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Ever Tried.

Ever Failed.

No Matter.

Try Again.

Fail Again.

Fail Better.

(Samuel Beckett)



Abstract

Questa tesi vuole a�rontare i campi da potenziale nelcontesto della pianificazione del percorso applicata a mac-chine automatizzate. Apre indulgendo sulla globalità delloargomento: a�ronta definizioni specifiche quali ad es-empio quella di ambiente applicata al contesto specifico.Procede menzionando in maniera chiara e concisa di-versi approcci alla pianificazione del percorso impiegatinella pratica. Si concentra dunque sull’argomento car-dine: i campi da potenziale. Intraprende uno studio ap-profondito sulla relazione fra i due argomenti, introducendola nozione di campi da potenziale artificiali. Questi ul-timi vengono dissezionati allo scopo di essere compresiappieno, sia nel funzionamento che nella ideazione. Con-clude esplorando le problematiche principali legate alloutilizzo dei campi da potenziale nella pratica di pianifi-cazione del percorso, o�rendo tuttavia possibili soluzionimirate ad aggirare queste complicanze.
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Introduction

Path planning is a contemporary field of study that finds several ap-plications in computational geometry, computer animation, roboticsand computer games. In layman’s terms, it is the collection of allthose methods through which any form of artificial intelligence cannavigate its surrounding to reach a prefixed destination. When itcomes to robotics, path planning aims to minimise the gap in de-cision making prowess present between automated machines andhumans by reenacting the cognitive process we undergo when tak-ing decisions, by means of mathematics and algorithms.
This dissertation will focus on robotic motion planning, and par-ticularly on the use of potential fields. It looks to brief the readerin on the notion of path planning as a whole, and then single-outa distinct technique to provide a more in-depth explanation of itsbehaviour and performance.
The first chapter provides a broad rundown of what robotic mo-tion planning is. It defines concepts that may be unknown to anyonenot involved in the field of artificial intelligence. The second chap-ter recalls all and only those theoretical knowledges essential to theglobal understanding of the dissertation. Lastly, the third and finalchapter expands on the concepts discussed in the first chapter byaddressing a specific approach utilised in actual implementationsof path planning: potential fields.
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Chapter 1

Path planning: a general
overview

Path planning, also known as motion planning, is the task of findinga continuous route which will allow a robot to move from the start-ing configuration qstart to the goal configuration qgoal. The increas-ing complexity and depth of modern Artificial Intelligences (AIs) isleading robots to outperform manual labor in a variety of on-fieldapplications: the demand for high performing path planning algo-rithms has never been higher.Over the course of this chapter we will discover how AIs read theinputs received from their surroundings to plan a safe path to fol-low, as well as the main struggles they have to overcome to do so.The contents of this chapter are taken from [4], [7], [8] and [9].

1.1 Environment
We call environment the space in which our robot operates. Let usdefine the environment ξ as the set of all which surrounds the robot,without being part of the robot itself. We call:
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CHAPTER 1. PATH PLANNING: A GENERAL OVERVIEW
• ξobs the subspace of ξ which the robot cannot access
• ξfree the subspace of ξ devoid of obstacles (ξfree = ξ − ξobs)
• ξdanger the subspace of ξwhich the robot can access, but shouldn’t

Now that we have understood these concepts, we will define severalaspects which a robot analyzes to distinguish between AI environ-ments:
• Observability: if a robot has access to all information in theenvironment, at each point of time, we say that the environ-ment is fully observable. Otherwise, it’s partially observable

• Stasis: if the environment can change itself while the robotoperates in it, we call the environment dynamic. Otherwise,we say it is static

• Determinability if each state of the environment can be de-termined by the robot configuration in the previous state, saidenvironment is deterministic. Otherwise, it is stochastic

• Discreteness: if the final outcome of the task at hand is drivenby a finite set of possibilities, our robot is operating in a dis-
crete environment; otherwise the environment is said to be
continuous. In general, continuous environments rely on un-known and ever-changing inputs

• Agency: depending on whether or not our robot operates alonein the environment, we distinguish between single-agent and
multi-agent ones

• Seriality: if the current percept alone is su�cient to deter-mine the next best action, the environment is episodic. Oth-erwise, we say it’s sequential

9



CHAPTER 1. PATH PLANNING: A GENERAL OVERVIEW

1.2 Approaches
As we previously stated, the raison d’être of path planning is to pro-vide the robot with a safe path to follow in order to reach qgoal. Toachieve this, several approaches can be followed.

1.2.1 Roadmap
A roadmap Γ is a combination of curves such that:

• there is a path from qstart ∈ ξfree to a generic configurationq’∈ Γ

• there is a path from a generic configuration q” ∈ Γ to qgoal ∈
ξfree

• there is a path from q’ to q”
Once a roadmap has been defined, the end result will be a path in
ξfree connecting qstart to qgoal. We distinguish between two roadmapapproaches: Visibility Graphs and Voronoi Diagrams.

Visibility Graph

Visibility graphs aim to model a graph based on observable obsta-cles lying in ξ. Nodes in the graph represent geometrical verticesof said obstacles, while edges link together nodes sharing a visi-ble connection.Once the graph is completed, Dijkstra’s algorithm isemployed in order to compute the shortest path.Visibility Graphs are easier to implement when compared to VoronoiDiagrams, at the cost of being less safe (they yield paths lying in
ξdanger).
10



CHAPTER 1. PATH PLANNING: A GENERAL OVERVIEW
Voronoi Diagram

Voronoi Diagrams (in this particular conceptual setting) are definedas the geometric locus of points farthest from the obstacles.The first step in developing a Voronoi Diagram is determining thedistance between each point in ξ and its nearest obstacle, thus di-viding the environment in regions known as Voronoi Cells. Theborders between a cell and its surrounding cells represent the setof points farthest from the pivotal obstacles of said group of cells. Itfollows that the borders between all cells in ξ represent the Voronoi
Diagram for that environment.The computation of such diagrams is complex, but it ensures a safepath for the robot to follow (i.e., lying in ξfree).

1.2.2 Cell Decomposition

The idea behind this approach is to decompose ξfree in cells, regionsof space such that:

• it’s easy to compute a safe path between two configurations inthe same cell

• it’s easy to compute a safe path between two configurations in
adjacent cells

Two cells are adjacent if they share a common boundary.All that remains to be done is to compute a sequence of cells thatconnects qstart and qgoal. If more than one are outputted, Dijkstra’salgorithm is implemented to choose the shortest path.It is important to note that the more cells we define, the more thealgorithm will be e�cient, at the cost of being slower.
11



CHAPTER 1. PATH PLANNING: A GENERAL OVERVIEW
Fixed Cell Decomposition

This particular approach decomposes ξfree in fixed size-cells, eachidentified by a non-univocal number. Starting from qgoal, univocallyidentified by the number ”0”, each adjacent cell is flagged with in-creasing number values, until all cells have been marked. To deter-mine the shortest path, starting from qstart, the robot moves towards
qgoal following the lowest-numbered adjacent cell.

1.2.3 Fixed Graph
A graph of all feasible paths is defined a priori. Points qstart and qgoalare always made to coincide with vertices of the graph. Through Di-jkstra’s algorithm the shortest path between the two configurationsis computed: it yields the list of points which indicate the shortestpiecewise linear curve to follow to reach the destination.

1.2.4 Potential Fields
Potential fields represent yet another approach employed in pathplanning. Being the core subject matter of this thesis, I will refrainfrom presenting it right now, as this method will be tackled in alater chapter. Interested readers can consult Chapter 3, which willintroduce this approach and provide an extensive study on the topic.

1.3 Criteria
In this chapter we have studied how a robot utilizes inputs it re-ceives from its surrounding environment to navigate a path from itsstarting configuration qstart to its goal configuration qgoal. However,we have yet to see how it understands which path is the optimal one.The introduction of criteria allows it to do so: a set of demands help
12



CHAPTER 1. PATH PLANNING: A GENERAL OVERVIEW
the robot narrow the choice down to the most e�cient path solu-tions:

• length: the chosen path must be as short as possible
• time: the chosen path must be as fast as possible to travel
• safety: the chosen path must lie in ξfree
• shape: the chosen path must be as straight as possible. Sharpturns should be avoided at all costs.
• feasibility: the chosen path must consider motion constraints.

Naturally, a path solution which perfectly fits all the criteria is al-most never found. The choice will fall upon the path o�ering themost e�cient compromise.
At this point the reader should have a basic understanding of what
path planning is, what it aims to do, and how it does it. Followingchapters will aid him/ her in deepening his/ her understanding ofthe matter. Chapter 2 will provide the reader with the key tools he/she will need to fully understand the topic discussed in this thesis,while Chapter 3 will focus on potential fields, and how they relateto path planning.
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Chapter 2

Mathematical Tools

This brief chapter will not provide the reader with any knowledgeregarding path planning. It solely serves as a collection of all thosetools one would need in order to grasp the concepts illustrated overthe course of this dissertation. If the reader is confident in his/ herunderstanding of the topics covered hereafter, he/ she is welcometo move on to the following chapter. The contents of this chapterare taken from [1] and [13].

2.1 Euclidean Distance
The euclidean distance between any two points p and q is the lengthof the line segment that connects them.In Cartesian coordinates, the euclidean distance between p = (p1, p2, ..., p)and q = (q1, q2, ..., qn) which is equal to the euclidean distance be-tween q and p, is given by the Pythagorean formula:

d(p, q) = d(q, p) =

√√√√ n∑
i=1

(qi − pi)2 (2.1)
14



CHAPTER 2. MATHEMATICAL TOOLS
which is equivalent to computing the euclidean length of the dis-placement vector ||q − p||:

||q − p|| =
√

(q − p) · (p− q) (2.2)

2.2 Derivability

Let f : A → R be a function, with A ⊂ Rn, −→P ∈ A. Furthermore,consider the vectors −→e 1 = (1, 0, ..., 0),−→e 2 = (0, 1, ..., 0), ...,−→e n =
(0, ..., 0, 1): we call partial derivative of f with respect to x1, x2, ..., xnin −→P :

∂f

∂xi
(
−→
P ) = lim

h→0

f(
−→
P + h−→e i)− f(

−→
P )

h
(2.3)

Basically, we let one variable vary while the others do not.

2.3 Di�erentiability

Let f : A→ R be a function, with A ⊂ Rn, −→P ∈ A, f derivable in −→P .
We say that f is di�erentiable in −→P ∀ −→h ∈ Rn if, and only if:

f(
−→
P +

−→
h ) = f(

−→
P )+ <

−→
h ,
−→
∇f(
−→
P ) > +o(

−→
h ) (2.4)

2.4 Gradient
Let f : A→ R be a function, with A ⊂ Rn, −→P ∈ R and f derivable in−→
P . We call gradient of f in −→P :

−→
∇f(
−→
P ) = (

∂f

∂x1
(
−→
P ),

∂f

∂x2
(
−→
P ), ...,

∂f

∂xn
(
−→
P )) (2.5)

Meaning the vector of its partial derivatives.
15



CHAPTER 2. MATHEMATICAL TOOLS

2.5 Potential
Let −→F : A → Rn be a vector field, with A ⊂ R. If U : A → R existsand is of di�erentiability class C2, so that

−→
∇U =

−→
F (2.6)

we say that−→F is conservative, and we call U a potential.

2.6 Critical Points
Let f : A−→R be a function, with A ⊂ Rn. If all second order deriva-
tives of f exist, we call Hessian Matrix of f :

Hess(f) =


∂2f
∂x21

∂2f
∂x1 ∂x2

. . . ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x22

. . . ∂2f
∂x2 ∂xn...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

. . . ∂2f
∂x2n

 (2.7)

Now let f : A → R be a function of di�erentiability class C1, with
A ⊂ Rn, −→P ∈ A. If −→

∇f(
−→
P ) = (0, 0, . . . , 0) (2.8)

we say that−→P is a critical point.
Consider the critical point−→P 0 ∈ A. We have:

• −→P 0 is a global maximum for f in A if, and only if, we have that
f(P ) ≤ f(P0) ∀

−→
P ∈ A

• −→P 0 is a global minimum for f in A if, and only if, we have that
f(P ) ≥ f(P0) ∀

−→
P ∈ A

• −→P 0 is a local maximum for f if we have that ∃ δ > 0 so that
f(P ) ≤ f(P0) ∀

−→
P ∈ B(

−→
P 0, δ), withB(

−→
P 0, δ) being a closed ball

16



CHAPTER 2. MATHEMATICAL TOOLS
• −→P 0 is a local minimum for f if we have that ∃ δ > 0 so that
f(P ) ≥ f(P0) ∀

−→
P ∈ B(

−→
P 0, δ), withB(

−→
P 0, δ) being a closed ball

• −→P 0 is a saddle if it is neither a maximum nor a minimum
As can be seen from [13], if f : A→ R is a function of di�erentiability
class C2, with A ⊂ R and −→P ∈ A, let −→P be a critical point and M =

Hess(F (
−→
P )). Then:

• if M is positive-definite V
−→
P is a local minimum

• if M is negative-definite V
−→
P is a local maximum

• if M is indefinite V
−→
P is a saddle

Under the same assumptions:
• if M is positive semi-definite V

−→
P is a local minimum or a

saddle

• if M is negative semi-definite V
−→
P is a local maximum or a

saddle

A solid understanding of these concepts is advised, as they repre-sent one of the core concepts around which the contents discussedin the following chapter revolve.

2.7 Conic
Let Π2 be a euclidean plane, in which a cartesian coordinate system
R = (O,

−→
B ) is fixed. Consider the following generic algebraic sec-ond order equation in x and y:
a11x

2 + a22y
2 + 2a12xy + 2a01x+ 2a02y + a00 = 0 (2.9)

17



CHAPTER 2. MATHEMATICAL TOOLS
with aij ∈ R ∀ i, j ∈ {0, 1, 2}. Said equation represents a conic inthe euclidean plane Π2, with respect to the coordinate system R.Furthermore, given the following equations:

a11x
2 + a22y

2 + 2a12xy + 2a01x+ 2a02y + a00 = 0 (2.10)
a′11x

2 + a′22y
2 + 2a′12xy + 2a′01x+ 2a′02y + a′00 = 0 (2.11)

we can declare that they represent the same conic of Π2 with respecttoR if, and only if ∃ λ ∈ R− {0} so that a′ij = λ · aij ∀ i, j ∈ {0, 1, 2}.It follows that every conic C of Π2 is defined, with respect toR, by in-finite algebraic second order equations, proportional between eachother. Generally, we say that the equation of C with respect to R isdefined up to a proportionality coe�cient.

2.8 Paraboloid
Let Π3 be a euclidean space, in which a cartesian coordinate system
R = (O,

−→
B ) is fixed. Consider the following generic algebraic sec-ond order equation in x, y and z:
a11x

2 + a22y
2 + a33z

2 + 2a12xy + 2a13xz + 2a23yz

+ 2a01x+ 2a02y + 2a03z + a00 = 0
(2.12)

with aij ∈ R ∀ i, j ∈ {0, 1, 2, 3}. Said equation represents a quadricin the euclidean space Π3, with respect to the coordinate systemR.Furthermore, given the following equations:
a11x

2 + a22y
2 + a33z

2 + 2a12xy + 2a13xz + 2a23yz

+ 2a01x+ 2a02y + 2a03z + a00 = 0
(2.13)

a′11x
2 + a′22y

2 + a′33z
2 + 2a′12xy + 2a′13xz + 2a′23yz

+ 2a′01x+ 2a′02y + 2a′03z + a′00 = 0
(2.14)

we can declare that they represent the same quadric of Π3 with re-spect to R if, and only if ∃ λ ∈ R − {0} so that a′ij = λ · aij ∀ i, j ∈

18



CHAPTER 2. MATHEMATICAL TOOLS
{0, 1, 2, 3}.It follows that every quadric Q of Π3 is defined, with respect to R,by infinite algebraic second order equations, proportional betweeneach other. Generally, we say that the equation ofQ with respect to
R is defined up to a proportionality coe�cient.By this point it is obvious to the reader that a quadric is nothing butthe analogous of a conic, defined on a space of dimension 3. Given aquadric Q in Π3, we call A the associated matrix of Q with respecttoR, where

A =


a00 a01 a02 a03
a01 a11 a12 a13
a02 a12 a22 a23
a03 a13 a23 a33

 ∈ S4(R) (2.15)

If detA(Q) 6= 0, Q is said to be non-degenerate. In which case, de-pending on its behaviour with respect to the improper plane π∞, Qis:
• a paraboloid if π∞ is tangent to Q
• an ellipsoid if π∞ is external to Q
• a hyperboloid if π∞is secantQ

LetQ be a quadric of Π3, with A ∈ S(R) being its associated matrixwith respect toR. We have:
• Q is a paraboloid if and only if A00 = 0

• Q is an ellissoid if and only if A00 6= 0 and concordant with a33,
and its minor

(
a22 a23
a23 a33

)
has positive determinant

• Q is a hyperboloid if and only if A00 6= 0, but it does not simul-taneously satisfy the two conditions required to be an ellipsoid
with A00 being the algebraic complement of the element a00 in thematrix A.

19



CHAPTER 2. MATHEMATICAL TOOLS

2.9 Algorithms

Algorithms are defined as a finite sequence of instructions to be fol-lowed in order to solve a problem or perform a computation. Theyare widely used in robotics, as they represent the most e�cient wayof translating a specific set of tasks the robot is required to performto a language it can understand: mathematics.This section will explore those algorithms the understanding of whichwill greatly aid the reader in thoroughly grasping the concepts ofthis dissertation. Before delving into them, however, it bears im-portance to illustrate the following concept:
In mathematics, a graph is an ordered pair comprised by a set of
vertices (also called nodes) and a set of edges (also called lines) con-necting them.
The previous notion should prove helpful in visualizing the innerworkings of the algorithms investigated hereafter.

2.9.1 Dijkstra’s Shortest Path Algorithm

Dijkstra’s algorithm is employed to find the shortest path betweennodes in a graph. Since it relies on a starting node from which thealgorithm spreads, it proves to be a suitable and e�cient tool to beapplied to robotic motion planning. Dijkstra’s algorithm follows thebest-first approach, and revolves around the concept that any sub-path B → C of the shortest path A → C is also the shortest pathbetween B and C. In theory, Dijkstra’s algorithm is able to find theshortest path between a set starting node and all the other verticesin the graph. However, practical applications often employ it in or-der to compute the shortest route between two specific vertices,defined a priori: the starting node and the destination node.The algorithm is as follows:
20



CHAPTER 2. MATHEMATICAL TOOLS
• define a set of all the visited nodes, and initialize it as empty
• define a set of all the unvisited notes, and fill it with all thenodes in your graph
• initialize the distance of your starting node A as 0

• initialize the distance between every pair of nodes as∞
then

1. set the unvisited node with the shortest distance as the currentnode C
2. consider all the unvisited neighbours of C, and compute theirdistances from the current node
3. if the calculated distance between two nodes is shorter thanthe previously known distance, update it with the new dis-tance
4. set the current node as visited, and update the new currentnode as the node with the shortest distance from the previouscurrent node
5. if the current node is the destination node, stop. You havereached your goal and computed the shortest distance to itfrom your starting node
6. if the current node is not the destination node, and there areare unvisited nodes neighbouring C, go back to step 2

The computational complexity of the algorithm is:
O((|E|+ |V|)log(|V|))

where
21



CHAPTER 2. MATHEMATICAL TOOLS
• |V| denotes the number of nodes
• |E| denotes the number of edges

2.9.2 Gradient Descent Algorithm
This particular algorithm is the backbone supporting the whole ofchapter three. It stems from calculus, thanks to which we know that
if a function f is di�erentiable in−→P , its gradient points towards thedirection of maximum growth. Conversely, if one where to followthe direction indicated by the negative gradient of f , he would trailthe path of maximum descent, which is what we want. To under-
stand this parallelism, let’s consider the function f(q): since −→∇f(q)points towards the direction of maximum growth, we want to moveagainst it, as we are trying to reach the global minimum of f . Wehave:

qn+1 = qn −
−→
∇f(qn) (2.16)

Clearly, f(qn) ≥ f(qn+1), which means we can repeat this process toreach progressively lower values of f(q). Simply put:
• the robot starts in its initial configuration qgoal

• the robot acquires informations about its surroundings in theform of outputs of f(q)

• the robot computes −→∇f(q) and moves towards the configura-
tion pointed by−−→∇f(q)

It logically follows that, in the absence of local minima, by iteratingthis set of instructions for a finite amount of times, the robot willdescend until it reaches the global minimum of f(q). The presenceof local minima does indeed represent a major problem when em-ploying gradient descent: solutions will be discussed in Chapter 3.
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Chapter 3

Potential Fields

In this final chapter we will explore the main topic of this disser-tation: Potential Fields, and how they can be exploited to guide arobot to its goal configuration.The core idea around which this approach revolves is rather straight-forward: the robot should be attracted towards its goal configura-
tion while being repelled by obstacles. The contents of this chapterare taken from [2], [3], [4], [5], [6], [10], [11] and [12].

3.1 Artificial Potential Fields
In order to gain a clear understanding of the matter at hand, thereader is invited to picture the robot as a marble, positioned in anuneven environment. As any closed system tends to the state of
lowest potential, the marble will roll until its gravitational poten-tial U(q) = mgh is lowest: the global minimum of the environment.Knowing that, we want to create a function which will allow ourrobot to reproduce the same behaviour in any environment ξ it willoperate in. To accomplish this, we first have to define the propertiesof the function we want to create:

23



CHAPTER 3. POTENTIAL FIELDS
• the global minimum of the function has to correspond to qgoal

• the value of the function has to increase as we move farther
away from qgoal

• the value of the function has to decrease as we approach qgoal

Also, we need to remember the fundamental concept our functionmust follow: attracting the robot towards qgoal and repelling it fromobstacles. With these criteria clear, we can now create a function todescribe an Artificial Potential Field.First, we want our function to be the superposition of two smallerfunctions, which illustrate the crucial aspects of our field:
• the attractive potential Uatt (q)

• the repulsive potential Urep (q)

Thus, our di�erentiable potential function U : ξfree → R is de-scribed as
U(q) = Uatt(q) + Urep(q) (3.1)

Now that we have modelled the main frame of our function, we aregoing to delve into each member separately, to better understandtheir inner nuances.

3.1.1 Attractive Potential
This first member of our equation serves as the guide of our robot: itdirects it towards the local minima of our function. In terms of po-tential, this translates to a well. The function describing a parabolic
well is:

U att(q) =
1

2
Kρ2goal(q) (3.2)

where
24



CHAPTER 3. POTENTIAL FIELDS
• K is a positive scaling factor
• ρgoal(q) is the euclidean distance ||q− qgoal||, which is di�er-

entiable everywhere in ξ
We know that every conservative force −→F equals the negative gra-dient of its potential U , so we can calculate the attractive force gen-erated by our potential well:

−→
F att(q) = −

−→
∇Uatt(q)

= −ξ(q − qgoal)
(3.3)

The problem with the parabolic well attractive potential is that ittends to infinity when ρgoal(q)→∞, thus generating forces too largeto be controlled. A solution to this problem is to consider a di�erentpotential well: the conic well, defined as
U att(q) = K ′ρgoal(q) (3.4)

The attractive force of this potential field is:
−→
F att(q) = −

−→
∇Uatt(q)

=
−K ′(q − qgoal)
||q − qgoal||

(3.5)

For us to benefit from the advantages of both forces without su�er-ing due to their shortcomings, it’s best to combine them in a piece-wise equation that varies based on the distance from qgoal. Having
called qp the pivotal point beyond which −→F att(q) generated by theparabolic well potential spirals out of control, forcing us to adopt aconic well potential, our attractive potential field will be defined as:

Uatt(q) =

{
1
2Kρ

2
goal(q) if q ≤ qp

K ′ρgoal(q) if q > qp
(3.6)

Now that we have found an attractive potential field that suits ourneeds, we’ll move on to the second member of our equation: therepulsive potential.
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3.1.2 Repulsive Potential
If the attractive field is tasked with leading the robot to its goal con-figuration, the repulsive fields guarantees that it will reach its desti-nation safely, without colliding against obstacles. Ideally, the repul-sive potential field should not a�ect our robot when it is su�cientlyfar away from obstacles. It is possible to define a repulsive potentialfield able to fulfil both of these conditions:

Urep(q) =

{
1
2ζ( 1

ρ(q) −
1
ρ0

)2 if ρ(q) ≤ ρ0

0 if ρ(q) > ρ0
(3.7)

where:
• ρ(q) is the minimum euclidean distance between q and ξobs
• ζ is a positive scaling factor
• ρ0 is a positive constant called distance of influence of the ob-stacles

As for the attractive potential field, we want to know how e�ec-tive our repulsive field is: we want to calculate the repulsive force−→
F rep(q). However, we are met with an issue: in order for −→F (q) =

−
−→
∇U(q) to stand, the function ρ(q) must be di�erentiable every-where in ξfree. That is only true under the assumption that ξobs isa convex region with a piecewise di�erentiable boundary. Such aclaim is unrealistic. In fact, while ρ(q) remains di�erentiable almosteverywhere in ξfree, there exist q configurations for which several

qc points are closest to ξobs, in which case ρ(q) is no longer di�eren-tiable in ξfree.One way around this complication is to partition ξobs into convexcomponents ξobsk , with k = 1, 2, ..., n, and to associate to each com-ponent its respective potential field Urepk
. The total repulsive po-
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tential field is simply the superposition of each specific Urepk

asso-ciated to each component ξobsk :
Urep(q) =

n∑
k=1

Urepk(q) (3.8)

We can now calculate the repulsive force −→F rep(q):
−→
F rep(q) =

n∑
k=1

−→
F repk(q) (3.9)

with:
−→
F repk(q) = −

−→
∇Urepk(q)

=

{
ζ( 1

ρk(q)
− 1

ρ0
) 1
ρ2k(q)

−→
∇ρk(q) if ρk(q) ≤ ρ0

0 if ρk(q) > ρ0

(3.10)

Having computed both the attractive and repulsive potential field,we e�ectively defined an artificial potential field able to safely guideour robot to its goal configuration, independently of its starting po-sition. Thanks to the gradient descent algorithm, our robot will al-ways follow the direction of steepest descent until it reaches its goalconfiguration at the global minimum of the function, while simulta-neously staying clear of any obstacle. The reader is invited to recallthe analogy he was introduced to at the beginning of the chapter,and apply it to a functional example in light of the knowledge accu-mulated up to this point:
• the robot is the spherical marble

• the environment is the artificial potential field

• the obstacles are protrusions

• the environment is plain, the artificial potential field is a slope
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• the goal configuration is the global minimum of the field

As the marble rolls downhill, the robot moves forward. Wheneverthe marble circumvents a protrusion, the robot avoids an obstacle.The iteration of these actions ultimately leads the marble to reachthe bottom of the slope, at which point the robot will have attainedits goal configuration.Now that the reader understands how potential fields are employedin real motion planning applications, it is time to address realisticscenarios. Most notably, which issues are routinely incurred uponwhen applying this approach to real life scenarios.

3.2 Drawbacks
The potential field method was developed as an online collision avoid-ance approach for applications in partially observable environments.Its reliance on real-time informations make it susceptible to com-plications: the Local Minima problem and the GNRON problem.

3.2.1 Local Minima
By far the biggest drawback associated to this method, the localminima trap can easily be understood by considering the rollingmarble example: in an ideal situation, the artificial potential fieldwill present a single, global minimum which the marble will be at-tracted to and roll towards. However, such a consummate circum-stance is seldom encountered in practice. Usually, the potentialfield will include several local minima, which the robot is likely tohead to and be stuck in depending on its initial position. They areoften associated with the presence of obstacles or the action of therepulsive force. Such a feature constitutes a grave drawback of thisapproach, also because it is laborious to work around. Possible so-lutions will be discussed henceforth.
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navigation functions

A function f : ξfree → [0,∞] is called a navigation function if:
• it is smooth
• is uniformly maximal on the boundary of free space
• is a Morse function (every pointxc of f is isolated, where−→∇f(xc) =

0)
• has a unique minimum at qgoal

as can be seen, navigation functions have the unique characteris-tic of accepting a single minimum, which logically avoids the localminima trap by default. As e�ective as they are, however, naviga-tion functions are only computable for a limited class of systems.Furthermore, they are more suitable for planning in partially ob-servable, continuous environments; making them rarely compati-ble with potential field-guided path planning.

repulsive and vortex fields

Repulsive Fields and Vortex Fields follow the same principle: re-working the original function to have any existing local minima re-pel the robot.The repulsive field approach focuses on the existing repulsive po-tential function, and modifies it by adding an external force. Thisensures that whenever the robot approaches a local minima, it ispushed away by it.The vortex field approach, on the other hand, replaces the repul-sive force of the artificial field with an action forcing the robot to goaround the obstacle by means of a force field, thus eliminating thesource of the problem. These proposed techniques are more suited
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to partially observable environments planning, as they do not re-quire total access to its informations.Other solutions Include:

• heuristics
• backtracking from the local minimum and implementing a dif-ferent approach in order to avoid it

Having introduced and discussed the local minima issue, as well asthe most commonly employed techniques for handling it, we willaddress a second limitation inherent to the potential field approach:the GNRON.

3.2.2 GNRON
The GNRON problem, while seemingly di�erent, is actually a partic-ular case of the local minima issue. It stands for Goal Non Reachablewith Obstacle Nearby. This complication arises when our goal con-figuration qgoal is in the vicinity of an obstacle. In fact, as we havepreviously discussed, our repulsive potential function pushes therobot away when it nears an obstacle. We also understand that theattractive potential function yields lower values the closer we are to
qgoal. Thus, in the aforementioned configuration, the high repulsivevalue of the potential function given by the vicinity of an obstaclewill best its attractive value, low due to the proximity of qgoal. Inother words, the goal configuration will no longer correspond tothe global minimum of the function whenever it is within the dis-tance of influence of an obstacle.The most e�ective solution to solve this problem requires a suit-able adjustment of the repulsive potential field, which will now beinvestigated.
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Adjusting the repulsive potential field

Ideally, we would want to reshape Urep so that it does not a�ectour robot if it is nearing qgoal. However, we have already placed adistance-related restriction on the repulsive potential, and adding asecond one would complicate the function greatly, introducing fur-ther issues: we have to find a di�erent approach. Let us consider:
Urep(q) =

{
1
2ζ( 1

ρ(q,qobs)
− 1

ρ0
)2ρn(q, qgoal) if ρ(q, qobs) ≤ ρ0

0 if ρ(q, qobs) > ρ0
(3.11)

Where:
• ρ(q, qobs) is the shortest euclidean distance between the robotand an obstacle
• ρ(q, qgoal) is the euclidean distance between the robot and thegoal
• ρ0 is the distance of influence of the obstacle
• ζ is a positive constant

The introduction of the new term ρn(q, qgoal) ensures that the po-tential function reaches its global minimum if and only if q = qgoal,thus eliminating the issue.
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Conclusions

This dissertation explored the relatively new and fast growing fieldof path planning, and studied how potential fields are employed inits practical applications. At first, the reader was briefly introducedto the world of robotic motion planning via a quick tour through thefoundations of this field. Subsequently, the dissertfation delved intoits core subject: potential fields. It began by illustrating how they aredesigned and tailored in order to suit the robot’s designated appli-cation, and concluded by delineating those impediments which arefrequently faced when exercising this approach.
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