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Introduction

More and more often, (weighted) graphs represent data and data
structures:

images as graphs of regions
3D shapes as graphs of
volumes
power grids
neural networks
communication networks
social networks
. . .
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Introduction

On the other hand, persistent topology offers a modular, powerful
tool for analyzing data of various nature.

After a brief recall of the use of persistent homology on simplicial
complexes obtained from weighted graphs, we present a general
definition of persistence functions which allows the use of
persistence diagrams without going through simplicial or
topological constructions.

Two general ways of producing persistence functions are
presented, with examples: Coherent samplings and steady and
ranging sets.
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Topological graph persistence

Graphs as complexes

Graphs will be simple throughout, and will be thought of as 1D
simplicial complexes. Homomorphisms, and in particular
isomorphisms, will be simplicial maps.

Given a weighted graph (G, f ), where G = (V ,E) and f : E → R is
a filtering function, one can extend f to a filtering function
f̄ : V ∪ E → R ∪ {∞} by defining it as∞ on isolated vertices and
on any other vertex v as the minimum value of f on its incident
edges.

Therefore, a weighted graph gives rise to persistent Betti number
functions and persistence diagrams in a natural way.
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Topological graph persistence

Graphs as complexes
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Topological graph persistence

Complexes from graphs

It is well-known that it’s possible to build simplicial complexes out
of a graph G in various ways. Simplices can be its

cliques
neighbourhoods
enclaveless sets

and many others.

Cliques and neighbourhoods (and clique communities; see later)
have been considered in weighted graphs (G, f ) for using
persistent homology in several applied settings.
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Topological graph persistence

Complexes from graphs
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Journal of Statistical Mechanics: Theory and Experiment, 2009(03):P03034, 2009.

W. Huang and A. Ribeiro. Persistent homology lower bounds on high-order network
distances. IEEE Transactions on Signal Processing, 65(2):319–334, 2017.

S. Pal, T. J. Moore, R. Ramanathan, and A. Swami. Comparative topological
signatures of growing collaboration networks. In Workshop on Complex Networks
CompleNet, pages 201–209. Springer, 2017.

G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, and
F. Vaccarino. Homological scaffolds of brain functional networks. Journal of The Royal
Society Interface, 11(101):20140873, 2014.

M. W. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko,
R. Levi, K. Hess, and H. Markram. Cliques of neurons bound into cavities provide a
missing link between structure and function. Frontiers in Computational Neuroscience,
11:48, 2017.

D.S. Bassett, and O. Sporns. Network neuroscience. Nature neuroscience, 20.3:
353, 2017.

Alessandro Mella Advances in Graph Persistence 10 / 62



Combinatorial graph persistence

1 Introduction

2 Topological graph persistence

3 Combinatorial graph persistence
An abstract setting
Coherent samplings
Steady and ranging sets

4 An application: Hubs

5 Conclusions

Alessandro Mella Advances in Graph Persistence 11 / 62



Combinatorial graph persistence

Is topology necessary for persistence?

In topological graph persistence, we sought hereditary structures,
so that we could build simplicial complexes.

Can we do without this constraint? Can we still have persistence
diagrams and all the machinery we are used to?

We shall show that this is indeed possible, by defining persistence
functions in an abstract way.
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Combinatorial graph persistence

General Setting

Consider a concrete category (C,U), with U : C →Sets a faithful
functor. For X ∈ C, define the category CX of subobjects of X .

Definition 3.1
We say that (C,U) has canonical subobjects if

1 C has pullbacks and the functor U preserves pullbacks
2 for every object X ∈ C and for every Z ⊆ U(X ), if there is a

subobject T
χ
↪−→ X such that Z = U(χ)(U(T )), then the category

CX |Z has a terminal object U ↪→ X

3 every morphism Y
χ−→ X can be factored as Y

φ−→W
ψ
↪−→ X , where

ψ is a monomorphism and U(ψ)(U(W )) = U(χ)(U(Y ))
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Combinatorial graph persistence

Filtrations

Definition 3.2
Let R be the poset category of real numbers. We define a filtration in C
to be a functor F : R → C such that if u < v then F(u) is a subobject
of F(v).

Proposition 3.3
Let X ∈Obj(C) and f : U(X )→ R be an inferiorly bound function such
that for any t ∈ R there is at least one subobject Xt

χt
↪−→ X with

U(Xt ) = f−1((−∞, t ]). Let Yt
vt
↪−→ X be the canonical subobject

associated to f−1((−∞, t ]). Then F(X ,f ) defined by F(X ,f )(t) = Yt is a
filtration in C and S(X ,f ) = U ◦ F is a filtration in U(C).
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Combinatorial graph persistence

Graph setting

In the following C will be the category Graph, and for each graph G,
the category of subobjects will contain its subgraphs.

Filtrations of subobjects will clearly be filtrations of subgraphs.
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Combinatorial graph persistence

Natural pseudodistance

Let now (G, f ), (G′, f ′), with G = (V ,E),G′ = (V ′,E ′) be weighted
graphs and H be the (possibly empty) set of isomorphisms from G to
G′.

Definition 3.4

The natural pseudodistance of (G, f ) and (G′, f ′) is

δ
(
(G, f ), (G′, f ′)

)
=

{
∞ if H = ∅
infφ∈H supe∈E |f (e)− f ′

(
φ(e)

)
| otherwise
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Combinatorial graph persistence An abstract setting

Persistence functions

We set ∆+ = {(u, v) ∈ R |u < v}, ∆ = {(u, v) ∈ R |u = v} and
∆

+
= ∆+ ∪∆.

Let (G, f ) be any weighted graph. For each t ∈ R, the sublevel graph
Gt is the subgraph of G induced by f−1((−∞, t ]

)
.

Assume we have a function ΛG defined on all inclusions between
subgraphs of G, with values in the nonnegative integers, and such that
ΛG(ι) = 0 if ι has the empty set as domain. Define λ(G,f )(u, v) = ΛG(ι),
where ι is the inclusion of Gu into Gv .
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Combinatorial graph persistence An abstract setting

Persistence functions

Definition 3.5
All functions λ(G,f ) : ∆+ → Z are said to be persistence functions if
conditions 1 and 2 are satisfied; they are said to be stable persistence
functions if also 3 holds:

1 λ(G,f )(u, v) is nondecreasing in u and nonincreasing in v ;
2 for all u1,u2, v1, v2 ∈ R such that u1 ≤ u2 < v1 ≤ v2 the following

inequality holds:
λ(G,f )(u2, v1)− λ(G,f )(u1, v1) ≥ λ(G,f )(u2, v2)− λ(G,f )(u1, v2)

3 given an analogous pair (G′, f ′), if an isomorphism ψ : G→ G′

exists such that supe∈E |f (e)− f ′
(
ψ(e)

)
| ≤ h (h > 0), then for all

(u, v) ∈ ∆+ the inequality λ(G,f )(u − h, v + h) ≤ λ(G′,f ′)(u, v)
holds.
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Combinatorial graph persistence An abstract setting

Stability

Remark 3.6

A set of theorems holds, granting that any persistence function
(conditions 1 and 2) λ(G,f ) has the same structure as Persistent Betti
Numbers functions. In particular, it can be summarized by a
persistence diagram D(f ) with the usual cornerpoints (proper and at
infinity).
d
(
D(f ),D(f ′)

)
will be the usual bottleneck distance.

Theorem 3.7 (Stability)

For weighted graphs (G, f ), (G′, f ′) as above, if λ(G,f ) and λ(G′,f ′) are
stable then

d
(
D(f ),D(f ′)

)
≤ δ

(
(G, f ), (G′, f ′)

)
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Combinatorial graph persistence An abstract setting

Stability

Related with stability, we have the problem of universality: Is the
inequality of Thm. 3.7 the best one that we can obtain from persistence
diagrams?
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Combinatorial graph persistence Coherent samplings

Coherent samplings

A first way of building persistence functions is the following.

Definition 3.8

A coherent sampling V is the assignment to each graph G, where
G = (V ,E) of a set V(G) of subsets of V ∪ E , such that the following
conditions 1 and 2 hold; it will be said to be a stable coherent sampling
if also condition 3 holds:

1 each V(G) is finite (possibly empty);
2 if G is a subgraph of H, then each element of V(G) is contained in

exactly one element of V(H);
3 if ψ : G→ G′ is an-isomorphism, then V(G′) = ψ

(
V(G)

)
.

For each inclusion ι : G→ H let Λ(ι) be the number of elements of
V(H) containing at least one element of V(G).
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Combinatorial graph persistence Coherent samplings

Coherent samplings

Proposition 3.9

Let a coherent sampling V be given; for all graphs G = (V ,E), for all
filtering functions f : E → R, let λ(G,f ) : ∆+ → Z be defined by
λ(G,f )(u, v) = Λ(ι(u,v)) where ι(u,v) : Gu → Gv is the inclusion
homomorphism.
Then the functions λ(G,f ) are persistence functions. If the coherent
sampling is stable, so are the persistence functions.
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Combinatorial graph persistence Coherent samplings

Example 1: Blocks

We recall that in a (loopless) graph G a cut vertex (or separating
vertex) is a vertex v ∈ V (G) whose deletion (along with incident
edges) makes the number of connected components of G
increase. A block is a connected graph which does not contain
any cut vertex. A block of a graph G is a maximal subgraph H
such that H is a block.

Proposition 3.10
The assignment B, which maps each graph G to the set of its blocks, is
a stable coherent sampling.
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Combinatorial graph persistence Coherent samplings

Example 1: Blocks

Definition 3.11

Given a weighted graph (G, f ), we call persistent block number the
function bl(G,f ) : ∆+ → Z which maps the pair (u, v) to the number of
blocks of Gv containing at least one block of Gu.

Corollary 3.12
bl(G,f ) is a stable persistence function.
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Combinatorial graph persistence Coherent samplings

Example 1: Blocks
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Combinatorial graph persistence Coherent samplings

Example 1: Blocks

Theorem 3.13 (Universality)

If d̃ is a distance for persistent block diagrams such that

d̃
(
Dbl(f ),Dbl(f ′)

)
≤ δ

(
(G, f ), (G′, f ′)

)
for any persistent block diagrams Dbl(f ), Dbl(f ′) of weighted graphs
(G, f ), (G′, f ′), with G, G′ isomorphic, then

d̃
(
Dbl(f ),Dbl(f ′)

)
≤ d

(
Dbl(f ),Dbl(f ′)

)
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Combinatorial graph persistence Coherent samplings

Example 2: Edge-blocks

We recall that in a graph G a cut edge (or bridge) is an edge
e ∈ E(G) whose deletion makes the number of connected
components of G increase. We define an edge-block as a
connected graph which contains at least one edge, but does not
contain any cut edge. An edge-block of a graph G is a maximal
subgraph H such that H is an edge-block.

Proposition 3.14
The assignment E , which maps each graph G to the set of its
edge-blocks, is a stable coherent sampling. �

The definition of a persistent edge-block number function ebl(G,f ),
its stability and universality also hold.
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Combinatorial graph persistence Coherent samplings
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Combinatorial graph persistence Coherent samplings

Example 3: Clique communities

Given a graph G = (V ,E), two of its k -cliques (i.e. cliques of k
vertices) are said to be adjacent if they share k − 1 vertices; a
k−clique community is a maximal union of k -cliques such that any
two of them are connected by a sequence of k -cliques, where
each k -clique of the sequence is adjacent to the following one.
This construction has been applied to network analysis and also
to weighted graphs.

Proposition 3.15

The assignment Ck , which maps each graph G to the set of its k-clique
communities, is a stable coherent sampling.

The definition of a persistent k-clique community number function
cck

(G,f ), its stability and universality also hold.
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Combinatorial graph persistence Coherent samplings

Example 3: Clique communities
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Combinatorial graph persistence Coherent samplings

Example 3: Clique communities
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Combinatorial graph persistence Steady and ranging sets

Steady and ranging

Given a graph G = (V ,E), let F : 2V∪E → {true, false} be any
feature. We call F-set any set A ⊆ V ∪ E such that F (A) = true.

Let now the weighted graph (G, f ) be given. Given any real
number w , we shall say that A ⊆ V ∪E is an F -set at level w if it is
an F -set of the subgraph Gw .

Definition 3.16
We call A ⊆ V ∪ E a steady F -set (or simply an s-F -set) at (u, v)
((u, v) ∈ ∆+) if it is an F -set at all levels w with u ≤ w ≤ v . We call A a
ranging F -set (or simply an r-F -set) at (u, v) if there exist levels w ≤ u
and w ′ ≥ v at which it is an F -set.

Let SF(G,f )(u, v) be the set of s-F -sets at (u, v) and let RF(G,f )(u, v) be
the set of r-F -sets at (u, v).
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Combinatorial graph persistence Steady and ranging sets

Steady and ranging

Proposition 3.17

The function which assigns to (u, v) ∈ ∆+ the number |SF(X ,f )(u, v)| is
a persistence function.

Proposition 3.18

The function which assigns to (u, v) ∈ ∆+ the number |RF(X ,f )(u, v)| is
a persistence function.
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Combinatorial graph persistence Steady and ranging sets

Example: Eulerian sets

Given any graph G = (V ,E), we define Eu : 2V∪E → {true, false} to
yield true on a set A if and only if A is a set of vertices whose induced
subgraph of G is nonempty, connected, Eulerian and maximal with
respect to these properties; in that case A is said to be a Eu-set of G.

Let now (G, f ) be a weighted graph. We apply Def. 3.16 to feature Eu
for a weighted graph (G, f ).
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Combinatorial graph persistence Steady and ranging sets

Example: Eulerian sets

Definition 3.19
Given any real number w , the set of vertices A is a Eu-set at level w if
it is a Eu-set of the subgraph Gw .

It is a steady Eu-set (an s-Eu-set) at (u, v) ((u, v) ∈ ∆+) if it is a
Eu-set at all levels w with u ≤ w ≤ v .

It is a ranging Eu-set (an r-Eu-set) at (u, v) if there exist levels w ≤ u
and w ′ ≥ v at which it is a Eu-set.

SEu(G,f )(u, v) and REu(G,f )(u, v) are respectively the sets of s-Eu-sets
and of r-Eu-sets at (u, v).
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Combinatorial graph persistence Steady and ranging sets

Example: Eulerian sets

Proposition 3.20

The function which assigns to (u, v) ∈ ∆+ the number |SEu(G,f )(u, v)|
and the function which assigns to (u, v) ∈ ∆+ the number
|REu(G,f )(u, v)| are persistence functions.

Both functions can be proved to be unstable.
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Combinatorial graph persistence Steady and ranging sets

Example: Eulerian sets
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Combinatorial graph persistence Steady and ranging sets

Stability

It is important to point out that stability is not always guaranteed. For
the example shown, it has been proven that

1 Blocks
2 Edge-Blocks
3 Cliques community

are not only stable, but we also have that the universality property is
satisfied. Instead a conterexample for the stability of Eulerian sets has
been found.
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Combinatorial graph persistence Steady and ranging sets

Instability of Eulerian sets
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An application: Hubs

Steady and ranging hubs

We now apply Props. 3.17 and 3.18 and a smart idea of V. Kurlin
to the study of “hubs” in networks. As always, (G, f ) is given, with
G = (V ,E).
The property we are going to use gives false for all subsets of
V ∪ E apart from the singletons formed by vertices whose degree
is greater than or equal to the degree of all their neighbors:

Definition 4.1

A temporary hub (t-hub) at level u is a vertex of Gu whose degree is
greater than or equal to the degree of its neighbors.
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An application: Hubs

Steady and ranging hubs

Definition 4.2

A steady hub (s-hub) at (u, v) ((u, v) ∈ ∆+) is a vertex which is a t-hub
at all levels w with u ≤ w ≤ v .

Definition 4.3

A ranging hub (r-hub) at (u, v) ((u, v) ∈ ∆+) is a vertex such that there
exist levels w ≤ u and w ′ ≥ v at which it is a t-hub.
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An application: Hubs

Steady and ranging hubs

We define σ(G,f ) : ∆+ → Z as follows: For every (u, v) ∈ ∆+,
σ(G,f )(u, v) is the number of s-hubs at (u, v).

Proposition 4.4

σ is a persistence function.

We define %(G,f ) : ∆+ → Z as follows: For every (u, v) ∈ ∆+,
%(G,f )(u, v) is the number of r-hubs at (u, v).

Proposition 4.5

% is a persistence function.

Both functions can be proved to be unstable.
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An application: Hubs

Hub selection

Finally, we use Kurlin’s widest diagonal gap for selecting the top s- and
r-hubs.

V. Kurlin. A fast persistence-based segmentation of noisy 2D clouds with provable
guarantees. Pattern recognition letters, 83:3-12, 2016.
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An application: Hubs

Example 1: US airports

A first application of the search for relevant hubs has been done
on a set of major US airports plus two Canadian ones. The edges
connect airports between which there are regular flights.

As filtering functions we use:

distance
weekly flight frequency
their product

and their opposites (+their maximum)
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An application: Hubs

Example 1: US airports
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An application: Hubs

Example 1: US airports (distance)

Alessandro Mella Advances in Graph Persistence 47 / 62



An application: Hubs

Example 1: US airports (distance)
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An application: Hubs

Example 1: US airports (max - frequency)
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An application: Hubs

Example 1: US airports (max - frequency)

Alessandro Mella Advances in Graph Persistence 50 / 62



An application: Hubs

Example 2: European languages

A second application is on languages of the European Union plus
Turkish:

Castilian Catalan Croatian Czech Danish
Dutch English Finnish French Galitian
German Greek Hungarian Italian Polish
Portuguese Romanian Swedish Turkish

The graph is complete.

Filtering function is the opposite of the percentage of common
properties (+ its max).
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An application: Hubs

Example 2: European languages
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An application: Hubs

Set persistence: a non-graph example

Definition 4.6
Let k ∈ N. We define the neighbor set of a pixel (i , j) = x ∈ I of
dimension k to be

Nk (x) = {x ′ = (i ′, j ′) : i ′ = i + m, j ′ = j + n,−k ≤ m,n ≤ k}

Definition 4.7
Let m,n ∈ N be such that |Nk (x)| − n > m for any pixel x ∈ I. We say
that a pixel x ∈ I is active at level l ∈ Z if the following conditions are
satisfied

1 |Nk (x) ∩ f−1([−∞, l])| ≥ m
2 |Nk (x) \ f−1([−∞, l])| ≤ n
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An application: Hubs

Set persistence: a non-graph example

We define γ(G,f ) : ∆+ → Z as follows: For every (u, v) ∈ ∆+,
σ(G,f )(u, v) is the number of active pixels at (u, v).

Proposition 4.8
γ is a persistence function.

We applied this idea to the identification of borders of objects inside an
image. We used a threshold to select the relevant cornerpoints (and
thus pixels) and compared our results to Canny algorithm for edge
detection.
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An application: Hubs

Set persistence: a non-graph example

(a) Original (b) Canny (c) Our: t = 5

(d) Our: t = 10 (e) Our: t = 15 (f) Our: t = 20

Figure 1: The original image and the results of Canny and our algorithms
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An application: Hubs

Set persistence: a non-graph example

(a) Original (b) Canny (c) Our: t = 5

(d) Our: t = 10 (e) Our: t = 15 (f) Our: t = 20

Figure 2: The original image and the results of Canny and our algorithms
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An application: Hubs

Set persistence: a non-graph example

(a) Original (b) Canny (c) Our: t = 5

(d) Our: t = 10 (e) Our: t = 15 (f) Our: t = 20

Figure 3: The original image and the results of Canny and our algorithms
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Conclusions

Signatures of data by persistence diagrams are possible also
without the need of topological constructions.

This is possible in the domain of weighted graphs, but we are
going to extend this possibility to a wider context.

Here we have presented two general construction methods for
persistence functions:

Coeherent samplings
Steady and ranging sets.

Alessandro Mella Advances in Graph Persistence 60 / 62



Conclusions

Signatures of data by persistence diagrams are possible also
without the need of topological constructions.

This is possible in the domain of weighted graphs, but we are
going to extend this possibility to a wider context.

Here we have presented two general construction methods for
persistence functions:

Coeherent samplings
Steady and ranging sets.

Alessandro Mella Advances in Graph Persistence 60 / 62



Conclusions

Signatures of data by persistence diagrams are possible also
without the need of topological constructions.

This is possible in the domain of weighted graphs, but we are
going to extend this possibility to a wider context.

Here we have presented two general construction methods for
persistence functions:

Coeherent samplings
Steady and ranging sets.

Alessandro Mella Advances in Graph Persistence 60 / 62



Conclusions

Furure Works

Some of the future development could be:
1 Multidimensional persistence
2 Extend to more general categorical setting
3 From hubs to clustering
4 Other aplication: e.g. Hough transform
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Conclusions

THANKS FOR YOUR ATTENTION !

mella.alessandro3@unibo.it

All our software concerning graph persistence can be found at
https://gitlab.com/mattia.bergomi/perscomb
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