefficients,
and gα(Λ) = diag(gα(λ1), . . . , gα(λn)), resulting in filter
matrices Γl,l′ = gαl,l′ (Λ) whose entries have an explicit form
in terms of the eigenvalues.

An important property of this representation is that it
automatically yields localized filters, for the following reason.
Since the Laplacian is a local operator (working on 1-hop
neighborhoods), the action of its jth power is constrained to
j-hops. Since the filter is a linear combination of powers of
the Laplacian, overall (45) behaves like a diffusion operator
limited to r-hops around each vertex.
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Graph CNN (GCNN) a.k.a. ChebNet [45]: Defferrard et
al. used Chebyshev polynomial generated by the recurrence
relation

Tj(λ) = 2λTj−1(λ)− Tj−2(λ); (46)
T0(λ) = 1;

T1(λ) = λ.

A filter can thus be parameterized uniquely via an expansion
of order r − 1 such that

gα(∆̃) =

r−1∑
j=0

αjΦTj(Λ̃)Φ> (47)

=

r−1∑
j=0

αjTj(∆̃),

where ∆̃ = 2λ−1
n ∆ − I and Λ̃ = 2λ−1

n Λ − I denotes
a rescaling of the Laplacian mapping its eigenvalues from
the interval [0, λn] to [−1, 1] (necessary since the Chebyshev
polynomials form an orthonormal basis in [−1, 1]).

Denoting f̄ (j) = Tj(∆̃)f , we can use the recurrence
relation (46) to compute f̄ (j) = 2∆̃f̄ (j−1) − f̄ (j−2) with
f̄ (0) = f and f̄ (1) = ∆̃f . The computational complexity of this
procedure is therefore O(rn) operations and does not require
an explicit computation of the Laplacian eigenvectors.

Graph Convolutional Network (GCN) [77]: Kipf and
Welling simplified this construction by further assuming r = 2
and λn ≈ 2, resulting in filters of the form

gα(f) = α0f + α1(∆− I)f

= α0f − α1D
−1/2WD−1/2f . (48)

Further constraining α = α0 = −α1, one obtains filters
represented by a single parameter,

gα(f) = α(I + D−1/2WD−1/2)f . (49)

Since the eigenvalues of I + D−1/2WD−1/2 are now in
the range [0, 2], repeated application of such a filter can
result in numerical instability. This can be remedied by a
renormalization

gα(f) = αD̃−1/2W̃D̃−1/2f , (50)

where W̃ = W + I and D̃ = diag(
∑
j 6=i w̃ij).

Note that though we arrived at the constructions of ChebNet
and GCN starting in the spectral domain, they boil down to
applying simple filters acting on the r- or 1-hop neighborhood
of the graph in the spatial domain. We consider these con-
structions to be examples of the more general Graph Neural
Network (GNN) framework:

Graph Neural Network (GNN) [78]: Graph Neural Net-
works generalize the notion of applying the filtering operations
directly on the graph via the graph weights. Similarly as
Euclidean CNNs learn generic filters as linear combinations
of localized, oriented bandpass and lowpass filters, a Graph
Neural Network learns at each layer a generic linear combi-
nation of graph low-pass and high-pass operators. These are
given respectively by f 7→ Wf and f 7→ ∆f , and are thus
generated by the degree matrix D and the diffusion matrix

W. Given a p-dimensional input signal on the vertices of the
graph, represented by the n× p matrix F, the GNN considers
a generic nonlinear function ηθ : Rp×Rp → Rq , parametrized
by trainable parameters θ that is applied to all nodes of the
graph,

gi = ηθ ((Wf)i, (Df)i) . (51)

In particular, choosing η(a,b) = b−a one recovers the Lapla-
cian operator ∆f , but more general, nonlinear choices for η
yield trainable, task-specific diffusion operators. Similarly as
with a CNN architecture, one can stack the resulting GNN
layers g = Cθ(f) and interleave them with graph pooling
operators. Chebyshev polynomials Tr(∆) can be obtained
with r layers of (51), making it possible, in principle, to
consider ChebNet and GCN as particular instances of the GNN
framework.

Historically, a version of GNN was the first formulation
of deep learning on graphs, proposed in [49], [78]. These
works optimized over the parameterized steady state of some
diffusion process (or random walk) on the graph. This can be
interpreted as in equation (51), but using a large number of
layers where each Cθ is identical, as the forwards through the
Cθ approximate the steady state. Recent works [55], [50], [51],
[79], [80] relax the requirements of approaching the steady
state or using repeated applications of the same Cθ.

Because the communication at each layer is local to a vertex
neighborhood, one may worry that it would take many layers
to get information from one part of the graph to another,
requiring multiple hops (indeed, this was one of the reasons
for the use of the steady state in [78]). However, for many
applications, it is not necessary for information to completely
traverse the graph. Furthermore, note that the graphs at each
layer of the network need not be the same. Thus we can replace
the original neighborhood structure with one’s favorite multi-
scale coarsening of the input graph, and operate on that to
obtain the same flow of information as with the convolutional
nets above (or rather more like a “locally connected network”
[81]). This also allows producing a single output for the whole
graph (for “translation-invariant” tasks), rather than a per-
vertex output, by connecting each to a special output node.
Alternatively, one can allow η to use not only Wf and ∆f at
each node, but also Wsf for several diffusion scales s > 1, (as
in [45]), giving the GNN the ability to learn algorithms such
as the power method, and more directly accessing spectral
properties of the graph.

The GNN model can be further generalized to replicate
other operators on graphs. For instance, the point-wise non-
linearity η can depend on the vertex type, allowing extremely
rich architectures [55], [50], [51], [79], [80].

VII. CHARTING-BASED METHODS

We will now consider the second sub-class of non-Euclidean
learning problems, where we are given multiple domains.
A prototypical application the reader should have in mind
throughout this section is the problem of finding correspon-
dence between shapes, modeled as manifolds (see insert IN7).
As we have seen, defining convolution in the frequency
domain has an inherent drawback of inability to adapt the
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model across different domains. We will therefore need to
resort to an alternative generalization of the convolution in
the spatial domain that does not suffer from this drawback.

Furthermore, note that in the setting of multiple domains,
there is no immediate way to define a meaningful spatial pool-
ing operation, as the number of points on different domains
can vary, and their order be arbitrary. It is however possible to
pool point-wise features produced by a network by aggregating
all the local information into a single vector. One possibility
for such a pooling is computing the statistics of the point-wise
features, e.g. the mean or covariance [47]. Note that after such
a pooling all the spatial information is lost.

On a Euclidean domain, due to shift-invariance the convolu-
tion can be thought of as passing a template at each point of the
domain and recording the correlation of the template with the
function at that point. Thinking of image filtering, this amounts
to extracting a (typically square) patch of pixels, multiplying
it element-wise with a template and summing up the results,
then moving to the next position in a sliding window manner.
Shift-invariance implies that the very operation of extracting
the patch at each position is always the same.

One of the major problems in applying the same paradigm
to non-Euclidean domains is the lack of shift-invariance,
implying that the ‘patch operator’ extracting a local ‘patch’
would be position-dependent. Furthermore, the typical lack
of meaningful global parametrization for a graph or manifold
forces to represent the patch in some local intrinsic system
of coordinates. Such a mapping can be obtained by defining
a set of weighting functions v1(x, ·), . . . , vJ(x, ·) localized to
positions near x (see examples in Figure 3). Extracting a patch
amounts to averaging the function f at each point by these
weights,

Dj(x)f =

∫
X
f(x′)vj(x, x

′)dx′, j = 1, . . . , J, (52)

providing for a spatial definition of an intrinsic equivalent of
convolution

(f ? g)(x) =
∑
j

gjDj(x)f, (53)

where g denotes the template coefficients applied on the patch
extracted at each point. Overall, (52)–(53) act as a kind of non-
linear filtering of f , and the patch operator D is specified by
defining the weighting functions v1, . . . , vJ . Such filters are
localized by construction, and the number of parameters is
equal to the number of weighting functions J = O(1). Several
frameworks for non-Euclidean CNNs essentially amount to
different choice of these weights. The spectrum-free methods
(ChebNet and GCN) described in the previous section can also
be thought of in terms of local weighting functions, as it is
easy to see the analogy between formulae (53) and (47).

Geodesic CNN [47]: Since manifolds naturally come with
a low-dimensional tangent space associated with each point,
it is natural to work in a local system of coordinates in the
tangent space. In particular, on two-dimensional manifolds one
can create a polar system of coordinates around x where the
radial coordinate is given by some intrinsic distance ρ(x′) =
d(x, x′), and the angular coordinate θ(x) is obtained by ray

shooting from a point at equi-spaced angles. The weighting
functions in this case can be obtained as a product of Gaussians

vij(x, x
′) = e−(ρ(x′)−ρi)2/2σ2

ρ e−(θ(x′)−θj)2/2σ2
θ , (54)

where i = 1, . . . , J and j = 1, . . . , J ′ denote the indices of
the radial and angular bins, respectively. The resulting JJ ′

weights are bins of width σρ × σθ in the polar coordinates
(Figure 3, right).

Anisotropic CNN [48]: We have already seen the non-
Euclidean heat equation (35), whose heat kernel ht(x, ·)
produces localized blob-like weights around the point x
(see FIGS4). Varying the diffusion time t controls the spread
of the kernel. However, such kernels are isotropic, meaning
that the heat flows equally fast in all the directions. A more
general anisotropic diffusion equation on a manifold

ft(x, t) = −div(A(x)∇f(x, t)), (55)

involves the thermal conductivity tensor A(x) (in case of two-
dimensional manifolds, a 2× 2 matrix applied to the intrinsic
gradient in the tangent plane at each point), allowing modeling
heat flow that is position- and direction-dependent [82]. A
particular choice of the heat conductivity tensor proposed in
[53] is

Aαθ(x) = Rθ(x)

(
α

1

)
R>θ (x), (56)

where the 2 × 2 matrix Rθ(x) performs rotation of θ w.r.t.
to some reference (e.g. the maximum curvature) direction and
α > 0 is a parameter controlling the degree of anisotropy
(α = 1 corresponds to the classical isotropic case). The heat
kernel of such anisotropic diffusion equation is given by the
spectral expansion

hαθt(x, x
′) =

∑
i≥0

e−tλαθiφαθi(x)φαθi(x
′), (57)

where φαθ0(x), φαθ1(x), . . . are the eigenfunctions and
λαθ0, λαθ1, . . . the corresponding eigenvalues of the
anisotropic Laplacian

∆αθf(x) = −div(Aαθ(x)∇f(x)). (58)

The discretization of the anisotropic Laplacian is a modi-
fication of the cotangent formula (14) on meshes or graph
Laplacian (11) on point clouds [48].

The anisotropic heat kernels hαθt(x, ·) look like elongated
rotated blobs (see Figure 3, center), where the parameters
α, θ and t control the elongation, orientation, and scale,
respectively. Using such kernels as weighting functions v in
the construction of the patch operator (52), it is possible to
obtain a charting similar to the geodesic patches (roughly, θ
plays the role of the angular coordinate and t of the radial
one).

Mixture model network (MoNet) [54]: Finally, as the most
general construction of patches, Monti et al. [54] proposed
defining at each point a local system of d-dimensional pseudo-
coordinates u(x, x′) around x. On these coordinates, a set of
parametric kernels v1(u), . . . , vJ(u)) is applied, producing the
weighting functions in (52). Rather than using fixed kernels
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as in the previous constructions, Monti et al. use Gaussian
kernels

vj(u) = exp
(
− 1

2 (u− µj)>Σ−1
j (u− µj)

)
whose parameters (d×d covariance matrices Σ1, . . . ,ΣJ and
d×1 mean vectors µ1, . . . ,µJ ) are learned.7 Learning not only
the filters but also the patch operators in (53) affords additional
degrees of freedom to the MoNet architecture, which makes it
currently the state-of-the-art approach in several applications.
It is also easy to see that this approach generalizes the
previous models, and e.g. classical Euclidean CNNs as well as
Geodesic- and Anisotropic CNNs can be obtained as particular
instances thereof [54]. MoNet can also be applied on general
graphs using as the pseudo-coordinates u some local graph
features such as vertex degree, geodesic distance, etc.

Diffusion distance Anisotropic
heat kernel

Geodesic polar
coordinates

Fig. 3. Top: examples of intrinsic weighting functions used to
construct a patch operator at the point marked in black (different
colors represent different weighting functions). Diffusion distance
(left) allows to map neighbor points according to their distance from
the reference point, thus defining a one-dimensional system of local
intrinsic coordinates. Anisotropic heat kernels (middle) of different
scale and orientations and geodesic polar weights (right) are two-
dimensional systems of coordinates. Bottom: representation of the
weighting functions in the local polar (ρ, θ) system of coordinates
(red curves represent the 0.5 level set).

VIII. COMBINED SPATIAL/SPECTRAL METHODS

The third alternative for constructing convolution-like oper-
ations of non-Euclidean domains is jointly in spatial-frequency
domain.

Windowed Fourier transform: One of the notable
drawbacks of classical Fourier analysis is its lack of spatial
localization. By virtue of the Uncertainty Principle, one of the
fundamental properties of Fourier transforms, spatial localiza-
tion comes at the expense of frequency localization, and vice
versa. In classical signal processing, this problem is remedied

7This choice allow interpreting intrinsic convolution (53) as a mixture of
Gaussians, hence the name of the approach.

by localizing frequency analysis in a window g(x), leading
to the definition of the Windowed Fourier Transform (WFT,
also known as short-time Fourier transform or spectrogram in
signal processing),

(Sf)(x, ω) =

∫ ∞
−∞

f(x′) g(x′ − x)e−iωx
′︸ ︷︷ ︸

gx,ω(x′)

dx′ (59)

= 〈f, gx,ω〉L2(R). (60)

The WFT is a function of two variables: spatial location of
the window x and the modulation frequency ω. The choice of
the window function g allows to control the tradeoff between
spatial and frequency localization (wider windows result in
better frequency resolution). Note that WFT can be interpreted
as inner products (60) of the function f with translated and
modulated windows gx,ω , referred to as the WFT atoms.

The generalization of such a construction to non-Euclidean
domains requires the definition of translation and modulation
operators [83]. While modulation simply amounts to multipli-
cation by a Laplacian eigenfunction, translation is not well-
defined due to the lack of shift-invariance. It is possible to
resort again to the spectral definition of a convolution-like
operation (34), defining translation as convolution with a delta-
function,

(g ? δx′)(x) =
∑
i≥0

〈g, φi〉L2(X )〈δx′ , φi〉L2(X )φi(x)

=
∑
i≥0

ĝiφi(x
′)φi(x). (61)

The translated and modulated atoms can be expressed as

gx′,j(x) = φj(x
′)
∑
i≥0

ĝiφi(x)φi(x
′), (62)

where the window is specified in the spectral domain by its
Fourier coefficients ĝi; the WFT on non-Euclidean domains
thus takes the form

(Sf)(x′, j) = 〈f, gx′,j〉L2(X ) =
∑
i≥0

ĝiφi(x
′)〈f, φiφj〉L2(X ). (63)

Due to the intrinsic nature of all the quantities involved in its
definition, the WFT is also intrinsic.

Wavelets: Replacing the notion of frequency in time-
frequency representations by that of scale leads to wavelet
decompositions. Wavelets have been extensively studied in
general graph domains [84]. Their objective is to define
stable linear decompositions with atoms well localized both in
space and frequency that can efficiently approximate signals
with isolated singularities. Similarly to the Euclidean setting,
wavelet families can be constructed either from its spectral
constraints or from its spatial constraints.

The simplest of such families are Haar wavelets. Several
bottom-up wavelet constructions on graphs were studied in
[85] and [86]. In [87], the authors developed an unsupervised
method that learns wavelet decompositions on graphs by opti-
mizing a sparse reconstruction objective. In [88], ensembles of
Haar wavelet decompositions were used to define deep wavelet
scattering transforms on general domains, obtaining excellent
numerical performance. Learning amounts to finding optimal
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pairings of nodes at each scale, which can be efficiently solved
in polynomial time.

Localized Spectral CNN (LSCNN) [89]: Boscaini et al. used
the WFT as a way of constructing patch operators (52) on man-
ifolds and point clouds and used in an intrinsic convolution-
like construction (53). The WFT allows expressing a function
around a point in the spectral domain in the form Dj(x)f =
(Sf)(x, j). Applying learnable filters to such ‘patches’ (which
in this case can be interpreted as spectral multipliers), it is
possible to extract meaningful features that also appear to
generalize across different domains. An additional degree of
freedom is the definition of the window, which can also be
learned [89].

Dichotomy of Geometric deep learning methods

Method Domain Data
Spectral CNN [52] spectral graph
GCNN/ChebNet [45] spec. free graph
GCN [77] spec. free graph
GNN [78] spec. free graph
Geodesic CNN [47] charting mesh
Anisotropic CNN [48] charting mesh/point cloud
MoNet [54] charting graph/mesh/point cloud
LSCNN [89] combined mesh/point cloud

IX. APPLICATIONS

Network analysis: One of the classical examples used
in many works on network analysis are citation networks. Ci-
tation network is a graph where vertices represent papers and
there is a directed edge (i, j) if paper i cites paper j. Typically,
vertex-wise features representing the content of the paper (e.g.
histogram of frequent terms in the paper) are available. A
prototypical classification application is to attribute each paper
to a field. Traditional approaches work vertex-wise, performing
classification of each vertex’s feature vector individually. More
recently, it was shown that classification can be considerably
improved using information from neighbor vertices, e.g. with
a CNN on graphs [45], [77]. Insert IN6 shows an example of
application of spectral and spatial graph CNN models on a
citation network.

Another fundamental problem in network analysis is rank-
ing and community detection. These can be estimated by
solving an eigenvalue problem on an appropriately defined
operator on the graph: for instance, the Fiedler vector (the
eigenvector associated with the smallest non-trivial eigenvalue
of the Laplacian) carries information on the graph partition
with minimal cut [73], and the popular PageRank algorithm
approximates page ranks with the principal eigenvector of a
modified Laplacian operator. In some contexts, one may want
develop data-driven versions of such algorithms, that can adapt
to model mismatch and perhaps provide a faster alternative to
diagonalization methods. By unrolling power iterations, one
obtains a Graph Neural Network architecture whose parame-
ters can be learnt with backpropagation from labeled examples,
similarly to the Learnt Sparse Coding paradigm [91]. We are

[IN6] Citation network analysis application: The
CORA citation network [90] is a graph containing
2708 vertices representing papers and 5429 edges
representing citations. Each paper is described by a
1433-dimensional bag-of-words feature vector and
belongs to seven classes. For simplicity, the network
is treated as an undirected graph. Applying the
spectral CNN with two spectral convolutional layers
parametrized according to (50), the authors of [77]
obtained classification accuracy of 81.6% (compared
to 75.7% previous best result). In [54], this result was
slightly improved further, reaching 81.7% accuracy
with the use of MoNet architecture.

[FIGS6a] Classifying research papers in the CORA dataset
with MoNet. Shown is the citation graph, where each node
is a paper, and an edge represents a citation. Vertex fill and
outline colors represents the predicted and groundtruth labels,
respectively; ideally, the two colors should coincide. (Figure
reproduced from [54]).

currently exploring this connection by constructing multiscale
versions of graph neural networks.

Recommender systems: Recommending movies on Net-
flix, friends on Facebook, or products on Amazon are a few
examples of recommender systems that have recently become
ubiquitous in a broad range of applications. Mathematically,
a recommendation method can be posed as a matrix comple-
tion problem [92], where columns and rows represent users
and items, respectively, and matrix values represent a score
determining whether a user would like an item or not. Given
a small subset of known elements of the matrix, the goal is to
fill in the rest. A famous example is the Netflix challenge [93]
offered in 2009 and carrying a 1M$ prize for the algorithm
that can best predict user ratings for movies based on previous
ratings. The size of the Netflix matrix is 480K movies × 18K
users (8.5B elements), with only 0.011% known entries.

Several recent works proposed to incorporate geometric
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structure into matrix completion problems [94], [95], [96],
[97] in the form of column- and row graphs representing
similarity of users and items, respectively (see Figure 4). Such
a geometric matrix completion setting makes meaningful e.g.
the notion of smoothness of the matrix values, and was shown
beneficial for the performance of recommender systems.

In a recent work, Monti et al. [56] proposed addressing
the geometric matrix completion problem by means of a
learnable model combining a Multi-Graph CNN (MGCNN)
and a recurrent neural network (RNN). Multi-graph convo-
lution can be thought of a generalization of the standard bi-
dimensional image convolution, where the domains of the rows
and the columns are now different (in our case, user- and
item graphs). The features extracted from the score matrix by
means of the MGCNN are then passed to an RNN, which
produces a sequence of incremental updates of the score
values. Overall, the model can be considered as a learnable
diffusion of the scores, with the main advantage compared
to traditional approach being a fixed number of variables
independent of the matrix size. MGCNN achieved state-of-the-
art results on several classical matrix completion challenges
and, on a more conceptual level, could be a very interesting
practical application of geometric deep learning to a classical
signal processing problem.

n users
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m
s

j1 j2 . . . j3

i2

...

i1

Fig. 4. Geometric matrix completion exemplified on the famous Netflix
movie recommendation problem. The column and row graphs represent the
relationships between users and items, respectively.

Computer vision and graphics: The computer vision
community has recently shown an increasing interest in work-
ing with 3D geometric data, mainly due to the emergence
of affordable range sensing technology such as Microsoft
Kinect or Intel RealSense. Many machine learning techniques
successfully working on images were tried “as is” on 3D
geometric data, represented for this purpose in some way “di-
gestible” by standard frameworks, e.g. as range images [98],
[99] or rasterized volumes [100], [101]. The main drawback
of such approaches is their treatment of geometric data as
Euclidean structures. First, for complex 3D objects, Euclidean
representations such as depth images or voxels may lose
significant parts of the object or its fine details, or even break

FILTER

FILTER

Euclidean CNN Geometric CNN

Fig. 5. Illustration of the difference between classical CNN (left)
applied to a 3D shape (checkered surface) considered as a Euclidean
object, and a geometric CNN (right) applied intrinsically on the
surface. In the latter case, the convolutional filters (visualized as a
colored window) are deformation-invariant by construction.

its topological structure. Second, Euclidean representations
are not intrinsic, and vary when changing pose or deforming
the object. Achieving invariance to shape deformations, a
common requirement in many vision applications, demands
very complex models and huge training sets due to the large
number of degrees of freedom involved in describing non-rigid
deformations (Figure 5, left).

In the domain of computer graphics, on the other hand,
working intrinsically with geometric shapes is a standard
practice. In this field, 3D shapes are typically modeled as
Riemannian manifolds and are discretized as meshes. Numer-
ous studies (see, e.g. [102], [103], [104], [105], [106]) have
been devoted to designing local and global features e.g. for
establishing similarity or correspondence between deformable
shapes with guaranteed invariance to isometries.

Furthermore, different applications in computer vision and
graphics may require completely different features: for in-
stance, in order to establish feature-based correspondence
between a collection of human shapes, one would desire the
descriptors of corresponding anatomical parts (noses, mouths,
etc.) to be as similar as possible across the collection. In other
words, such descriptors should be invariant to the collection
variability. Conversely, for shape classification, one would like
descriptors that emphasize the subject-specific characteristics,
and for example, distinguish between two different nose
shapes (see Figure 6). Deciding a priori which structures
should be used and which should be ignored is often hard
or sometimes even impossible. Moreover, axiomatic modeling
of geometric noise such as 3D scanning artifacts turns out to
be extremely hard.
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Correspondence Similarity

Fig. 6. Left: features used for shape correspondence should ideally
manifest invariance across the shape class (e.g., the “knee feature”
shown here should not depend on the specific person). Right: on
the contrary, features used for shape retrieval should be specific to
a shape within the class to allow distinguishing between different
people. Similar features are marked with same color. Hand-crafting
the right feature for each application is a very challenging task.

By resorting to intrinsic deep neural networks, the invari-
ance to isometric deformations is automatically built into
the model, thus vastly reducing the number of degrees of
freedom required to describe the invariance class. Roughly
speaking, the intrinsic deep model will try to learn ‘residual’
deformations that deviate from the isometric model. Geometric
deep learning can be applied to several problems in 3D shape
analysis, which can be divided in two classes. First, problems
such as local descriptor learning [47], [53] or correspondence
learning [48] (see example in the insert IN7), in which the
output of the network is point-wise. The inputs to the network
are some point-wise features, for example, color texture or
simple geometric features such as normals. Using a CNN
architecture with multiple intrinsic convolutional layers, it is
possible to produce non-local features that capture the context
around each point. The second type of problems such as shape
recognition require the network to produce a global shape
descriptor, aggregating all the local information into a single
vector using e.g. the covariance pooling [47].

Particle physics and Chemistry: Many areas of exper-
imental science are interested in studying systems of discrete
particles defined over a low-dimensional phase space. For
instance, the chemical properties of a molecule are determined
by the relative positions of its atoms, and the classification of
events in particle accelerators depends upon position, momen-
tum, and spin of all the particles involved in the collision.

The behavior of an N -particle system is ultimately derived
from solutions of the Schrödinger equation, but its exact
solution involves diagonalizing a linear system of exponential
size. In this context, an important question is whether one
can approximate the dynamics with a tractable model that
incorporates by construction the geometric stability postulated
by the Schrödinger equation, and at the same time has enough
flexibility to adapt to data-driven scenarios and capture com-
plex interactions.

An instance l of an Nl-particle system can be expressed as

fl(t) =

Nl∑
j=1

αj,lδ(t− xj,l) ,

where (αj,l) model particle-specific information such as the
spin, and (xj,l) are the locations of the particles in a given
phase-space. Such system can be recast as a signal defined
over a graph with |Vl| = Nl vertices and edge weights
Wl = (φ(αi,l, αj,l, xi,l, xj,l)) expressed through a similarity
kernel capturing the appropriate priors. Graph neural networks
are currently being applied to perform event classification,
energy regression, and anomaly detection in high-energy
physics experiments such as the Large Hadron Collider (LHC)
and neutrino detection in the IceCube Observatory. Recently,
models based on graph neural networks have been applied to
predict the dynamics of N -body systems [111], [112] showing
excellent prediction performance.

Molecule design: A key problem in material- and drug
design is predicting the physical, chemical, or biological
properties of a novel molecule (such as solubility of tox-
icity) from its structure. State-of-the-art methods rely on
hand-crafted molecule descriptors such as circular fingerprints
[113], [114], [115]. A recent work from Harvard university
[55] proposed modeling molecules as graphs (where vertices
represents atoms and edges represent chemical bonds) and
employing graph convolutional neural networks to learn the
desired molecule properties. Their approach has significantly
outperformed hand-crafted features. This work opens a new
avenue in molecule design that might revolutionize the field.

Medical imaging: An application area where signals
are naturally collected on non-Euclidean domains and where
the methodologies we reviewed could be very useful is brain
imaging. A recent trend in neuroscience is to associate func-
tional MRI traces with a pre-computed connectivity rather than
inferring it from the traces themselves [116]. In this case, the
challenge consists in processing and analyzing an array of
signals collected over a complex topology, which results in
subtle dependencies. In a recent work from Imperial College
[117], graph CNNs were used to detect disruptions of the brain
functional networks associated with autism.

X. OPEN PROBLEMS AND FUTURE DIRECTIONS

The recent emergence of geometric deep learning methods
in various communities and application domains, which we
tried to overview in this paper, allow us to proclaim, perhaps
with some caution, that we might be witnessing a new field
being born. We expect the following years to bring exciting
new approaches and results, and conclude our review with
a few observations of current key difficulties and potential
directions of future research.

Many disciplines dealing with geometric data employ some
empirical models or “handcrafted” features. This is a typical
situation in geometry processing and computer graphics, where
axiomatically-constructed features are used to analyze 3D
shapes, or computational sociology, where it is common to first
come up with a hypothesis and then test it on the data [22].
Yet, such models assume some prior knowledge (e.g. isometric
shape deformation model), and often fail to correctly capture
the full complexity and richness of the data. In computer
vision, departing from “handcrafted” features towards generic
models learnable from the data in a task-specific manner
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[IN7] 3D shape correspondence application: Finding intrin-
sic correspondence between deformable shapes is a classical
tough problem that underlies a broad range of vision and
graphics applications, including texture mapping, animation,
editing, and scene understanding [107]. From the machine
learning standpoint, correspondence can be thought of as a
classification problem, where each point on the query shape is
assigned to one of the points on a reference shape (serving as a
“label space”) [108]. It is possible to learn the correspondence
with a deep intrinsic network applied to some input feature
vector f(x) at each point x of the query shape X , producing
an output UΘ(f(x))(y), which is interpreted as the conditional
probability p(y|x) of x being mapped to y. Using a training set
of points with their ground-truth correspondence {xi, yi}i∈I ,
supervised learning is performed minimizing the multinomial
regression loss

min
Θ

−
∑
i∈I

logUΘ(f(xi))(yi) (64)

w.r.t. the network parameters Θ. The loss penalizes for the de-
viation of the predicted correspondence from the groundtruth.
We note that, while producing impressive result, such an
approach essentially learns point-wise correspondence, which
then has to be post-processed in order to satisfy certain
properties such as smoothness or bijectivity. Correspondence
is an example of structured output, where the output of the

network at one point depends on the output in other points
(in the simplest setting, correspondence should be smooth,
i.e., the output at nearby points should be similar). Litany
et al. [109] proposed intrinsic structured prediction of shape
correspondence by integrating a layer computing functional
correspondence [106] into the deep neural network.

UΘ
xi

yi

X Y

[FIGS7a] Learning shape correspondence: an intrinsic deep network
UΘ is applied point-wise to some input features defined at each point.
The output of the network at each point x of the query shape X is a
probability distribution of the reference shape Y that can be thought
of as a soft correspondence.

[FIGS7b] Intrinsic correspondence established between human shapes using intrinsic deep architecture (MoNet [54] with three convolutional
layers). SHOT descriptors capturing the local normal vector orientations [110] were used in this example as input features. The correspondence
is visualized by transferring texture from the leftmost reference shape. For additional examples, see [54].

has brought a breakthrough in performance and led to an
overwhelming trend in the community to favor deep learning
methods. Such a shift has not occurred yet in the fields dealing
with geometric data due to the lack of adequate methods, but
there are first indications of a coming paradigm shift.

Generalization: Generalizing deep learning models to
geometric data requires not only finding non-Euclidean coun-
terparts of basic building blocks (such as convolutional and
pooling layers), but also generalization across different do-
mains. Generalization capability is a key requirement in many
applications, including computer graphics, where a model
is learned on a training set of non-Euclidean domains (3D
shapes) and then applied to previously unseen ones. Spectral

formulation of convolution allows designing CNNs on a graph,
but the model learned this way on one graph cannot be
straightforwardly applied to another one, since the spectral
representation of convolution is domain-dependent. A possible
remedy to the generalization problem of spectral methods
is the recent architecture proposed in [118], applying the
idea of spatial transformer networks [119] in the spectral
domain. This approach is reminiscent of the construction of
compatible orthogonal bases by means of joint Laplacian
diagonalization [75], which can be interpreted as an alignment
of two Laplacian eigenbases in a k-dimensional space.

The spatial methods, on the other hand, allow generaliza-
tion across different domains, but the construction of low-
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dimensional local spatial coordinates on graphs turns to be
rather challenging. In particular, the construction of anisotropic
diffusion on general graphs is an interesting research direction.

The spectrum-free approaches also allow generalization
across graphs, at least in terms of their functional form.
However, if multiple layers of equation (51) used with no non-
linearity or learned parameters θ, simulating a high power of
the diffusion, the model may behave differently on different
kinds of graphs. Understanding under what circumstances and
to what extent these methods generalize across graphs is
currently being studied.

Time-varying domains: An interesting extension of
geometric deep learning problems discussed in this review
is coping with signals defined over a dynamically changing
structure. In this case, we cannot assume a fixed domain
and must track how these changes affect signals. This could
prove useful to tackle applications such as abnormal activity
detection in social or financial networks. In the domain of
computer graphics and vision, potential applications deal with
dynamic shapes (e.g. 3D video captured by a range sensor).

Directed graphs: Dealing with directed graphs is also
a challenging topic, as such graphs typically have non-
symmetric Laplacian matrices that do not have orthogo-
nal eigendecomposition allowing easily interpretable spectral-
domain constructions. Citation networks, which are directed
graphs, are often treated as undirected graphs (including
in our example in IN7) considering citations between two
papers without distinguishing which paper cites which. This
obviously may loose important information.

Synthesis problems: Our main focus in this review was
primarily on analysis problems on non-Euclidean domains.
Not less important is the question of data synthesis. There
have been several recent attempts to try to learn a generative
model allowing to synthesize new images [120] and speech
waveforms [121]. Extending such methods to the geometric
setting seems a promising direction, though the key difficulty
is the need to reconstruct the geometric structure (e.g., an em-
bedding of a 2D manifold in the 3D Euclidean space modeling
a deformable shape) from some intrinsic representation [122].

Computation: The final consideration is a computational
one. All existing deep learning software frameworks are pri-
marily optimized for Euclidean data. One of the main reasons
for the computational efficiency of deep learning architectures
(and one of the factors that contributed to their renaissance)
is the assumption of regularly structured data on 1D or 2D
grid, allowing to take advantage of modern GPU hardware.
Geometric data, on the other hand, in most cases do not
have a grid structure, requiring different ways to achieve
efficient computations. It seems that computational paradigms
developed for large-scale graph processing are more adequate
frameworks for such applications.
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