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Abstract. Size functions, a class of topological-geometrical shape de-
scriptors, are applied to the search of image datasets by a hand-drawn
input: This is the core of a demonstrator accessible through the Inter-
net. Two datasets are provided, of about 700 curves each; both are un-
structured sets of randomly generated curves. One consists of piecewise
smooth curves, the other of polygonals. The curve generator has been ex-
plicitly designed so that the curves have no semantic content; they don’t
have any kind of indexing or textual caption either. The characteristics
of the demonstrator and some experimental results are presented.

1 Introduction

We present a demonstrator of an image retrieval engine, based on size func-
tions, working on two unstructured datasets of randomly generated curves. The
datasets consist of 700 curves each; curves are closed unions of smooth (but not
rectilinear) arcs in one case, closed polygonals in the other. The query is per-
formed by drawing an example by hand. The demonstrator is reachable through
the Internet (http://vis.dm.unibo.it/EVAM/).

Size functions are a relatively new class of shape descriptors, which can be
modularly adapted to specific recognition or comparison problems. From the
mathematical viewpoint, they are based on geometric—topological theory of crit-
ical points, as will be specified in the next Section. So long, they have been
applied to several classification problems, mostly on images of natural origin.

In the terminology of [14], our system belongs to the categories of “content
based”, “search by association”, “narrow domain”, “approximate query by im-
age example”, but the difference with the systems reported in that survey are:
Semantic interpretation (as, e.g., in [12]) is impossible or at least highly subjec-
tive (Rorschach-like); no colors or textures are present to direct selection (as,
e.g., in [5]); also salient geometric features (as used, e.g., in [13]) would be of
little of no use while comparing a hand-drawn sketch with a piecewise smooth
curve or a polygonal. No indexing or other structure (as, e.g., in [1]) is present
in the image domain (it is a dataset, not a database).



The demonstrator is far from being a general purpose engine: Image pro-
cessing problems have been by-passed, so that the user can concentrate on our
main issue, i.e. the value of size functions in finding similarities and differences
of “pure” shapes. We are well aware that a commercial (or at least a useful)
product should integrate size functions with other techniques, but this is far
from our present scope.

2 The definition of Size Function

Size functions are a simple, but effective tool for shape comparison. Their ap-
plication is particularly useful when no standard, geometric templates are avail-
able. Examples of applications are tree-leaves, hand-drawn sketches, monograms,
hand-written characters, white blood cells and the sign alphabet.

Let us recall the definition of a size function. Consider a continuous real-
valued function ¢ : M — IR, defined on a subset M of a Euclidean space. The
size function of the pair (M, ¢) is a function £(ys,,) : R* = IN U {oo}. For each
pair (z,y) € IR?, consider the set M, = {P € M : ¢(P) < z}. Two points in M,
are then considered to be equivalent if they either coincide or can be connected
by a continuous path in M,. The value £(5;,,,)(x,y) is defined to be the number of
the equivalence classes obtained by quotienting M, with respect to the previous
equivalence relation in M.

Figure 1 shows a simple example of size function. In this case the topological
space M is a curve, while the measuring function ¢ is the distance from the
centre of mass C.
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Fig. 1. A curve and its size function with respect to the distance from the centre of
mass.

The use of size functions in shape description and comparison is motivated
by the following properties:



Invariance. Size functions inherit the same invariance of the corresponding
measuring functions.

Modularity. Changing the invariance group simply requires changing the mea-
suring functions.

Multilevel analysis. Details are described close to the diagonal A = {(z,y) |
x =y}, while more general aspects of shape appear far from A.

Resistance to noise. Information is distributed all over the real plane, so that
size functions can be used in presence of noise and occlusions.

Fast computation. Size functions are easily computable.

Standardization. The problem of comparing shapes is changed into a simple
comparison of functions.

3 Representation and Comparison of Size Functions

As Figure 1 shows, size functions have a typical structure. In the halfplane
{z < y} they are linear combination of characteristic functions of triangular
regions. In other words, if £ is a size function we have that £(z,y) = >, xi(%,y)
(for z < y), where I is countable set and each x; is the characteristic function of
a triangle T;, having vertices (a;, a;), (ai, b;), (bi, b;) (i-e., xi(z,y) =1lifa; <z <
y < b; and 0 otherwise). That means that each size function can be described
by a formal linear combination ), _; myCh of points Cy = (an,bs) (the right
angle vertex of T,) with integer multiplicities mp. If b, < oo we call Cj a
cornerpoint, otherwise we say that C}, represents a cornerline (in this case the
corresponding triangle T}, degenerates to an “infinite” triangle). Each distance
between formal series naturally produces a distance between size functions. A
formal and detailed treatment of this subject can be found in [6].

yA yA
a C
HE
0 +00
X . X

Fig. 2. A size function on the left and the corresponding cornerpoints a,b, ¢ and cor-
nerline s on the right. The resulting formal series is s +a + b+ ¢

Of the many available distances between formal series, the one we use in this
paper is the matching distance (similar to the “bottleneck matching” of [15],



but performed on the size functions, instead of the images). In plain words, if we
wish to compute the distance between two formal series ;. ; miCi, 3 ;¢ ; m;C]
we consider any possible matching between the C;’s and the C]’-’s, considering
the multiplicities. Each of these matchings is weighted by a deformation cost
(in this work: Euclidean displacement). The wanted distance is the infimum in
the set of all possible costs of matchings. We also allow the “destruction” of
cornerpoints by taking them onto the diagonal A = {(z,y)|z = y}. The inverse
process of cornerpoint creation is allowed, too.

The computation of the matching distance is performed by means of a Max
Flow algorithm. Only the first ten cornerpoints are considered, with respect to
the decreasing distance from the diagonal A. A similar version of the matching
distance (more along the lines of “elastic matching” [2]) can be found in [7].
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Fig. 3. A possible way to deform a size function, represented by dashed lines, into
another one, represented by continuous lines. The cornerpoint ¢ is destroyed.

4 Curve Generation

Two sets of 700 curves have been built for the demonstrator. The curves of the
first set have a finite (possibly empty) set of singular points, out of which they
are smooth and non-rectilinear (see Figure 4 for the first 70 of them). The second
set consists of closed polygonals (see Figure 5 for the first 70 of them).

The piecewise smooth curves are all generated by random parameter varia-
tions of the formula

with



Fig. 4. A sample of our dataset of randomly generated smooth curves.

G(t) S (27Tt + o sin(€127rt) + ﬂl COS(€227Tt)) + kg

p(t) = ro + ag sin(hy2nt) + B2 cos(ha27t)

where ) is randomised with normal distribution, with mean m = 1 and variance
0% = 0.3, and rq is also randomised with normal distribution, m = 3, 02 = 1.
The values of the other parameters are uniformly distributed in their sets:
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{1,2,3}
[0,0.6]
{1,2,3,4,5,6,7,8,9,10}.

Polygonals are generated by connecting random points in the prescribed
frame with segments.
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Fig. 5. A sample of our dataset of randomly generated polygonal curves.

5 Experimental Results

The measuring functions used in the demonstrator are the distances from 16 fixed
points forming a regular grid around the center of mass of the image; they are
disposed in four horizontal rows, each of length equal to 2.8 times the average
distance of the image pixels from the center of mass. The invariance granted
by this type of measuring functions is under translations and scale changes.
We remind that invariance under other transformation groups (rotations, affine
transformations etc.) could be easily imposed by a different choice of measuring
functions.

Two types of queries were performed: by submitting an image extracted from
the dataset, and by submitting a hand—drawn curve. The latter is of course the
more interesting experiment, and it is the one on which we are reporting. This
was done separately for the smooth curves and for the polygonals.

It should be noted that it is not possible to establish a hit/miss ratio or an
analogous mark, since shape similarity is subjective. Moreover, the curves of our
dataset do not represent any concrete object, so they cannot be classified even
according to a semantic criterion. Next, we present some of the queries (Figures
6 and 7), with the first five output curves.

Some remarks about the depicted results:

e Some queries were aimed to specific curves present in the datasets, and some
were totally generic.



e Given an input drawing, it is unlikely that there are several resembling shapes
in the dataset, so even among the first five output curves there are some
scarcely related.

e Finally, it should be noted that in most cases even the most resembling output
curves are not superimposable to the input example. Moreover, even salient
points or any commonly used geometric features would not have helped to
retrieve those curves (actually, they might even be misleading!). The reason
why the system succeeds in retrieving them all the same, resides in the highly
qualitative kind of shape description and comparison due to size functions.

The demonstrator runs on a Athlon 900 MHz based PC, under Linux OS.
Response time for a query is, for the moment, between 40 and 60 seconds.
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Fig. 6. The results of some sample queries in our dataset of smooth curves.

6 Comparisons

Of course, there are several shape descriptors and shape matching methods (see,
e.g., [15]). As Carlsson [3] points out, there are two major categories: recognition
by components (requiring some a priori knowledge) and recognition on similarity
of views (based on geometrical features). Our system is rather in the second class,
although in a generalised sense. In fact, the similarities which are caught by size
functions may not be so apparent: they depend on the choice of the measuring
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Fig. 7. The results of some sample queries in our dataset of polygonal curves.

function. That no semantics is involved, is clear in the present experiment. But
also geometric features, in the usual sense, are not there to favour a matching.

Take the classical Fourier descriptors, for instance [17, 8]. A coincidence in the
first few coefficients would grant that two shapes are roughly superimposable,
differences being limited to the higher frequencies. Size functions (with distance
from centre of mass as a measuring function) recognise the presence and size
of comparable bumps even if they are differently disposed in the two images to
compare; this is a simple case of similarity with no (even rough) superimposition.
Such cases are easy to find already in the few examples of Figures 6 and 7. We
remind that, anyway, also size functions enjoy completeness theorems like Fourier
descriptors, in the case of the present experiment [4].

Other descriptors, like order structure [3], turning function [16], chain code
histogram [11], need a sort of local superimposition and are mainly limited to
silhouettes. A much closer relative to size functions is the Reeb Graph [9], which
has been used so long — as far as we know — only for 3D objects and for heights
and distances as the only involved functions.

As for the type of experiment, we are aware only of [11,10], where irreg-
ular objects with no perceivable semantics are treated, but again working on
silhouettes and with a smaller dataset.

Anyway, we do not claim that our method be better than the usual ones, but
at least independent and possibly complementary.

Following the indications of the referees, whom we thank, we shall extend
the experiment to a database of drawings — which we are preparing — and to



a standard trademark database. Moreover, we shall compare the ranking of our
system with the one independently produced by human subjects.

7 Conclusions

An on-line demonstrator of a qualitative type of image retrieval runs on two sets
of randomly generated curves. Size functions build the mathematical engine. The
output shapes are remarkably similar to the input example, but they could not
be retrieved by superimposition nor by comparison of currently used feature
vectors. Similarity is of an intuitive kind, not relying on geometrical features
nor on semantic content. This appears to be a good evidence that size functions
are an efficient tool for reducing the “semantic gap” — in the words of [14]
— between data and its interpretation by the user. The next steps will be the
experiment with real databases and the comparison with human selectors.
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