Recent results on evolution equations of Black-Scholes and Cox-Ingersoll-Ross type and their associated semigroups: analogies and differences

Silvia Romanelli Università degli Studi di Bari Aldo Moro silvia.romanelli@uniba.it

Abstract

Consider the following initial value problem

(1)
$$\frac{\partial u}{\partial t} = \nu^2 x^k \frac{\partial^2 u}{\partial x^2} + (\gamma + \beta x) \frac{\partial u}{\partial x} + (cx+d)u, \ t \ge 0, x \ge 0,$$

(2)
$$u(x,0) = f(x), \ x \ge 0,$$

where $\nu > 0, \gamma \ge 0, \beta \in \mathbb{R}$ and $c, d \le 0$. We focus on the cases when (1) is either the Black-Scholes equation (BS), i.e., k = 2, $\gamma = 0 = c$, $\beta > 0$, $d = -\beta$, or a Cox-Ingersoll-Ross-type equation (CIR), i.e., k = 1, $\gamma > 0$, $\beta \in \mathbb{R}$, c < 0, d = 0. In both cases we will present existence and regularity results for the (C_0) semigroups associated to (1)-(2) in suitable spaces of continuous functions on $(0, \infty)$ highlighting, in particular, analogies and differences between the corresponding generators. Note that, if $\sqrt{2\nu}$ is the volatility of the stochastic interest rate, under suitable assumptions about the financial markets, (BS) models the pricing of a European call option while (CIR) models the pricing of a discount zero coupon bond.