GLOBAL FUNDAMENTAL SOLUTIONS FOR HÖRMANDER OPERATORS VIA A SATURATION METHOD

MATTIA GALEOTTI

In an article of 1977, Folland built a global solution for a Hörmander differential operator of order 2, $\mathcal{L} = \sum X_i^2$ on \mathbb{R}^m , where the X_i s are homogeneous vector fields. Posing the homogeneity hypothesis, it is in fact possible to globalize the lifting and approximation approach of the paramount works of Rothschild-Stein and Goodman. The main idea by Folland, was to consider the Carnot group \mathbb{G} generated by the X_i s, and see \mathcal{L} as the projection of the sub-Laplacian $\mathcal{L}_{\mathbb{G}}$, which is known to have a fundamental solution. In a series of recent works, Biagi and Bonfiglioli generalized this approach to any differential operator \mathcal{L} over \mathbb{R}^m generated by homogeneous vector fields. They represented the Carnot group as a direct product $\mathbb{R}^n \times \mathbb{R}^m$ and proved that any fundamental solution of the lifted differential operator, can be "saturated" to obtain a fundamental solution Γ for \mathcal{L} .

I present a similar result that applies to any Riemannian manifold and vector fields respecting the Hörmander condition. In particular, it is possible to represent the group G generated by the X_i s as a direct product with the fibers having a group structure. This allows to expand the saturation approach of Biagi-Bonfiglioli and therefore to project-down a vast class of fundamental solutions.