
Alma Mater Studiorum · Università di Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea in Automation Engineering

ROTATIONS,

QUATERNIONS

AND POSE ESTIMATION

Relatore:

Prof.

MASSIMO FERRI

Presentata da:

FILIPPO SENZANI PEZZI

Sessione II

Anno Accademico 2018/2019

Abstract

One of the most important skills for a robot is to recognize and locate rigid bodies in 3D space.

A robot needs to know how to represent a given information, what kind of paradigms can be

used to process it, and how to implement those paradigms. The determination of the position

and orientation of objects in the scene takes the name of pose estimation, which can be handle

either in two or three dimensions. The goal of pose estimation is to answer to the following

questions: How to represent models and scenes? What constraints and what paradigms are

relevant?

For sure, something relevant are translations and rotations performed by a robot arm. The aim

of this work, in fact, is not only to describe the pose estimation problem, which rather concerns

computer vision, but also to give the right mathematical instruments to pursue this ambition.

Starting from a general description of rotations in the first Chapter, with an important excursus

about Euler angles, this work continues through Chapter 2 and 3 taking in consideration Lie

groups, special unitary matrices and quaternions, which are all strictly bonded to rotations.

Eventually, Chapter 4 analyzes the pose estimation problem and some of the solutions provided

through the years.

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4

Sommario

Una delle caratteristiche più importanti di un robot è quella di riconoscere e localizzare i

corpi rigidi nello spazio tridimensionale. Un robot deve sapere come rappresentare una data

informazione, che tipo di paradigmi possono essere usati per processarla e come implementare

quei paradigmi. La determinazione della posizione e dell’orientamento di un oggetto nella scena

prende il nome di stima della posa, che può essere praticata sia in due che in tre dimensioni.

L’obiettivo della stima della posa è rispondere alle seguenti domande: come si rappresentano i

modelli e le scene? Quali vincoli e quali paradigmi sono rilevanti?

Di certo, le traslazioni e le rotazioni compiute da un braccio robotico sono rilevanti. Infatti,

il proposito di questa tesi non è solo quello di descrivere il problema della stima della posa,

che concerne piuttosto la computer vision, ma anche fornire i giusti strumenti matematici per

ottenere questo risultato.

Partendo da una descrizione generale delle rotazioni nel primo Capitolo, con un excursus

importante riguardo gli angoli di Eulero, la tesi continua attraverso il Capitolo 2 e 3 prendendo in

considerazione i gruppi di Lie, le matrici unitarie speciali e i quaternioni, che sono strettamente

legati alle rotazioni. In conclusione, il Capitolo 4 analizza il problema della stima della posa e

alcune delle soluzioni fornite nel corso degli anni.

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

6

Ringraziamenti

Prima di tutto vorrei ringraziare il Professor Massimo Ferri: la sua competenza e la sua

disponibilità hanno reso leggera quest’ultima tappa del mio percorso.

Un grazie speciale a tutti i miei amici, in particolar modo a Fede, alla Betta, a Lollo e alla

Claudia: i veri amici sono quelli che ti aiutano a rialzarti quando gli altri neanche sanno che sei

caduto. Siete sempre stati il mio porto sicuro nei momenti di tempesta, e anche se i chilometri

tra di noi in futuro potranno essere molti, vi porterò sempre nei miei pensieri.

Ma il ringraziamento più grande di tutti non può che andare a “babbomamma”, ai quali

dedico questo importantissimo traguardo. Mi hanno sempre sostenuto sia moralmente che

economicamente in ogni mia decisione, senza mai farmi pesare niente, cercando di farmi sentire

il più tranquillo e spensierato possibile. E tutto questo non è per niente scontato. “Per aspera

ad astra”, e se mai riuscissi davvero ad arrivare alle stelle, mi auguro di trovarvi sempre al

campo base a sostenermi. Vi voglio bene.

“E quindi uscimmo a riveder le stelle.”

(Inferno XXXIV, 139)

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

10

Contents

1 Rotations and Euler angles 1

1.1 Introduction . 1

1.2 Rotations . 2

1.2.1 Angle and axis of an orthogonal matrix 3

1.2.2 The matrix of rotation R(φn) . 3

1.3 Euler angles . 4

1.3.1 Euler angles: a minimal representation of orientation 5

1.3.2 Triads . 6

1.3.3 Euler triad Z-X-Z . 6

1.3.4 Example of application of Euler angles . 7

1.4 Euler angles and robotics . 8

1.4.1 A more natural representation by means of Euler angles 9

1.4.2 Pros & Cons of Euler angles . 9

1.5 Tait-Bryan angles . 10

1.6 Rotation matrices and Euler triads . 11

1.6.1 From Euler triad to rotation matrix . 11

1.6.2 From rotation matrix to Euler triad . 12

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

1.6.3 From one Euler triad to another Euler triad 13

2 Lie groups and SU(2) groups 15

2.1 Lie groups . 15

2.1.1 Lie algebra of a Lie group . 16

2.2 Special Unitary matrices. The SU(2) group . 17

2.2.1 Rotations and SU(2) . 17

2.2.2 SO(3), SU(2) and quaternions . 19

2.2.3 Application: angle, axis of rotation and SU(2) matrices in terms of Euler

angles . 20

3 Quaternions 21

3.1 Three equivalent definitions of quaternion . 22

3.1.1 Considerations . 22

3.2 Algebra of quaternions . 23

3.2.1 Sum of quaternions . 23

3.2.2 Product of quaternions . 23

3.2.3 Algebric structure . 23

3.3 Conjugate and Norm . 24

3.4 Exponential, logarithm and power functions . 24

3.5 Unit quaternions . 25

3.6 Quaternions and Rotations . 25

3.7 Angular displacement . 26

3.8 Quaternions and matrices . 27

3.9 SLERP - spherical linear interpolation . 28

12

4 Pose estimation 31

4.1 2D - 2D estimation . 32

4.1.1 Problem . 33

4.1.2 Least-squares method . 33

4.1.3 Robust method . 34

4.2 3D-3D estimation . 36

4.2.1 Problem . 36

4.2.2 Derivation . 36

4.3 2D perspective projection - 3D pose estimation 37

4.3.1 Iterative least-squares solution . 37

4.3.2 Robust M-estimation . 38

4.3.3 Pseudocode for extracting 3D from 2D . 40

4.4 Three point perspective pose estimation problem 40

4.4.1 Definition of the problem . 41

4.4.2 Solutions . 42

4.4.3 Comparisons of the solutions . 46

4.5 Engineering application by Faugeras: pose of 3D objects 47

4.5.1 The effect of T applied on p . 50

4.5.2 Finding the initial rotations . 51

4.5.3 Finishing the search . 51

Conclusions 53

Bibliography 55

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

14

Chapter 1

Rotations and Euler angles

1.1 Introduction

Being SO(Rn) the special orthogonal group of Rn, i.e. the group of unitary operators

T : Rn −→ Rn , such that det(T) = 1, we call rotation in the affine space An(R) an element

of the group SO(Rn) [1]. Being A ∈ SO(3), and being A 6= Id, we can state that A owns the

eigenvalue λ = 1, and the corresponding eigenspace R3
1 = {v ∈ R3|A(v) = v} has a dimension

equal to 1. Moreover, each rotation A ∈ SO(3) leaves fixed all the points of a straight line

passing through the centre of rotation O: this straight line is called rotation axis.

In general it can be stated that a rotation matrix is a linear operator which transforms the

coordinates of a point from a reference frame in another one, whose origin is coincident with

the starting reference frame. Rotation matrices are orthonormal matrices with a positive and

unitary determinant. An orthonormal matrix is characterized by the following properties:

• the inverse and the transpose coincide: RR′ = R′R = I, i.e. R−1 = R′;

• matrix’s lines are orthogonal, i.e. perpendicular vectors with unitary norm;

• matrix’s determinant has unitary module;

• rigid rotation keeps unchanged the distances between each couple of points and angles

among segments, that is, the dot product is invariant with respect to rotation:

(p1R) · (p2R) = p1 · p2

In a 3D space, rotations form a non commutative group with respect to the product between

matrices. This group is called special group of orthonormal rotation and it’s indicated with

SO(3). Actually, the representation by means of rotation matrices may present some inconvenients:

1

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

first of all it’s not so intuitive to find out which are the three independent parameters which

characterize a generic matrix. Second, it’s not numerically robust, which means that the

procedure carried out to calculate the values of a matrix may lead to a result which doesn’t

belong to SO(3), so that matrix needs to be orthogonalized.

1.2 Rotations

Even though they are not a minimal representation as Euler angles, rotation matrices are a

valuable instrument to represent the orientation of a rigid body in space [2]. As a consequence,

it would be of interest to convert an orientation expressed by means of Euler angles in the

equivalent rotation matrix, and viceversa.

Rotation is a particular kind of isometric transformation which moves points of a rigid body in

space, without changing distance between themselves, around the rotation axis, whose points

don’t change position. Consider, as an example, a rotation around z-axis: each point of the

rotating body moves on a plane parallel to x-axis and y-axis. Given P the initial point and Q

the point obtained after the rotation around z of an angle θ, the components of the two points

would be XP = ρ cosφ and YP = ρ sinφ, XQ = ρ cos (φ+ θ) and YQ = ρ sin (φ+ θ).

Operating in homogeneus coordinates, it’s possible to find a matrix H such that Q = HP .

After some calculation, we can state that

H = Rot(z, θ) =


cosφ − sinφ 0 0

sinφ cosφ 0 0

0 0 1 0

0 0 0 1


Similarly, for rotation around y-axis and x-axis,

Rot(y, θ) =


cosφ 0 sinφ 0

0 1 0 0

− sinφ 0 cosφ 0

0 0 0 1



Rot(x, θ) =


1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1


2

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

1.2.1 Angle and axis of an orthogonal matrix

We shall be concerned by the parametrization of a rotation in the form R(φn), where φ is in

a range from −π to π, and n is a unitary vector. The problem we want to solve is, given the

matrix A ∈ SO(3), to determine φ,n.

Since cosφ = 1
2(Tr A − 1), we must find the solution of the characteristic equation for A

corresponding to the root +1, which is the eigenvalue that corresponds to the eigenvector n.

Every matrix can be written as the sum of a symmetric and a skew-symmetric matrix:

A = 1
2{(A+A′) + (A−A′)}. It’s convenient to call S the skew-symmetric “component” A−A′:

S = A−A′ =


0 c b

−c 0 a

−b −a 0


Thanks to the orthogonality condition AA′ = 1, the equation to be solved is Sn = 0, which

could be written as 
0 c b

−c 0 a

−b −a 0



nx

ny

nz

 = 0

Now, we can assume that nx = anz/c and ny = anz/c, where nz = ±c(a2 + b2 + c2)−
1
2 .

Considering that

a2 + b2 + c2 =
1

2
Tr(SS′) = 4 sin2 φ

we can find nx = ±a(2sinφ)−1, ny = ∓b(2sinφ)−1, nz = ±c(2sinφ)−1.

1.2.2 The matrix of rotation R(φn)

Given the rotation angle φ and the rotation axis n = (nxnynz), the corresponding orthogonal

matrix is requested. As we already know, given any skew-symmetric matrix S, an orthogonal

matrix A can be built up by means of the formula A = expS = 1 +S+
1

2!
S2 + ..., and then An

= n + Sn +
1

2!
S2n + ... = n, because Smn = 0, ∀m.

By redefining the skew-symmetric matrix as

Z =


0 −nz ny

nz 0 −nx

−ny nx 0


we can continue to state that

A = exp(φZ) = 1 + (sinφ)Z + (1− cosφ)Z2

3

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Knowing that Tr Z = 0 and Tr Z2 = −2, Tr A = 1 + 2 cosφ, which shows that A coincides

with the desired matrix A:

A = R̂1
r(φn) = 1 + sinφZ + 2(sin2 1

2
φ)Z2

Thus, the matrix product that we shall need is easily obtained: Zr = n× r. In conclusion, we

find

R(φn)r = r + (sinφ)(n× r) + 2(sin2 1

2
φ)n× (n× r)

This is known as conical transformation of r because under it this vector moves on a cone

around the rotation axis n.

1.3 Euler angles

In this section, the problem of representing univocally the position of a rigid body in space is

considered. By means of a reference frame in homogeneus coordinates, it’s possible to fix some

appropriate conventions (e.g. axes origin in space) and therefore determine the position and

the orientation of the rigid body. Consider, for example, a rigid body and two reference frames,

one fixed in space and one fixed to the body (that means, a reference frame whose origin is

coincident with the center of mass of the body). It can be proved that any position in space of

that body can be described by means of a rotation and of a translation. Why did I consider

two reference frames? Because both rotation and translation are expressed as transformations

of the base frame of the body with respect to the fixed one [3].

Each rototranslation of a rigid body in space may be represented by the following relation:

q′ = Rq + d

where q and q′ represent the body (or, better, each point of the body) respectively before and

after the rototranslation; d represents the translation and R the rotation. It’s worth mentioning

that a rigid motion is called rototranslation if there exists a direction (called prime direction)

of fixed straight lines which, during the motion, remains parallel to itself. The direction of

angular velocity is the same of the prime direction, and a fixed straight line is a straight line

which passes through two points of the rigid body (thus, there exists an infinite number of fixed

straight lines). Whilst vector d contains 3 parameters, rotation matrix R contains 9 parameters.

That’s because a rigid body in space has 6 degrees of freedom (DOFs): 3 DOFs for rotation

and 3 DOFs for translation. Then, vector d is a minimal representation of the translation of

the body, because it contains a number of independent variables equal to the number of DOFs

4

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

(i.e. 3). On the other hand, R is not a minimal representation of the rotation, because it

utilizes 9 parameters in order to represent 3 DOFs. Therefore those 9 parameters are linearly

dependent and they could be brought back to the minimal 3. Indeed, it can be proved that the

9 parameters of R are bonded to the relation

RR′ = I

which, alone, fixes 6 parameters. The 3 left of course are those fixed by the effective degrees of

rotation. If the goal is to proceed with the use of a minimal representation, I need to change

the way I represent a rigid body in space. More precisely, I need to replace R with something

minimal, something which uses only 3 parameters: Euler angles answers to this requirement.

1.3.1 Euler angles: a minimal representation of orientation

The representation of orientation in space is a complex issue. Euler’s rotation theorem states

that, in 3D space, any displacement of a rigid body in such way that a point on the rigid

body remains fixed is equivalent to a single rotation about an axis that passes through the

fixed point. Accordingly, such rotation can be described by three independent parameters: two

for describing the axis and one for the rotation angle. Orientation in space, however, can be

represented in several other ways, each with its own advantages and disadvantages. Some of

these representations use more than the necessary minimum of three parameters.

As in the case of rotation matrix R, also in case of Euler angles it’s necessary to use a reference

frame integral to the rigid body; but, unlike R, the final rotation is described in a minimal

way through 3 rotations around coordinate axes. The only limitation is that two consecutive

rotations must take place on different axes, not around the same one. As a consequence, different

combinations may be achieved, and indeed each one of them is a particular case of Euler angle.

Therefore, before using them, it’s necessary to fix a convention, i.e. a triad of axes with respect

to the bond considered. But this triad is not the only element to be decided a priori.

Rotations through the three chosen axes may happen in two different ways. If they are all

referred to the axes of the fixed frame, we speak of extrinsic rotation. If instead rotation are

referred to the frame integral to the body, we are in presence of an intrinsic rotation. These

two methods are ideed equivalent, i.e. an extrinsic triad may be easily lead to an intrinsic one

by inverting the order of elementary rotations.

5

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

1.3.2 Triads

There exists a convention which states that Euler triads (a set of three elements, in this case

three axes around which the body rotates in sequence) are only those in which the first axis

is coincident with the last one. All those triads which consist of any combination of the three

distinct axes are called Tait-Bryan triads (they will be considered later in this chapter).

Euler triads {z − x− z;x− y − x; y − z − y; z − y − z;x− z − x; y − x− y}

The order in which the three rotations are done is important; thus, we have a total of 216 (63)

possible sequences. It’s good to recall that each triad may be indifferently referred to intrinsic

or extrinsic rotations, hence there will be 24 triads (12 exrinsic and 12 intrinsic).

1.3.3 Euler triad Z-X-Z

Given α , β and γ angles in radians, the three rotation to be executed are the following:

1. first rotation of α around z-axis of the frame integral to the body;

2. second rotation of β around the new x-axis of the rotated reference frame (x′);

3. third rotation of γ around the new z-axis of the rotated reference frame (z′′).

It’s possible to visualize these three rotations by means of a gyroscope:

6

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Nodes line, Precession, Nutation and Spin

Consider XY Z the reference frame fixed to the body, and xyz the frame fixed in space: the

nodes line N will be the line which intersects the two planes XY and xy, when they are distinct.

If they coincide, N will coincide with X-axis. Thanks to this definition, now it’s possible to

provide the geometric definition of Euler angles:

• α, the angle between x-axis and N , is called angle of precession (0 ≤ α < 2π);

• β, the angle between z-axis and Z-axis, il called angle of nutation (0 < β < π);

• γ, the angle between N and X-axis, is called angle of spin (0 ≤ γ < 2π).

Usually, α, β and γ are replaced respectively by ψ, θ and φ, angles in radians as well.

Nodes line could be represented as the ratio

~n(t) =
~e3(0)× ~e3(t)

|~e3(0)× ~e3(t)|

where ~e3(0) is the versor along z-axis of a fixed frame, while ~e3(t) is the versor along z-axis of

the frame fixed to the body.

The angular velocity of a rigid body may be represented as a function of Euler angles:

~ω = ~ω(ψ̇, θ̇, φ̇, ψ, θ, φ)

1.3.4 Example of application of Euler angles

Consider the following real-life situation: it’s requested to attach a FISNAR dispensing valve to

the end-effector of a Meca500 robot arm. Naturally, the engineer who designed and machined

the adapter didn’t care about Euler angles and was only concerned with machinability and

reachability. In his design, there were essentially two rotations of 45◦. Firstly, he used two

diametrically opposite threaded holes on the robot flange to attach the adapter, which caused

the first rotation of 45◦. Secondly, the angle between the flange interface plane and the axis of

the dispenser was 45◦.

7

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Note that when using axi-symmetric tools, it is a common practice to align the tool z-axis with

the axis of the tool. This is particularly useful with the mobile xyz Euler angle convention,

since the redundant rotation about the axi-symmetric tool corresponds to the third Euler angle,

γ. Thus, the first two Euler angles define the axis of the tool, while the third one can be used

to choose the optimal configuration of the robot (i.e., far from singularities).

1.4 Euler angles and robotics

Robots kinematics studies the bond among independent variables of robot’s joints and the

position of joints themselves. An industrial robot may be schematized as a sequence of links

connected by joints. The purpose of joints is to provide necessary DOFs in order to reach

specific points in surrounding space.

8

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

The last link (Link 6 in figure) is the end effector, in charge of the manipulation (grab and

release) of objects. The first question to be asked is how many joint/link couples are essential

for catching any object in space. Nowadays, robots are built so that each point of space could be

reached by the end effector by means of any orientation: six DOFs will be necessary, therefore

the end effector could be considered as a rigid body. It’s possible then to say that the number

of joint/link couples necessary to move the end effector toward any point is 6.

From now on, we shall only consider end effectors with 6 DOFs inside robot manipulators with

6 pairs of joints/links.

1.4.1 A more natural representation by means of Euler angles

Consider to separate the 3 DOFs of translation from the 3 DOFs of rotation. This representation

brings remarkable semplifications, from the point of view of both modeling and control. Thanks

to a more rigorous representation, the position of the effector in space could be described by

means of vector v:

v =

p
φ


where p ∈ R3 represents the position of the effector, while φ represents its orientation.

Vector p consists of a triple of real values, so it can be thought of as a point in space indicated

by x, y, z. For what concerns φ, it should be a minimal representation; in fact a rotation matrix

may bring some inconvenience. The minimal representation of orientation which perfectly fits

this role is given by Euler (or Tait-Bryan) angles.

In order to use an Euler triad, a fixed and a mobile frame should be chosen; the mobile one has

to be fixed to the object which rotates. As fas as the fixed frame is concerned, usually it’s fixed

at the base of the robot.

At this point, it has to be decided which Euler or Tait-Bryan triad should be used to represent

the rotations; it’s convenient to choose the one which best reflects movements of robot’s wirst.

In a robot manipulator the last three joints has the task to provide the final rotation of the

effector by means of three independent and orthogonal rotations.

1.4.2 Pros & Cons of Euler angles

Euler angles solve the problem of the mapping of DOFs, indeed they express the desired rotation

as a sequence of three different rotations around default axes, so we have 3 angles in 3 DOFs.

9

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Moreover, they are numerically stable. Nevertheless, the geometry of orientations is difficult,

and it varies with the selection of initial axes. There is no rational method to multiplicate or to

combine two rotations; also the conversion between rotation matrices and angular coordinates

is complicated and expensive. Besides, it’s not possible to simply rotate, except with respect

to default axes. In conclusion, by using Euler angles, the problem of gimbal lock may occur,

which consints in the loss of a rotational DOF when two of the three axes are guided in aligned

configurations.

Quaternions (see Ch. 3) aren’t affected by gimbal lock problem; at the same time they preserve

a compact parametrization of rotations. With respect to matrices, quaternions allow to create

fluid interpolations, for example between two default angular values.

1.5 Tait-Bryan angles

Among Tait-Bryan triads (x− y− z, y− z−x, z−x− y, x− z− y, z− y−x, y−x− z), the most

interesting is z− y− x, also known as Roll-Pitch-Yaw triad, widely used in aeronautic field. As

for all the other kind of triads of axes, it’s necessary to choose whether intrinsic or extrinsic

rotations should be carried on. By considering intrinsic rotations, we’ll obtain a reference frame

fixed to the rigid body: in case it’s an aeroplane, the centre of the frame would coincide with

the centre of gravity of the airplane, as shown in figure:

Rotation around the three axes allows the airplane to compute respectively movements of roll

around z-axis, pitch around y-axis and yaw around x-axis.

Consider now to define rotations by means of an extrinsic method, relatively to a fixed reference

frame z − x − y, which could be considered, for example, integral to Earth. The figure shows

10

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

this last case.

Also with extrinsic rotations exists a reference frame integral to the airplane, even though the

three angles are all represented with respect to the fixed frame.

Going on by choosing as rotation modality the extrinsic one, given α, β, γ as the three Tait-Bryan

angles, the following three rotations should be carried out to bring the body to the correct

orientation:

1. rotation of α around x-axis of the fixed frame;

2. rotation of β around y-axis of the fixed frame;

3. rotation of γ around z-axis of the fixed frame.

Unlike the preceding case (precession-nutation-spin with intrinsic rotation) the order x− y − z

is opposite with respect to z − x− y, because of extrinsic rotations.

1.6 Rotation matrices and Euler triads

1.6.1 From Euler triad to rotation matrix

On one side, Euler angles describes the orientation as a consequence of three rotations around the

three orthogonal axes; on the other side, we are able to represent the rotation matrix relative

to an elementary rotation around one axis. Then, in order to obtain the final orientation

11

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

considering all the three rotations, it’s sufficient to calculate first the three rotation matrices,

then combine (multiply) them. In particular, the three rotation matrices must be multiplied

following the same order of their corresponding rotation axes which appear inside the triad.

Consider now, as an example, to convert the triad z − y − z of intrinsic rotations (precession -

nutation - spin). The task consists in finding the three rotation matrices Z(α), Y (β) and Z(γ):

it would be sufficient to apply general formulas of rotation matrices around z-axis and y-axis

reported in Section 2.1, and substituting α, β and γ instead of φ [5]. The final rotation matrix

would be

R(α, β, γ) = Z(α)Y (β)Z(γ) = Rot(Z,α)Rot(Y, β)Rot(Z, γ)

1.6.2 From rotation matrix to Euler triad

The inverse problem is far more complicated than the preceding one. In fact, unlike the universal

method we provided in the previous case, it doesn’t exist a unique and precised sequence of

steps in order to achieve the conversion from matrix to triad. Usually, the followed path consists

in analyzing how the rotation matrix is presented, where each element is made up of products

of sines and cosines, trying to find some relations which can lead to the value of angles.

Consider again the example with the triad z − y − z: first of all, we need to introduce the

function atan2(y, x), which associates to y and x the relative value of arctan
y

x
. The advntage

of atan2 is that it’s able to determine univocally the angle by analyzing the sign of x and y,

without an uncertainity between I and III quadrant or between II and IV. Consider

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33


And now consider the following formulas in order to find α, β and γ:

β = atan2

(√
R2

31 +R2
32, R33

)
if sinβ 6= 0

γ = atan2 (R32,−R31)

α = atan2 (R23, R13)

if sinβ = 0

γ = 0

α = atan2 (R21, R11)

12

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

In order to understand the particular case sinβ = 0, and then β = 0, we need to consider the

specific triad z − y − z: if β is null, the rotation corresponding to y-axis is null, and then also

the third rotation around z-axis would take place around the first z-axis. Thus, there exists

infinitely many pairs (α, γ) which are able to provide the same final rotation. We proceed by

fixing arbitrarly one of the two angles, in this case γ at 0 for convenience, and α would be found

easily.

As a final consideration, it’s worth pointing out again that these calculations are valid only

for the z − y − z triad, so the triad has to be always specified before starting the conversion.

However, given a rotation matrix R, it’s always possible to decide which triad one wishes to

pass through.

1.6.3 From one Euler triad to another Euler triad

If more set of formulas like the one previously written for the conversion from matrix to triad

are available, each one to convert R in a different triad, it’s possible to use R as common point

in order to convert two triads among them. If, for example, the Tait-Bryan triad x−y−z needs

to be converted in the Euler triad z − x− z, it’s sufficient to follow these two steps:

1. convert x− y − z into R;

2. convert R into z − x− z.

13

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

14

Chapter 2

Lie groups and SU(2) groups

2.1 Lie groups

A Lie group is a group G that is also a differentiable manifold, compatible with the operations

which characterize groups [7]. That is, the inversion map

s : G→ G

g 7→ g−1

and multiplication map

m : G×G→ G

(g, h) 7→ gh

are smooth.

The word “smooth” in the definition above can be understood in different ways: C1, C∞,

analytic. It turns out that all of them are equivalent: every C0 Lie group has a unique analytic

structure. This is a highly non-trivial result (it was one of Hilbert’s 20 problems), and it will

not be proved in this treatment.

Roughly speaking, a Lie group is a continuous group, which means that all its elements can be

described by several real parameters; a group of transformations depends on these parameters

in a continuous way.

Suppose G is a Lie group and M is a C∞ manifold. An action of G on M is a map

A : G×M →M such that

A(g(A(h,m))) = A(gh,m)

A more common notation for the action is g ·m; in these terms, this condition is

g · (h ·m) = (gh) ·m.

15

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

SupposeG, H are Lie groups. A homomorphism fromG toH is defined as a C∞ map F : G→ H

which is also a group homomorphism.

Suppose G is a Lie group. A subgroup H of G in the algebraic sense is defined as a Lie subgroup

if H ⊂ G is a locally (with respect to H) closed submanifold of G.

Then, we can state that a Lie subgroup is a Lie group when equipped with the induced C∞

structure and the inclusion H → G is a Lie group homomorphism.

Let G be a Lie group of dimension n and H ⊂ G a Lie subgroup of dimension k. Then the coset

space G/H has a natural structure of a manifold of dimension n−k such that the canonical map

p : G→ G/H is a fiber bundle, with fiber diffeomorphic to H. The tangent space at 1̄ = p(1) is

given by T1̄(G/H) = T1G/T1H. Let x be a point in an n-dimensional compact manifold M , and

attach at x a copy of Rn tangential to M . The resulting structure is called the tangent space

of M at x and is denoted TxM . If γ is a smooth curve passing through x, then the derivative

of γ at x is a vector in TxM .

If H is a normal Lie subgroup then G/H has a canonical structure of a Lie group.

The following are examples of Lie groups [10] :

• Rn, +;

• R∗, ×;

• R+, ×;

• S1 = {z ∈ C : |z| = 1}, ×;

• GL(n,R) ⊂ Rn2
;

• SU(2)={A ∈GL(2,C)|AĀt = 1, detA = 1}

2.1.1 Lie algebra of a Lie group

Let G be a Lie group, and let g be a generic element of G. We define with Lg : G→ G the left

multiplication Lg(h) := g · h; this is an isomorphism, thus there exists an inverse L−1
g = Lg−1 .

At the same time, it’s possible to define a right multiplication Rg(h) := h · g with an inverse

D−1
g = Dg−1 .

Consider now fields v of vectors on G; v could be left invariant or right invariant if, ∀g, h ∈ G,

(dLg)(vh)] = vSg(h) = vg·h and (dRg)(vh)] = vRg(h) = vh·g.

The set of left invariant fields is isomorphic to the set of right invariant fields for the same Lie

group, even though the two sets, in general, don’t coincide. The set of left (right) invariant

16

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

fields is a vectorial space for a determinated Lie group.

Suppose G is a closed Lie subgroup of GL(n,C); then the Lie algebra of G may be computed

as Lie(G) = {X ∈M(n,C)| exp(tX) ∈ G for all t in R}.

2.2 Special Unitary matrices. The SU(2) group

If a matrix has to deal with a proper rotation, it has to be orthogonal or unitary (according to

whether the space on which they act is real or complex) and it has to have a unit determinant.

Matrices which satisfy this last condition are known as unimodular. We shall consider now

unimodular and unitary matrices of bilinear transformations. Unimodular matrices are also

called ”special”,whence the matrices in questions are special unitary matrices of dimension two,

in short SU(2) [2].

A very strong condition on the matrix elements of a SU(2) matrix is imposed by the unitary

condition, which requires A† = A−1. Every unitary matrix A can be normalized so that it

becomes unimodular (detA=1) by multiplying it with a constant, which doesn’t affect the

bilinear transformation:

A =

a b

c d

 7−→
λa λb

λc λd


where λ = ±(detA)−1/2. Moreover, every SU(2) matrix can still be multiplied by ±1; this

doesn’t affect the bilinear transformation entailed by it or the unimodular condition. Therefore,

A and −A are interchangeable. Due to this fact, SU(2) matrix has to be preceded by the ±

sign.

2.2.1 Rotations and SU(2)

In order to show how the bilinear transformation with SU(2) matrices gives 3D rotations, the

concept of isotropic vector has to be introduced.

Given two unit orthogonal vectors v and w, v2 = w2 = 1 and v · w = 0. An orthogonal

transformation keeps this couple of relations invariant: it can be formulated also in a more

compact way by inverting a vector r = v + iw, for which r2 = v2 − w2 + 2iv · w = 0. Such

vectors of zero length are called isotropic vectors; their main use is that they embody the couple

of conditions reported before in a single equation, so that an orthogonal transformation must

always transform an isotropic vector into another isotropic vector.

If we write an isotropic vector through its components x, y, and z, it would be x2 +y2 + z2 = 0.

17

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

It’s very convenient to define an isotropic parameter w = (x − iy)z−1, for which w∗ = −w−1.

The condition for SU(2) matrix to be a rotation is that ww∗ = −1 is invariant under the

rotation. Thus, given

w̄w̄∗ =
aw + b

−b∗w + a∗
· a
∗w∗ + b∗

−bw∗ + a
=
aa∗ww∗ + ab∗w + a∗bw∗ + bb∗

bb∗ww∗ − ab∗w − a∗bw∗ + aa∗

where

w̄ =

 a b

−b∗ a∗

 ◦ w, w̄∗ =

a∗ b∗

−b a

 ◦ w∗
we have the condition

−aa∗ + ab∗w + a∗bw∗ + bb∗

−bb∗ − ab∗w − a∗bw∗ + aa∗
= −1

which can be satisfied only if aa∗ = 1 and b = 0 (Case 1), or if a = 0 and bb∗ = 1 (Case 2).

These conditions are particularly simple to apply to three types of rotations: (i) all rotations

R(φz) around z-axis; (ii) a binary rotation R(πx) around x-axis; (iii) a binary rotation R(πy)

around y-axis.

Now we see how these rotations actually emerge from the SU(2) transformations when cases 1

and 2 above are considered.

Case 1 :

w̄ = aw(a∗)−1 = a2w

This is the eigenvalue equation for the variable u1 under a rotation R(φz). In fact,

ū1 = R(φz)u1 =exp(−iφ)u1. The corresponding SU(2) matrix would be

R̂(φz) =

e−i 12φ
ei

1
2
φ


Case 2 :

w̄ = b(−b∗w)−1 = b2w*

Compare this result with the following transformations

w̄ = R(πx){(x− iy)z−1} = (x+ iy)(−z)−1 = −w∗

w̄ = R(πy){(x− iy)z−1} = (−x− iy)(−z)−1 = w∗

Thus these two matrices are obtained:

R̂(πx) =

 −i

−i

 , R̂(πy) =

 −1

−1


18

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

2.2.2 SO(3), SU(2) and quaternions

Given Q the group of quaternions (see Ch. 3) and q = (s,v) a normalized quaternion (with

s+ v2 = 1), SO(3) maps onto Q as follows:

g ∈ SO(3) g 7→ ±q, q ∈ Q

This precisely parallels the homomorphism between SU(2) and SO(3)

g ∈ SO(3) g 7→ ±v, v ∈ SU(2)

In fact, SU(2) and Q are isomorphic. In order to establish more precisely this isomorphism,

consider the additive expression for a quaternion q: q = (s,v) = s1 + vxi+ vyj+ vzk. It follows

that the quaternions 1, i, j, k multiply precisely as the SU(2) matrices for the identity I, and

the three bilateral binary rotations of D2, Ix, Iy, Iz, where

I =

1

1

 Ix =

 −i

−i

 Iy =

 −1

1

 Iz =

−i
i


The group D2 consists of the identity E and the three bilateral binary (BB) rotations C2x, C2y,

C2z. A BB rotation is a rotation R(πn) such that there exists in the group to which it belongs

another operation R(πn′) with n′ ⊥ n.

Therefore, the quaternion q may be represented by a matrix Ǎ obtained by replacing 1, i, j, k

in that equation by I, Ix, Iy, Iz respectively:

Ǎ =

 a− ivz −vy − ivx

vy − ivx a+ ivz


Thus, a rotation R(λ,Λ) with a quaternion (λ,Λ) will be represented by the matrix

Ř1/2(λ; Λ) =

 λ− iΛz −Λy − iΛx

Λy − iΛx λ+ iΛx


The quaternion (−λ,−Λ), which corresponds to the same rotation just considered, is mapped by

the negative of the matrix Ř1/2(λ; Λ): the isomorphism betweenQ and SU(2) is thus established.

Since SU(2) is the covering group of SO(3), it follows that Q is also the covering group of SO(3).

It’s useful to notice that TrŘ1/2(λ; Λ) = 2λ, that is 2cos
1

2
φ, so that binary rotations (φ = π)

must be represented by traceless matrices as Ix, Iy and Iz. A binary rotation about an arbitrary

axis r = (x, y, z), with x2 + y2 + z2 = 1, will be represented by the traceless matrix

Ř1/2(π; n) =

 −iz −y − ix

y − ix iz


This matrix represents the unit quaternion (0, r). Since Ř1/2(π; n) is a SU(2) matrix, its

determinant is equal to 1.

19

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

2.2.3 Application: angle, axis of rotation and SU(2) matrices in terms of
Euler angles

As an illustration of the power of the quaternion algebra in dealing with rotations, we shall

determine the Euler-Rodrigues or quaternion parameters λ = cos
1

2
φ and Λ = sin

1

2
φn in terms

of Euler angles. R(λ; Λ) = R(αk)R(βj)R(γk). The quaternion parameters for these rotations

can be obtained, and comparing the scalar and vector parts one obtains

λ = cos
1

2
β cos

1

2
(α+ γ)

Λx = −sin1

2
β sin

1

2
(α− γ)

Λy = sin
1

2
β cos

1

2
(α− γ)

Λz = cos
1

2
β sin

1

2
(α+ γ)

It is now trivial to obtain φ and n in terms of Euler angles:

cos
1

2
φ = cos

1

2
β cos

1

2
(α+ γ)

nx = −
(
sin

1

2
φ

)−1

sin
1

2
β sin

1

2
(α− γ)

ny =

(
sin

1

2
φ

)−1

sin
1

2
β cos

1

2
(α− γ)

nz =

(
sin

1

2
φ

)−1

cos
1

2
β sin

1

2
(α+ γ)

Because −π < φ ≤ π, cos
1

2
φ must always be ≥ 0, but that sin

1

2
φ is undetermined as to sign,

whence n is also undetermined as to sign. Thus, the Euler angles cannot distinguish between

R(φn) and R(−φ,−n). Even if these rotations are the same, a distinction between them (i.e.

between their poles) is necessary in order to satisfy the continuity conditions in SO(3). It is thus

most important to realize that such continuity conditions in SO(3) aren’t necessarily satisfied

when Euler angles are used.

The corresponding matrix in terms of Euler angles would be

Ř1/2(αβγ) =

cos
1

2
β
− 1

2
i(α+γ)

−sin1

2
β
− 1

2
i(α−γ)

sin
1

2
β

1
2
i(α−γ)

cos
1

2
β

1
2
i(α+γ)



20

Chapter 3

Quaternions

In mathematics, quaternions are a number system that extends the complex numbers set. They

were formalized in 1843 by the Irish mathematician Sir William Rowan Hamilton, who was

looking for a method to extend complex numbers, which can be seen as points on a plane, on a

bigger number of spacial dimensions. He tried at first with a tridimensional extension, without

success: then, he realized that a 4-dimensional extension was needed: the quaternions [13].

Today, quaternions are used in rotation representations in 3D space, above all in 3D computer

graphics. The reason is that the combination of many transformations described by quaternions

is numerically more stabe than the combination of many matrix transformations. The representation

of a rotation as a quaternion (4 numbers) is more compact than the representation as an

orthogonal matrix (9 numbers). Furthermore, for a given axis and angle, one can easily construct

the corresponding quaternion, and conversely, for a given quaternion one can easily read off the

axis and the angle. Both of these are much harder with matrices or Euler angles.

Quaternions also avoid a phenomenon called gimbal lock, which is the loss of one degree of

freedom in a three-dimensional, three-gimbal mechanism. It can result when, for example. in

roll-pitch-yaw rotational systems, the pitch is rotated 90◦ up or down, so that yaw and roll then

correspond to the same motion, and a degree of freedom of rotation is lost. In general, it occurs

when the axes of two of the three gimbals are driven into a parallel configuration, “locking” the

system into rotation in a degenerate two-dimensional space.

21

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

3.1 Three equivalent definitions of quaternion

A quaternion q is given by the sum of an ordered pair made up of a scalar component s and a

3D vectorial component v:

q = (s,v) = s+ v

Another way to call v is ”imaginary component”, because it’s a vector with three complex

components.

The set of quaternions is indicated with H. A quaternion q belonging to H may be defined

through a linear combination of elements 1, i, j, k:

q = s+ ai+ bj + ck

where s ∈ R and (a, b, c) ∈ R are the components of v. Moreover, literal symbols i, j, k satisfy

the following properties:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

Therefore:

ijk = −1

i, j, k are multiplied following the same rules of a vector product between unit vectors of

coordinate axes of a right-hand reference system.

The last way to indicate a quaternion q is by means of a quadruple of real numbers:

q = (s, a, b, c)

This is possible thanks to the analogy with complex numbers, where s + ai is represented by

the real couple (s, a).

3.1.1 Considerations

Quaternions are a general mathematical entity which includes:

• real numbers: s = (s, 0, 0, 0), s ∈ R

• complex numbers: s+ ai = (s, a, 0, 0), s, a ∈ R

22

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

• vectors in R3: v = (0, a, b, c), a, b, c ∈ R; in this case, however, i, j, k must be interpreted

as unit vectors of coordinate axes of a right-hand reference system.

A quaternion of the form (s,0) is called a real quaternion. Because they multiply precisely like

real numbers, (s,0)(t,0) = (st,0); they can be identified with real numbers: (s,0) = s. We

can, in this way, define the product between a quaternion q and a scalar α ∈ R, which is known

as external product:

αq = (αs, αv)

A quaternion of the form (0,v) is called a pure quaternion. If the quaternion is pure,

q1q2 = (−v1 · v2,v1 ∧ v2)

3.2 Algebra of quaternions

3.2.1 Sum of quaternions

Given two quaternions q1 and q2,

q1 + q2 = (s1 + s2,v1 + v2)

The quaternion (0, 0, 0, 0) = (0,0) is the neutral element of addition. The algebric structure

(H,+) is an abelian group.

3.2.2 Product of quaternions

Given q1 = (s1,v1) = s1 + a1i+ b1j + c1k and q2 = (s2,v2) = s2 + a2i+ b2j + c2k,

q1q2 = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 ∧ v2)

where v1 · v2 = a1a2 + b1b2 + c1c2 ∈ R is a scalar product, while

v1 ∧ v2 = (b1c2 − b2c1)i− (a1c2 − a2c1)j + (a1b2 − a2b1)k is a vector product.

Product between quaternions is associative (i.e., q1(q2q3) = (q1q2)q3), but it’s not commutative

(i.e., q1q2 6= q2q1); it’s also distributive.

The quaternion (1, 0, 0, 0) = (1,0) is the neutral element of multiplication.

3.2.3 Algebric structure

The set of quaternions, with operations of sum and product between quaternions, establish

a non cummutative with respect to product. The set of quaternions, with operations of sum

23

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

between quaternions and product with a scalar, establish a real vector space of dimension 4. A

base for this space is given by (1, i, j, k).

3.3 Conjugate and Norm

Given a generic quaternion q, its conjugate would be

q̄ = (s,−v) = s− ai− bj − ck

If q is a pure quaternion, then q̄ = −q. The properties of the conjugate are:

• ¯̄q = q

• q1q2 = q̄2q̄1

• q1 + q2 = q̄1 + q̄2

Given a generic quaternion q, its norm would be

|q| =
√
qq̄ =

√
q̄q =

√
s2 + v · v =

√
s2 + a2 + b2 + c2

The norm of q it’s always a positive real number, it would be null only if q = 0. The properties

of the norm and of the inverse are:

• |q|2 = qq̄ = q̄q

• |q1q2| = |q1||q2|

• q−1 =
q̄

|q|2

• |q−1| = 1

|q|
= |q|−1

• q−1 = (q̄)−1

• (q1q2)−1 = q−1
2 q−1

1

3.4 Exponential, logarithm and power functions

Given a generic quaternion q = a+ v, the exponential is computed as

exp(q) =
∞∑
n=0

qn

n!
= ea

(
cos ‖v‖+

v

‖v‖
sin ‖v‖

)

24

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

while the logarithm is

ln(q) = ln ‖q‖+
v

‖v‖
arccos

a

‖q‖

The power of q raised to an arbitrary real exponent α is given by:

qα = ‖q‖αen̂αθ = ‖q‖α (cos(αθ) + n̂ sin(αθ))

3.5 Unit quaternions

Unit quaternions are those quaternions whose norm is 1. The set of unit quaternions is a

3-dimensional hypersphere in a 4D space:

S3 = {(s, a, b, c) ∈ R4|s2 + a2 + b2 + c2 = 1}

If q is a unit quaternion, q−1 = q̄.

Unit quaternions form a non abelian multiplicative group with respect to product.

3.6 Quaternions and Rotations

Each rotation of a point in three dimensions can be represented by an axis and a rotation angle:

unit quaternions are an easy tool to code with four numbers these informations axis-angle.

Rotation would be applied to a position vector, that is, a vector which represents the position

of a point with respect to the origin of the reference system in R3.

We want to rotate a point P ∈ R3 by an angle θ (in radians), around a rotation axis which

passes through the origin of a right-hand reference system. The rotation axis would be identified

by an unit vector n = (nx, ny, nz). From this, the following unit quaternion is defined:

q = (s,v) = cos
θ

2
+ (nxi+ nyj + nzk)sin

θ

2
=

(
cos

θ

2
,nsin

θ

2

)
which is a quaternion in its polar form. Point P ∈ R3 would be identified by the vector

r = (p1p2p3); the pure quaternion which would represent P is p = (0, r) = (0, p1, p2, p3). In this

way, points in R3 are identified with quaternions with first coordinate null.

Rotation determined by q and applied to p is given by the following conjugate operation:

q 7−→ qpq−1

The result of this operation is the vector p′ = (0, r’), which belongs to the set of pure quaternions

on R3. Each map defined in this way is indeed a rotation, because it preserves the norm:

25

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

|qpq−1| = |q||p||q−1| = |q||p||q|−1 = |p|.

Vector p′ is equal to vector p rotated by an angle θ around the axis through the origin, indicated

by unit vector n. The scalar component of p′ is null, while the vectorial component is given by

r’ = (cosθ)r + (1− cosθ)n(n · r) + (sinθ)(n∧ r). Again, this rotation is around an axis through

the origin: for any other rotations, first we need to translate the axis into the origin, then make

the rotation and eventually translate again the axis in the original position.

A sequence of rotation would be given by a sequence of quaternions, in particular the composition

of two subsequent rotations can be obtained multipling the two corresponding unit quaternions,

taking care of the order (because the product isn’t commutative) and of the fact that the two

quaternions have to be referred to the same rotation axis.

The inverse of a rotation is given by the inverse of the corresponding quaternion, which is the

conjugate in case of unit quaternions.

If we write q = [s, l,m, n]′ and v = [l,m, n]′, it’s easy to see that

qpq−1 = (0, 2(v, p)v + (s2 − ‖v‖2)p+ 2sv ∧ p)

We can also write v ∧ p = ṽp, where

ṽ =


0 −n m

n 0 −l

−m l 0


and (v.p)v = Ap, where A is a 3x3 matrix given by

A = [lv,mv, nv] =


l2 lm ln

lm m2 mn

ln mn n2


Therefore, the corresponding rotation matrix R would be

R =


s2 + l2 −m2 − n2 2(lm− sn) 2(ln+ sm)

2(lm+ sn) s2 − l2 +m2 − n2 2(mn− sl)

2(ln− sm) 2(mn+ sl) s2 − l2 −m2 + n2


It appears that the coefficients of R are polynomial functions of the coordinates of q. The

relation s2 + l2 +m2 + n2 = 1 must be always satisfied.

3.7 Angular displacement

The same formula could be achieved by taking on exam a rotation without the use of quaternions:

we want to rotate vector r around axis n by an angle θ, as in figure.

26

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Vector r may be decomposed in a parallel component to n, r ‖= (n · r)n, and an orthogonal

component to n, r ⊥= r − r ‖. The parallel component remains unchanged during rotation,

and after the rotation is denoted by Rr ‖.

The orthogonal component instead changes, and after the rotation will be Rr ⊥.

Given the vector V othogonal to r ⊥, it would be V = n ∧ r ⊥= n ∧ r, then Rr ⊥ could be

expressed as a function of V: Rr ⊥= (cosθ)r ⊥ +(sinθ)V. Therefore

Rr = Rr ‖ +Rr ⊥= (cosθ)r + (1− cosθ)n(n · r) + (sinθ)(n ∧ r)

3.8 Quaternions and matrices

We know that a rigid rotation in R3 may be represented by a rotation matrix 3x3, which is

orthogonal and with unitary determinant. We can associate a rotation matrix to each quaternion

and viceversa; the map would be surjective, because both q and −q cause the same rotation.

In order to rotate a vector p by an angle θ with the quaternion q, we use the conjugate operator

qpq−1, where q =

(
cos

θ

2
,nsin

θ

2

)
= (w, x, y, z). It can be proved that the same operation could

be fulfilled by applying to vector (p, 0) the rotation matrix

M =


1− 2(y2 + z2) 2xy − 2wz 2wy + 2xz 0

2xy + 2wz 1− 2(x2 + z2) −2wx+ 2yz 0

−2wy + 2xz 2wx+ 2yz 1− 2(x2 + y2) 0

0 0 0 1


27

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

The inverse transformation from matrix to quaternion, consists in taking a generic matrix {Mi,j}

for i, j = 0, 1, 2, 3, with the following characteristics:

• M3,3 = 1;

• M0,3 = M1,3 = M2,3 = M3,0 = M3,1 = M3,2 = 0;

• Tr M = 4− 4(x2 + y2 + z2);

• w2 + x2 + y2 + z2 = 1, =⇒ Tr M = 4w2.

Thanks to this, it follows that

w = ±1

2

√
M0,0 +M1,1 +M2,2 +M3,3

x =
M2,1 −M1,2

4w

y =
M0,2 −M2,0

4w

z =
M1,0 −M0,1

4w

3.9 SLERP - spherical linear interpolation

In order to interpolate two unit quaternions and obtain intermediate quaternions which identify

rotation matrices, it has to be kept in mind that the space of unit quaternions consists of an

hypersphere in four dimensions, then all quaternions obtained through the interpolation lie on

the hypersphere.

28

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

A linear interpolation of two quaternions would cause different angles and thus a velocity

variation (see figure above, LERP on le left and SLERP on the right). Then we need to introduce

the spherical interpolation: we interpolate along a geodesic line which has the extremes in key

points. The geodesic line is the arc of circumference identified by the intersection between the

sphere and a plane passing through the two key points and the origin. The displacement on the

arc occurs at constant velocity and would depend on a parameter set between 0 and 1.

For simplicity, let’s take in exam the situation in two dimensions (following figure): let A and

B be the first and the last point of the arc, separated by an angle Ω. Let p be the intermediate

point, which forms with A an angle θ. It will be: cosΩ = A · B, scalar product between unit

vectors which go from the origin to the arc edge. Moreover, cosθ = A · p and |p| = 1. SLERP

is based on the fact that each point of the curve must be a linear combination of the edges.

Point p will be given by the parametric equation

p = A
sin(Ω− θ)
sinΩ

+B
sinθ

sinΩ

Generalizing in 4D the interpolation between two unit quaternions q1 and q2 forming the angle

q1 · q2 = cosΩ, considering θ = u as a parameter varying between 0 and 1, it would be

SLERP (q1, q2, u) = q1
sin((1− u)Ω)

sinΩ
+ q2

sin(uΩ)

sinΩ

29

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

There exist two possible geodesic arcs from q1 to q2: one which follows the shortest path, the

other which follows the longest, and this means to interpolate along angle Ω or along angle

2π−Ω. This is possible because conjugate operation produces the same result with both q and

−q. In order to decide which path should be followed, we have to calculate (q1 − q2) · (q1 − q2)

and (q1 + q2) · (q1 + q2) and choose the lower value, which is necessary to decide whether to

substitute q2 with −q2.

30

Chapter 4

Pose estimation

In robotics, the identification of a specific rigid body (3D) in an image (2D) and the determination

of its position and orientation (with respect to a prefixed frame) is a common task. Thanks to

this information, a robot can manipulate the rigid body, or in other cases, it can avoid moving

against the rigid body. The pose of a rigid body is given by the combination of its position and

orientation, even if this concept is sometimes used only to describe the orientation. However,

there exist environments where corners and edges are difficult to extract from an image. Trying

to avoid this issue, the body is dealt with as a whole in noted techniques through the use of

free-form contours.

This problem generally requires estimating six degrees of freedom of the pose and some calibration

parameters as the focal length, the principal point, the aspect ratio and the skew.

The most common simplification is to assume known calibration parameters which is the

so-called Perspective-*n*-Point problem:

Given a set of correspondences between 3D points pi expressed in a world reference frame, and

31

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

their 2D projections ui onto the image, we seek to retrieve the pose (R and t) of the camera with

respect to the world and the focal length f . In particular, we try to develop fast pose estimation

algorithms which produce stable results for a small number of point or line correspondences.

There are four pose estimation problems with point data [16]; each of them arises from two

views taken of the same object that can be thought of as having undergone an unknown rigid

body motion from the first view to the second view. One “view” provides 3D data relative to

the model reference frame, the other is the 2-D perspective projection.

In the simplest pose estimation problem, the data sets consist of 2D data points in a 2D space.

Such data sets arise naturally when flat 3D rigid bodies are viewed under perspective projection

with the look angle being the same as the surface normal of the object viewed. In the next

more difficult pose estimation problem, the data sets consist of 3D data points in a 3D space.

Such data sets arise naturally when 3D objects are viewed with a range finder sensor. In the

most difficult pose estimation problems, one data set consists of the 2D perspective projection

of 3D points and the other data set consists of either a 3D point data set, in which case it is

known as absolute orientation problem, or the other data set consists of a second 2D perspective

projection view of the same 3D point data set, in which case it’s known as the relative orientation

problem. The latter case occurs with time-varying imagery, uncontrolled stereo or multicamera

imagery.

4.1 2D - 2D estimation

The first task to be accomplished is determining the relationship between the coordinate system

of the observed image and the coordinate system of the model. In this way, it is possible to

determine whether each device needed is present and whether everything observed to be present

is actually present and in its correct position and orientation. Usually, the relationship between

the two coordinate systems is given by a 2D rotation and translation.

During the matching process, the noise may disturbe the pose estimation, causing an incorrect

match: a data point of the model would then correspond to an incorrect point of the image.

These incorrect points, which are called outliers, may affect the accuracy and stability of the

pose estimation. Therefore, a new robust method to weaken the effect of the outliers is needed;

moreover, it would improve the performance and reliability of the least-squares method.

So, let us discuss first the least-squares method and then the robust method.

32

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.1.1 Problem

In the simple 2D pose detection problem, we are given N two-dimensional coordinate observations

from the observed image: x1, · · · , xN . These could correspond, for example, to the observed

center position of all observed rigid bodies. We are also given the corresponding or matchng

N 2D coordinate vectors from the model: y1, · · · , yN . There is an approximate rotational and

translational relationship between the image coordinate system and the rigid body coordinate

system: it allows an easy and quick matching, just by coupling a rotated and translated image

position to a rigid body position. The match is established if the rotated image position is close

enough to the one of the rigid body.

Considering the ideal case, the 2D pose detection problem could be carried out by determining,

from the matched points, a more precise estimate of a rotation matrix R and a translation t

that minimize the weighted sum of the residual errors ε2:

ε2 =
N∑
n=1

wn‖yn − (Rxn + t)‖2

The weights wn, n = 1, · · · , N satisfy wn ≥ 0 and
∑N

n=1wn = 1.

4.1.2 Least-squares method

Expanding the espression of the residual errors, we’ll obtain

ε2 =

N∑
n=1

wn[(yn − t)′(yn − t)− (yn − t)′Rxn − x′nR′(yn − t) + x′nR
′Rxn]

As a rotation matrix, R is orthonormal, then R−1 = R′. Plus, since (yn − t)′Rxn is a scalar,

it’s equal to its transpose.

Taking the partial derivative of the new ε2 with respect to the components of the translation t,

and setting the partial derivative to 0, we obtain

0 =
N∑
n=1

wn[−2(yn − t) + 2Rxn]

Considering x̄ =
∑N

n=1wnxn and ȳ =
∑N

n=1wnyn, we will obtain

ȳ = Rx̄+ t

We can then simplify the expression of the residual error by substituting t = ȳ −Rx̄.

The counterclockwise rotation angle θ is related to the rotation matrix by

R =

cos θ − sin θ

sin θ cos θ


33

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

First, let us take the partial derivative of ε2 with respect to θ; then, after some calculations, we

will obtain an equation like

0 = A sin θ +B cos θ

where

A =
N∑
n=1

wn[(yn1 − ȳ1)(xn1 − x̄1) + (yn2 − ȳ2)(xn2 − x̄2)]

B =
N∑
n=1

wn[(yn1 − ȳ1)(xn2 − x̄2)− (yn2 − ȳ2)(xn1 − x̄1)]

Therefore we can state that

cos θ = − A√
A2 +B2

sin θ =
B√

A2 +B2

or

cos θ =
A√

A2 +B2
sin θ = − B√

A2 +B2

The correct value for θ will in general be unique and will be that θ that minimizes ε2. By

substituting each value for θ into the original expression, we can provide the best solution

choice.

In this subsection, wn has always been assumed to be given. But if we want to improve the

performance and the stability of pose estimation, the weights need to be determined based on

the data. Therefore, we need a method to assign a weight based on the residual error. The

method to assign appropriate weights to the data points is done by a robust method using an

iterative weighted least-squares method, which is described in the next subsection.

4.1.3 Robust method

In this subsection we will introduce an iterative weighted least-squares method where the weights

are data dependent. The purpose is to make the outliers have zero or small weights and thus

to eliminate the effects of them in the pose estimation.

M-estimator

In order to find the solution for θ, we have to minimize the problem in the following way:

minθ

N∑
i=1

ρ(xi − θ)

Using an implicit equation, we will have

N∑
i=0

ψ(xi − θ) = 0

34

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

where N is the sample size and ρ is an arbitrary nonnegative monotonically increasing function

(called the object function) for positive argument and monotonically decreasing for negative

argument.

Moreover, ψ(xi − θ) is called M -estimator and it’s equal to

ψ(xi − θ) =
∂

∂θ
ρ(xi − θ)

If we want to represent θ as a weighted mean, we should consider wi =
ψ(xi − θ)
(xi − θ)

where

i = 1, · · · , N , and then

θ =

∑N
i=1wixi∑n
i=1wi

where wi depend on data.

Iterative weighted least-squares method

The residual error εi for nth data sample is εi = yi − (Rxi + t).

Given the data sets xi and yi, where i = 1, · · · , N ,the robust estimation procedure is implemented

as the following iterative method.

1. Select initial starting values for R and t.

2. To find the weights given by R and t, we use the Turkey’s biweight function

wi =


[
1−

(x
cS

)2
]2

|x| ≤ cS

0 otherwise

where x2 is replaced by the residual error:

wi =


[
1− ‖εi‖

2

(cS)2

]2

‖εi‖ ≤ cS

0 otherwise

The new R and t are obtained from the new weights.

3. If some degree of convergence in R and t are obtained, go to step 4. If not, go back to

step 2.

4. From the final W , we normalize the weights and find estimates for rotation angle and

translation using the solution derived in the past Subsection.

35

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.2 3D-3D estimation

4.2.1 Problem

Consider a rotation matrix R and a translation vector t; then, let x1, · · · , xn be the points in

Euclidean 3D space that match the points y1, · · · , yn belonging to the same space: each xn is

the same rigid body motion of yn.

In particular, yn = Rxn + t+ ηn, where ηn represents the noise.

The problem of 3D-3D pose estimation is to infer R and t from x1, · · · , xn and y1, · · · , yn.

4.2.2 Derivation

To determine R and t we set up a constrained least-squares problem.

First of all, we minimize
N∑
n=1

wn‖yn − (Rxn + t)‖2

The constraint is that R′ = R−1, since R is a rotation matrix. Letting

R =


r′1

r′2

r′3


where each ri is a 3x1 vector, the constraints would amount to six equations:

r′1r1 = r′2r2 = r′3r3 = 1 and r′1r2 = r′1r3 = r′2r3 = 0.

The least-squares problem with these constraints can be written minimizing the residual error

ε2, then taking the partial derivative with respect to tn and setting it equal to zero:

N∑
n=1

wn(yn −Rxn − t) = 0

By rearranging we obtain t = ȳ −Rx̄, where

x̄ =

∑N
n=1wnxn∑n
n=1wn

ȳ =

∑N
n=1wnyn∑n
n=1wn

Now we substitute x̄−Rȳ in the definition of ε2, and then we take the partial derivative of it with

respect to the components of each yn. Setting these partial derivative to zero and rearranging,

we obtain an equation in the form AR′ +R′Λ = B, where

A =
N∑
n=1

(xn − x̄)(xn − x̄)′

36

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Λ =


λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3


B = (b1b2b3) where bk =

N∑
n=1

wn(ynk − ȳk)(xn − x̄)

Rearranging the equation we obtain RB = (RB)′, and then it’s easy to find the solution for R.

Let B = UDV where U and V are orthonormal and D is diagonal. then R = V ′U ′.

4.3 2D perspective projection - 3D pose estimation

Consider a rotation matrix R and a translation vector t; then, let y1, · · · , yn be the observed

3D model points in Euclidean space, and let (un1, un2) (n = 1, · · · , N) be the corresponding 2D

perspective projection of the 3D model points. The relationship is given by

un1 = f
r1yn + t1
r3yn + t3

un2 = f
r2yn + t2
r3yn + t3

t = (t1, t2, t3)′

R =


r1

r2

r3


f is the focal length, which is the distance of the image plane in front of the origin that is the

center of perspectivity.

Given the 3D model points and the corresponding 2D perspective projection points on the image

plane, by determining R and t we would manage to solve the problem of pose estimation.

4.3.1 Iterative least-squares solution

Then, let us see iterative procedures for determining a least-squares solution for R and t. In the

following, we use the superscript or subscript k to denote the values in the kth iteration step.

Moreover, let

xn =


xn1

xn2

xn3

 = R


yn1

yn2

yn3

+ t

be the rotated and translated point of yn. Eventually, let dn be the estimated depth of each

point xn relative to the camera coordinate system.

37

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Method 1

1. Choose initial reasonable values for the depth d0
n of each point.

2. Iterate. Suppose that the depth values are given. Define the depth values for the (k+1)th

iteration by:

(a) Find the rotation matrix Rk and the translation vector tk that minimize

ε2k =

N∑
n=1

wn‖Rkyn + tk − dknvn‖2

Rk and tk are the solution of the pose estimation problem.

(b) Define

dk+1
n =

(
Dy

Dx

)
xkn3

where

x̄ =
1

N

N∑
n=1

xn ȳ =
1

N

N∑
n=1

yn Dy =

N∑
n=1

‖yn − ȳ‖2 Dx =

N∑
n=1

‖xn − x̄‖2

Method 2

Replace step 2b of Method 1 with the following considerations: define dk+1
n by

dk+1
n =

(Rk + tk)
′vn

v′nvn

It can be demonstrated that ε2k+1 ≤ ε2k.

4.3.2 Robust M-estimation

An M-estimate is any Tk defined by a minimization problem of the form

min
n∑
i=1

ρ(xi − Tk)

or by an implicit equation
n∑
i=1

ψ(xi − Tk) = 0

where ρ is an arbitrary function (called object function), ψ(xi − Tk) = ∂
∂Tk

ρ(x− Tk), and

Tk =

∑n
i=1wixi∑n
i=1wi

In robust estimation, the estimates are obtained only after an iterative process because the

estimates do not have closed forms; here are exposed two different iterative methods.

38

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Modified residual method

Before solving the problem, the residuals are modified by a proper ψ function; the aim of this

iterative procedure is to find θ.

1. Choose an initial approximation θ0.

2. Iterate. Given the estimation θk in step k, compute the solution in the (k + 1)th step as

follows:

(a) Compute the modified residuals

r∗i = ψ
(ri
Sk

)
Sk

where

ri = yi − fi(θk) Sk =
median|ri|

0.6745
ri 6= 0, i = 1, · · · , n

(b) Solve the least-squares problem Xδ = r∗, where X = [xij] is the gradient matrix as

xij
∂

∂θj
fi(θ

k)

The solution for this equation can be found using the standard least-squares method.

(c) Set θk+1 = θk + δ̂.

Modified weights method

If we take the partial derivative of ρ with respect to θ and we set it to zero, we will get, in the

standard weighted form,

∑
i=1

wiri
∂fi(θ)

θj
= 0 where wi =

ψ
(ri
S

)
(ri
S

)
Therefore the iterative procedure to determine θ is as follows:

1. Choose an initial approximation θ0.

2. Iterate. Given θk at the kth step, compute θk+1 as follows:

(a) Solve PXδ = Pr where

P =


√
w1

. . .

√
wn


(b) If δ̂ is the solution of step 2a, then set θk+1 = θk + δ̂.

39

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.3.3 Pseudocode for extracting 3D from 2D

The algorithm for determining pose estimation is based on the iterative closest point algorithm.

The main idea is to determine the correspondences between 2D image features and points on

the 3D model curve.

1. Reconstruct projection rays from the image points;

2. Estimate the nearest point of each projection ray to a point on the 3D contour;

3. Estimate the pose of the contour with the use of this correspondence set;

4. Go to 2.

If the rigid body is partially occluded, this algorithm won’t work. Therefore, we need a stronger

algorithm which assumes that all contours are rigidly coupled, i.e. the pose of one contour defines

the pose of another contour:

1. Reconstruct projection rays from the image points;

2. For each projection ray R:

3. For each 3D contour:

(a) Estimate the nearest point P1 of ray R to a point on the contour;

(b) if (n==1) choose P1 as actual P for the point-line correspondence;

(c) else compare P1 with P :

if dist(P1, R) is smaller than dist(P,R), then choose P1 as new P

4. Use (P,R) as correspondence set;

5. Estimate pose with this correspondence set;

6. Transform contours, go to 2.

4.4 Three point perspective pose estimation problem

Thanks to its wide variety of applications, a very common problem in photogrammetry and

computer vision is the three point space resection problem. In this section, different solutions

40

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

given through history will be analyzed, from the first half of XIX century to the more recent

computer vision of late XX century.

The problem could be stated as follows [17] : “given the perspective projection of three points

constituting the vertices of a known triangle in 3D space, determine the position of each of the

vertices.”. There may be as many as four possible solutions for point positions in front of the

center of perspectivity and four corresponding solutions whose point positions are behind the

center of perspectivity.

4.4.1 Definition of the problem

The first who has defined and solved this problem was Grunert in 1841.

Let the unknown positions of the three points of the known triangle be

Pi =


xi

yi

zi

 i = 1, 2, 3

Let the known side lengths of the triangle be

a = ‖P2 − P3‖

b = ‖P1 − P3‖

c = ‖P1 − P2‖

The center of perspectivity would be the origin of the camera reference frame, while the image

projection plane would be a distance f in front of the center of perspectivity.

The observed perspective projection of Pi are

qi =

ui
vi

 i = 1, 2, 3 ui = f
xi
zi

vi = f
yi
zi

41

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

The unit vectors ji pointing from the center of perspectivity to the observed points Pi are

ji =
1√

u2
i + v2

i + f2


ui

vi

f

 i = 1, 2, 3

Moreover, cosα = j2 · j3, cosβ = j1 · j3, cos γ = j1 · j2. Eventually, let the unknown distances

of points Pi from the center of perspectivity be si = ‖Pi‖, where again i = 1, 2, 3.

In order to determine the position of P1, P2 and P3 with respect to the camera reference frame,

it’s sufficient to determine s1, s2 and s3 because Pi = siji for i = 1, 2, 3.

4.4.2 Solutions

As already mentioned, the first one who provided a solution was Grunert in 1841. His starting

point was the law of cosines:

s2
2 + s2

3 cosα = a2

s2
1 + s2

3 cosβ = b2

s2
1 + s2

2 cos γ = c2

Knowing that s2 = us1 and s3 = vs1, he concluded that u =

(
−1 + a2−c2

b2

)
v2 − 2

(
a2−c2
b2

)
cosβv + 1 + a2−c2

b2

2(cos γ − v cosα)
From this expression of u, a fourth order polynomial in v can be obtained, which can have as

many as four real roots:

A4v
4 +A3v

3 +A2v
2 +A1v +A0 = 0

Thanks to the expression of u previously reported, to every solution for v there will be a

corresponding solution for u. Then, knowing u and v, it’s easy to determine s1, s2 and s3.

In 1903, Finsterwalder provides a solution in which the root weren’t found in a fourth order

polynomial, but rather he found a root from a cubic polynomial and the roots of two quadratic

polynomials:

Au2 + 2Buv + Cv2 + 2Du+ 2Ev + F = 0

In 1949, unaware of the Grunert and the Finsterwalder solutions, Merritt obtained a fourth

order polynomial as well:

a2s2
1 − b2s2

2 + (a2 − b2)s2
3 − 2a2s1s3 cosβ + 2b2s2s3 cosα = 0

and

a2s2
1 + (a2 − c2)s2

2 − c2s2
3 − 2a2s1s2 cos γ + 2c2s2s3 cosα = 0

42

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Then, he obtained the following equations:

−b2u2 + (a2 − b2)v2 − 2a2 cosβv + 2b2 cosαuv + a2 = 0

and

(a2 − c2)u2 − c2v2 − 2a2 cos γu+ 2c2 cosαuv + a2 = 0

In this last equation he substituted the value v =
b2 − a2 − c2 + (b2 + c2 − a2)u2 + 2(a2 − b2) cos γu

2c2(u cosα− cosβ)
,

producing the fourth order polynomial equation

B4u
4 +B3u

3 +B2u
2 +B1u+B0 = 0

In 1981, Fischler and Bolles obtained these two equation, which are very similar to those of

Grunert, but in a different form:(
1− a2

b2

)
v2 + 2

(
a2

b2
cosβ − cosαu

)
v + u2 − a2

b2
= 0

and

v2 − 2 cosαuv +

(
1− a2

c2

)
u2 + 2

a2

c2
cos γu− a2

c2
= 0

He also achieved a fourth order polynomial equation

D4u
4 +D3u

3 +D2u
2 +D1u+D0 = 0

In 1989, a team composed by Grafarend, Lohse and Schaffrim started their work from the

following two equations (they were aware of all the previous work, except for the Fischler -

Bolles solution):

−a
2

c2
s2

1 +

(
1− a2

c2

)
s2

2 + s2
3 + 2

a2

c2
s1s2 cos γ − 2 cosαs2s3 = 0

and (
1− b2

c2

)
s2

1 −
b2

c2
s2

2 + s2
3 + 2

b2

c2
cos γs1s2 − 2 cosβs1s3 = 0

The year before, in 1988, Linnainmaa, Harwood and Davis provided another direct solution.

Making a change of variable in the first equation of Grunert, they obtained

(1− cos2 β)s2
1 + v2 = b2

(1− cos2 γ)s2
1 + u2 = c2

By making the right substitution and simplification, the polynomial achieved was

r1s
4
1 + r2s

2
1 + r3 = (r4s

2
1 + r5)uv

43

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

To eliminate the uv term, they squared and simplified this equation, obtaining a polynomial

like

t8s
8
1 + t6s

6
1 + t4s

4
1 + t2s

2
1 + t0 = 0

Since s1 must be positive, there are at most four solutions to this equation. Once a value for

s1 has been determined, they solved in u and v the following equations: q1s
2
1 + u2 = c2 and

q2s
2
1 +v2 = b2. Eventually, in order to find the positive solutions for s2 and s3, they substituted

the just found u and v in s2 = u+ cos γs1 and s3 = v + cosβs1.

44

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

45

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.4.3 Comparisons of the solutions

Different pairs of equations are used by Grunert and Merrit: therefore, the coefficients in their

fourth order polynomials are different. However, from the algebraic point of view, their solutions

are identical. Fischler and Bolles just multiply some terms to two pairs of equations and then

subtract each other without expressing one variable in terms of the other, while Grunert and

Merritt use the substitution to reduce the two variables into one. The substitution is the

easiest method for reducing the number of variables. Conversely, a tougher method is the direct

elimination: Fischler and Bolles and Linnainmaa et al. proceed in this way. Linnainmaa et

al. use s2 = u + cos γs1 and s3 = v + cosβs1 as the change of variables; Finsterwalder and

Grafarend et al. introduce the same variable, but they use different approaches to solve λ.

Finsterwalder solves the equation Au2 + 2Buv+Cv2 + 2Du+ 2Ev+F = 0 for v and seeks a λ

to make the term inside the square root be a perfect square. On the contrary, Grafarend et al.

try to solve the eigensystem (s1s2s3)(P − λQ)(s1s2s3) = 0. At this point these two approaches

are algebraically equivalent.

In any case, there exist some geometric structures for the three point space resection on which

the resection is unstable or indeterminate. Clearly, if the structure is unstable, the position of

the three vertices will change a lot even if the position of the center of perspectivity undergoes

a small variation. Besides the singularity caused by geometric structures, there also exist some

singularities caused by the algebraic derivation of solutions.

Authors Features Algebraic Singularities

Grunert 1841 Direct solution, solve a fourth order

polynomial

Yes

Finsterwalder 1903 Form a cubic polynomial and find

the roots of two quadratics

Yes

Merritt 1949 Direct solution, solve a fourth order

polynomial

Yes

Fischler and Bolles 1981 Another approach to form a fourth

order polynomial

No

Linnainmaa et al. 1988 Generate an eighth order

polynomial

No

Grafarend et al. 1989 Form a cubic polynomial and find

intersection of two quadratics

Yes

46

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.5 Engineering application by Faugeras: pose of 3D objects

In this section we will concentrate on the use of laser rangefinder, while in the next we will use

the stereo [18].

A laser source produces a beam that falls on a system of moving mirrors that is used to control

its direction in space. A bright spot on the rigid bodies is produced by the laser beam and it’s

imaged by a number of cameras forming a calibrated stereo rig. Then, the 3D position of the

spot is reconstructed by triangulation: this is the principle of active stereo.

The rigid bodies are placed on a computer-controlled table with 2 DOFs: a rotation and a

translation with respect to the same vertical axis. Another different system with two moving

mirrors with their axes at right angles has been buit as well. In this case, three cameras are

used, because there is an extra DOF.

In any case, each system produces a set of 3D points M represented by their coordinates x, y

and z in a reference frame attached to the stereo rig.

As a furhter example, let us consider the following photograph of a Renault part.

47

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

Then, consider one set of measured 3D points on its surface:

and eventually the boundary of the original Delaunay triangulation (wich is the convex hull of

the measured points):

48

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

If now we proceed with the triangulation of the object, we will obtain the following two images

from two different points of view:

49

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

The transformation T , which allow us to pass from the reference systems of the models to

those of the scenes, is represented by a 6D vector a = [r′, t′]′, where r and t are the vectors

representing the rotation and the translation.

The plane is represented by a 3D vector p = [a, b, c]′ in one of three possible maps. [?]

4.5.1 The effect of T applied on p

Consider the matrix

D =

R t

0 1

 D−1 =

R′ -R′t

0 1


Let us suppose that the plane is represented in the map φ1. The coefficients of the equation of

the transformed plane are

(D−1)′ =

1

p


If we want to represent the transformed plane in φ1, we can write

a′ =
r′2m

r′1m
b′ =

r′3m

r′1m
c′ =

−t′Rm + c

r′1m

where r′i, i = 1, 2, 3 are the row vectors of R, m = [1, a, b]′ is a vector normal to the plane and

p1 = [a′, b′, c′]′ is the transformed plane.

These three equations define a measurement equation f(x,a) = 0, which is used when the model

plane represented by p is matched to the scene plane repesented by p1, where x = [p′,p′1]′ and

a is the above representation of T .

50

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

4.5.2 Finding the initial rotations

Let M1 and M2 be the model planes; let S1 and S2 be the scene planes. Let n1, n2, n′1 and n′2

be the corresponding unit normals.

We need to find a rotation matrix R such that

C =

2∑
i=1

‖ε′in′i − εiRni‖2 = 0

where εi, ε
′
i = ±1.

Assuming the more general case and denoting by q one of the two quaternions representing R,

we obtain

C =
2∑
i=1

|n′i − q× ni × q̄|2

Multiplying the previous equation by |q|2, and doing some adjustments, we obtain

C =
2∑
i=1

|q′A′iAiq|

where Ai is a 4x4 matrix. Therefore, the problem can be written as minqq
′Aq, where

A =
∑2

i=1 A′iAi. We don’t demonstrate that the solution to this problem is the eigenvector of

unit length of matrix A corresponding to the smallest eigenvalue.

4.5.3 Finishing the search

We build a number of recognition sequencesRin = ((M1, Si1), ..., (Mn, Sin)), each one characterized

by a transformation T i represented by ai and weighted by Pi.

dj = f(xj ,a
i)Λ−1

j f(xj ,a
i)′ Λj =

∂f

∂a
pi
∂f

∂a′
+
∂f

∂x
Uj

∂f

∂x′

The error corresponding to the recognition sequence Ri is then

εin =
1

n

n∑
j=1

dj

51

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

52

Conclusions

Through this work, I explained the main characteristics of rotations, describing them by matrix

and quaternion representations. Then, I reported some applications of Euler angles, special

unitary matrices and quaternions. Moreover, I described the algebra of both Lie groups and

quaternions. Eventually, I discussed the problem of pose estimation and I reported some of

the most important researches on this field since XIX century, especially focusing on the one

provided by Faugeras.

53

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

54

Bibliography

[1] G.Parigi, A.Palestini, Manuale di geometria, Pitagora Editrice, Bologna (2007).

[2] S.L. Altmann, Rotations, quaternions, and double groups, Courier Corporation (2005).

[3] http://www.euclideanspace.com/maths/geometry/rotations/euler/

[4] J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors,

Matrix 15-16 (2006), 1–35.

[5] G.G. Slabaugh, Computing Euler angles from a rotation matrix, Retrieved on August 2000

(1999), 39–63.

[6] K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH computer

graphics 3 (1985), 245–254.

[7] W. Schmid, Lie groups and Lie algebras (2012).

[8] N. Bourbaki, Lie groups and Lie algebras, Springer Science & Business Media (2008).

[9] D. Bump, Lie groups, Springer (2004).

[10] A. Kirillov, Introduction to Lie Groups and Lie Algebras.

[11] C. A. Deavours, The quaternion calculus, The American Mathematical Monthly 9 (1973),

995–1008.

[12] E. Trucco, A. Verri, Introductory techniques for 3-D computer vision, Prentice Hall

Englewood Cliffs (1998).

[13] https://www.quantamagazine.org/the-strange-numbers-that-birthed-modern-algebra-20180906/

[14] J. Kuipers, Quaternions and rotation sequences, Princeton university press Princeton

(1999).

55

Rotations, quaternions and pose estimation Filippo Senzani Pezzi 0000788987

[15] M. Arribas, A. Elipe, M. Palacios, Quaternions and the rotation of a rigid body, Celestial

Mechanics and Dynamical Astronomy 3-4 (2006), 239–251.

[16] R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. G. Vaidya, M. B. Kim, Pose estimation

from corresponding point data, IEEE Transactions on Systems, Man, and Cybernetics 6

(1989), 1426–1446.

[17] B. M. Haralick, K. Ottenberg, C. Lee, M. Nölle, Review and analysis of solutions of the

three point perspective pose estimation problem, International journal of computer vision 3

(1994), 331–356.

[18] O. Faugeras, Three-dimensional computer vision: a geometric viewpoint, MIT press (1993).

56

