Questo sito utilizza solo cookie tecnici per il corretto funzionamento delle pagine web e per il miglioramento dei servizi.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Seminario del 2025
Giovedì
30 gennaio
Marco Caroccia
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
ore
16:00
presso Aula Cremona
seminario on line •
collegamento al meeting
The classical Plateau problem asks which surface in three-dimensional space spans the least area among all the surfaces with boundary given by an assigned curve S. This problem has many variants and generalizations, along with (partial) answers, and has inspired numerous new ideas and techniques. In this talk, we will briefly introduce the problem in both its classical and modern contexts, and then we will focus on a specific vectorial (planar) type of the Plateau problem.
-
Given a curve S in the plane, we can ask which diffeomorphism T of the disk D maps the boundary of D to S and spans the least area, computed as the integral of the Jacobian of T, among competitors with the same boundary condition. For simply connected curves, the answer is provided by the Riemann map, and the minimal area achieved is the Lebesgue measure of the region enclosed by S. For more complex curves, possibly self-intersecting, new analysis is required. I will present a recent result in this sense, obtained in collaboration with Prof. Riccardo Scala from the University of Siena, where the value of the minimum area is computed with an explicit formula that depends on the topology of S.