Elenco seminari del ciclo ``Corso di Dottorato INdAM/UniBo: Anton Baranov su The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differentail operators''

Corso di dottorato inserito nel programma INdAM per professori visitatori
Mercoledì 06 Feb ore 14:30
presso Seminario I
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 6/6
Anton Baranov
See https://phd.unibo.it/matematica/it/didattica/2018-2019
Martedì 05 Feb ore 14:30
presso Seminario I
seminario di analisi matematica
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 5/6
Anton Baranov
See https://phd.unibo.it/matematica/it/didattica/2018-2019
Mercoledì 30 Gen ore 14:30
presso Seminario I
seminario di analisi matematica
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 4/6
Anton Baranov
See https://phd.unibo.it/matematica/it/didattica/2018-2019
Martedì 29 Gen ore 14:30
presso Seminario I
seminario di analisi matematica
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 3/6
Anton Baranov
See https://phd.unibo.it/matematica/it/didattica/2018-2019
Mercoledì 23 Gen ore 14:30
presso Seminario I
seminario di analisi matematica
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 2/6
Anton Baranov
See https://phd.unibo.it/matematica/it/didattica/2018-2019
Martedì 22 Gen ore 14:30
presso Seminario I
seminario di analisi matematica
The de Branges theory of Hilbert spaces of entire functions and its applications to spectral theory of differential operators 1/6
Anton Baranov
Topics: Growth theory of entire functions. De Branges spaces. Canonical sys- tems and their special cases (Jacobi matrices, Schrödinger operators). Direct spec- tral theory of canonical systems. De Branges version of Phragmén–Lindelöf theorem. Ordering theorem for de Branges spaces. Inverse spectral theory in the regular case. Direct and inverse spectral problems in the singular case.