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Abstract

We illustrate some maximal regularity results for parabolic problems with dynamic

boundary conditions in Lp spaces.

Sunto

Illustriamo alcuni risultati di regolarità massimale per problemi parabolici con condizioni

al contorno dinamiche, negli spazi Lp.
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We shall consider mixed parabolic problems in the form

(1)


Dtu(t, ξ)− A(ξ,Dξ)u(t, ξ) = f(t, ξ), t ∈ (0, T ), ξ ∈ Ω,

Dtu(t, ξ′) +B(ξ′, Dξ)u(t, ξ′) = h(t, ξ′), t ∈ (0, T ), ξ′ ∈ ∂Ω,

u(0, ξ) = u0(ξ), ξ ∈ Ω.

A(ξ,Dξ) is a linear strongly elliptic operator iof second order in the open bounded subset

Ω of Rn and B(ξ′, Dξ) is a first order differential operator. We shall be more precise in

the following.

Systems of the form (1) are strictly connected (at least formally) with systems of the

form

(2)


Dtu(t, ξ)− A(ξ,Dξ)u(t, ξ) = f(t, ξ), t ∈ (0, T ), ξ ∈ Ω,

A(ξ′, Dξ)u(t, ξ′) +B(ξ′, Dξ)u(t, ξ′) = k(t, ξ′), t ∈ (0, T ), ξ′ ∈ ∂Ω,

u(0, ξ) = u0(ξ), ξ ∈ Ω.

The boundary condition in (2) is known in literature with the name of ”generalized

Wentzell boundary condition”. Consider the second order operator A(ξ,Dξ) = in Ω (in

variational form). Given the boundary conditions L, we can consider the operator A,

with domain {u ∈ C2(Ω) : Lu = 0}, Au = A(ξ,Dξ). Consider the operator A which is

the closure of A in the space C(Ω) (if existing). Then, in the paper [10] A.D. Wentsell

characterized all boundary conditions L such that A is the infinitesimal generator of a

strongly continuous positive contraction semigroup (T (t))t≥0 in C(Ω). Wentsell’s work

generalized previous results by W. Feller (see [4]) in space dimension one. In the class of

operators found by Wentsell there appear also second order differential operators restricted

to the boundary ∂Ω.

Concerning dynamic boundary conditions, G. Ruiz Goldstein (see [6]) discusses a model

of the heat equation with a heat source (or a sink) on ∂Ω, taking to a dynamic boundary

condition as in (1).

We pass to illustrate some previous work, just considering Lp settings.
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(1) naturally leads to elliptic problems depending on a parameter in the form

(3)


λu(ξ)− A(ξ,Dξ)u(ξ) = f(ξ), ξ ∈ Ω,

λu(ξ′) +B(ξ′, Dξ)u(ξ′) = h(ξ′), ξ′ ∈ ∂Ω.

It was proved in [7] (see, in particular, estimate (2.10)) and in a more detailed form

in [?], that, if p ∈ (1,∞), |Arg(λ)| ≤ π
2

and |λ| is properly large, if f ∈ Lp(Ω) and

h ∈ W 1−1/p,p(∂Ω), (3) has a unique solution u in W 2,p(Ω). Moreover, there exists C in

R+ such that

|λ|(‖u‖Lp(Ω) + ‖u|∂Ω‖W 1−1/p,p(∂Ω)) + ‖u‖W 2,p(Ω) + ‖u|∂Ω‖W 2−1/p,p(∂Ω)

≤ C(‖f‖Lp(Ω) + ‖h‖W 1−1/p,p(∂Ω)).

This implies that the operator

(4)


A : {(u, g) ∈ W 2,p(Ω)×W 2−1/p,p(∂Ω) : g = u|∂Ω} → Lp(Ω)×W 1−1/p,p(∂Ω),

A(u, g) = (A(ξ,Dξ)u,−B(·, Dξ)u|∂Ω)

is the infinitesimal generator of an analytic semigroup in the space Lp(Ω)×W 1−1/p,p(∂Ω).

Quasilinear developments of this result were given in [2].

More recently, these problems have been considered in weaker forms, allowing less re-

gular solutions, starting from variational formulations and generalized Wentzell boundary

conditions. The space Lp(Ω) ×W 1−1/p,p(∂Ω) has been replaced by Lp(Ω) × Lp(∂Ω) and

the operator A by some extension of G, defined as D(G) = {(u, u|∂Ω) : u ∈ C2(Ω), Au+ β ∂u
∂ν

+ γu = 0 in ∂Ω},

Gu = (Au,−β ∂u
∂ν
− γu)

The solution is usually intended in a weak sense, A is in divergence form and B is the cor-

responding conormal derivative. Then it was shown in [1] and in [3] that these extensions

give rise to infinitesimal generators of analytic semigroups of contraction in Lp(Ω)×Lp(∂Ω)

(properly normed) if 1 < p <∞ (in fact, some degeneracy in ∂Ω is allowed in [3]). A dif-

ferent proof of some of the results of [3] (Lp setting) has been recently given in [8], where

only bounded coefficients and Lipschitz boundary are required. This paper contains also
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the important remark that the fact that the semigroups are of contraction for p ∈ (1,∞)

and analytic for p = 2 implies, as a consequence of a deep result by D. Lamberton (see

[9]), maximal regularity for every p ∈ (1,∞).

I pass to illustrate some results taken from my work [5]. The main result is the following

Theorem 1. Suppose that the following assumptions are satisfied:

(D1) Ω is an open bounded subset of Rn, lying on one side of its boundary ∂Ω, which

is a submanifold of class C2 of Rn;

(D2) A(ξ,Dξ) =
∑
|α|≤2 aα(ξ)Dα

ξ , aα ∈ C(Ω) ∀α with |α| ≤ 2; if |α| = 2, aα is real

valued and
∑
|α|=2 aα(ξ)ηα ≥ N |η|2 for some N ∈ R+, ∀ξ ∈ Ω, ∀η ∈ Rn;

(D3) B(ξ′, Dξ) =
∑
|α|≤1 bα(ξ)Dα

ξ , bα ∈ C1(∂Ω) ∀α with |α| ≤ 1; if |α| = 1, bα is real

valued and
∑
|α|=1 bα(ξ′)ν(ξ′)α < 0 ∀ξ′ ∈ ∂Ω, where we have indicated with ν(ξ′) the unit

normal vector to ∂Ω in ξ′ pointing inside Ω.

Let p ∈ (1,∞) \ {3
2
}. Then the following conditions are necessary and sufficient in

order that (1) have a unique solution u in W 1,p((0, T );Lp(Ω))∩Lp((0, T );W 2,p(Ω)), with

u|(0,T )×∂Ω ∈ W 1,p((0, T );W 1−1/p,p(∂Ω)) ∩ Lp((0, T );W 2−1/p,p(∂Ω)):

(a) f ∈ Lp((0, T )× Ω);

(b) h ∈ Lp((0, T );W 1−1/p,p(∂Ω));

(c) u0 ∈ B2−2/p
p,p (Ω), and, in case p > 3

2
, u0|∂Ω ∈ B2−2/p

p,p (∂Ω).

(II) If p > 3
2

the solution is unique.

(III) In case 1 < p < 3
2
, the solution is not unique: more precisely, for each g0 in

B
2−2/p
p,p (Ω), (1) has a unique solution u such that u|(0,T )×∂Ω(0, ·) = g0 .

In the remaining part of this note, we shall try to give some hint about the proof of

Theorem 1. We begin by considering the simpler situation that Ω = Rn
+, A(ξ,Dξ) = ∆ξ

and B(ξ′, Dξ) is a first order differential operator with constant coefficients. Explicitly,

we shall consider the problem
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(5)



Dtu(t, x, y)−D2
xu(t, x, y)−∆yu(t, x, y) = f(t, x, y),

(t, x, y) ∈ (0, T )× R+ × Rn−1,

Dtu(t, 0, y)− γDxu(t, 0, y) + v · ∇yu(t, 0, y) = g(t, y), (t, y) ∈ (0, T )× Rn−1,

u(0, x, y) = u0(x, y), (x, y) ∈ R+ × Rn−1,

with γ ∈ R+ and v ∈ Rn−1.

The first step is an analysis of the elliptic problem depending on the complex parameter

λ

(6)


λu(x, y)−D2

xu(x, y)−∆yu(x, y) = f(x, y),

(x, y) ∈ R+ × Rn−1,

λu(0, y)− γDxu(0, y) + v · ∇yu(0, y) = h(y), y ∈ Rn−1.

We begin by considering the Dirichlet problem depending on λ

(7)


λu(x, y)−D2

xu(x, y)−∆yu(x, y) = f(x, y),

(x, y) ∈ R+ × Rn−1,

u(0, y) = g(y), y ∈ Rn−1.

The following result is well known:

Lemma 1. Consider system (7). Let p ∈ (1,∞). Then, if λ ∈ C \ (−∞, 0], f ∈ Lp(Rn
+),

g ∈ W 2−1/p,p(Rn−1), (7) has a unique solution u in W 2,p(Rn
+). Moreover, ∀φ ∈ [0, π),

there exists C(φ) ∈ R+ such that, if |λ| ≥ 1 and |Arg(λ)| ≤ φ,

|λ|‖u‖Lp(Rn
+) + ‖u‖W 2,p(Rn

+) ≤ C(φ)(‖f‖Lp(Rn
+) + ‖g‖W 2−1/p,p(Rn−1) + |λ|1−1/(2p)‖g‖Lp(Rn−1)).

In case f = 0, u can be represented in the form

(8) u(x, ·) = F−1(exp(−x(λ+ A)1/2Fg) = F−1(exp(−x(λ+ | · |2)1/2Fg)

In (8) we have indicated with A the operator −∆y. It is well known that A is a

positive operator in every space W θ,p(Rn−1) and (λ+A)1/2 is the infinitesimal generator

of an analytic semigroup in each of these spaces. Observe that formula (8) can be easily
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deduced (at least, formally) as an application of the Fourier transform. Employing it, we

obtain that, in order that u satisfies (6), g must be a solution to

(9) λg + γ(λ+ A)1/2g +Bg = h.

Employing the Fourier transform, (9) can be written in the form

(10) λg + F−1[γ(λ+ |η|2)1/2 + iv · η]Fg = h.

(10) suggests that (9) is, in fact, a perturbation of

(11) λg + γA1/2g = h.

To this aim, observe that it is crucial the assumption that the coefficients of B are real.

So we obtain the following

Lemma 2. Let θ ∈ [0,∞), p ∈ (1,∞). Then there exists R ∈ R+ such that, if Re(λ) ≥ 0

and |λ| ≥ R, (9) has a unique solution g in W θ+1,p(Rn−1) ∀h ∈ W θ,p(Rn−1).

Of course, we employ Lemma 2 with θ = 1− 1
p
. So we have:

Proposition 1. Consider system (6). Then there exists R ∈ R+ such that, if Re(λ) ≥ 0,

|λ| ≥ R, f ∈ Lp(Rn
+), h ∈ W 1−1/p,p(Rn−1), there is a unique solution u in W 2,p(Rn

+).

Moreover, there is C ∈ R+ such that

|λ|‖u‖Lp(Rn
+) + ‖u‖W 2,p(Rn

+) ≤ C(‖f‖Lp(Rn
+) + ‖h‖W 1−1/p,p(Rn−1)).

Proof. Let R be as in statement of Lemma 2, Re(λ) ≥ 0, |λ| ≥ R. By Lemma 1, there is

a unique v in W 2,p(Rn
+) such that
λv(x, y)−D2

xv(x, y)−∆yv(x, y) = f(x, y),

(x, y) ∈ R+ × Rn−1,

v(0, y) = 0, y ∈ Rn−1.

and

|λ|‖v‖Lp(Rn
+) + ‖v‖W 2,p(Rn

+) ≤ C0‖f‖Lp(Rn
+).
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Setting z := u− v, z should solve the system
λz(x, y)−D2

xz(x, y)−∆yz(x, y) = 0,

(x, y) ∈ R+ × Rn−1,

λz(0, y)− γDxz(0, y) + v · ∇yz(0, y) = h(y) + γDxv(0, y), y ∈ Rn−1.

Setting g := z|x=0, from Lemmata 1-2, we deduce

|λ|‖z‖Lp(Rn
+) + ‖z‖W 2,p(Rn

+) ≤ C1(‖g‖W 2−1/p,p(Rn−1) + |λ|1−1/(2p)‖g‖Lp(Rn−1)),

‖g‖W 2−1/p,p(Rn−1) ≤ C2(‖h‖W 1−1/p,p(Rn−1) + ‖Dxv(0, ·)‖W 1−1/p,p(Rn−1))

≤ C3(‖h‖W 1−1/p,p(Rn−1) + ‖v‖W 2,p(Rn
+))

≤ C4(‖f‖Lp(Rn
+) + ‖h‖W 1−1/p,p(Rn−1)),

|λ|1−1/(2p)‖g‖Lp(Rn−1) ≤ C|λ|1−1/(2p)‖g‖W 1−1/p,p(Rn−1)

≤ C|λ|−1/(2p)(‖h‖W 1−1/p,p(Rn−1) + ‖Dxv(0, ·)‖W 1−1/p,p(Rn−1))

≤ C|λ|−1/(2p)(‖f‖Lp(Rn
+) + ‖h‖W 1−1/p,p(Rn−1)).

From the estimates of v and z we draw the conclusion. �

As a simple consequence, we obtain the following

Theorem 2. Let p ∈ (1,∞). We define the following operator G:

G : D(G) = {(u, g) ∈ W 2,p(Rn
+)×W 2−1/p,p(Rn−1) : g = u(0, ·)}

→ Lp(Rn
+)×W 1−1/p,p(Rn−1),

G(u, g) := (∆u, γDxu(0, ·)− v · ∇yu(0, ·))

= (∆u, γDxu(0, ·)− v · ∇yg).

Then G is the infinitesimal generator of an analytic semigroup in the space Lp(Rn
+) ×

W 1−1/p,p(Rn−1).
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Proof. Applying a well known characterization of infinitesimal generators of analytic semi-

groups, we can try to show that D(G) is dense in Lp(Rn
+) ×W 1−1/p,p(Rn−1) and there

exist R,C positive such that, if λ ∈ C, Re(λ) ≥ 0 and |λ| ≥ R, λ ∈ ρ(G) and

‖(λ−G)−1‖L(Lp(Rn
+)×W 1−1/p,p(Rn−1) ≤ C|λ|−1.

We omit the first item. Concerning the second, it follows from Proposition 1 that, for

some R > 0, {λ ∈ C : Re(λ) ≥ 0, |λ| ≥ R} ⊆ ρ(G). In fact, (λ−G)−1(f, h) = (u, g) with

g = u|x=0. Moreover,

‖u‖Lp(Rn
+) ≤ C|λ|−1(‖f‖Lp(Rn

+) + ‖h‖W 1−1/p,p(Rn−1))

and

‖g‖W 1−1/p,p(Rn−1) = ‖λ−1(γDxu(0, ·)− v · ∇yu(0, ·) + h)‖W 1−1/p,p(Rn−1)

≤ C|λ|−1(‖u‖W 2,p(Rn
+) + ‖h‖W 1−1/p,p(Rn−1))

≤ C|λ|−1(‖f‖Lp(Rn
+) + ‖h‖W 1−1/p,p(Rn−1)).

�

As a consequence of Theorem 2 and the theory of analytic semigroups we obtain the

following

Corollary 1. Consider system (5). Let p ∈ (1,∞), ε ∈ R+, f ∈ Cε([0, T ];Lp(Rn
+)),

h ∈ Cε([0, T ];W 1−1/p,p(Rn−1)), u0 ∈ W 2,p(Rn
+). Then there exists a unique solution u

in C1([0, T ];Lp(Rn
+)) ∩ C([0, T ];W 2,p(Rn

+)), with g := u|x=0 ∈ C1([0, T ];W 1−1/p,p(Rn−1)).

(u, g) admits the representation

(u(t, ·), g(t, ·)) = etG(u0, u0|xn=0) +

∫ t

0

e(t−s)G(f(s, ·), g(s, ·))ds.

Corollary 2. Consider the system

(12)



Dtu(t, x, y)−D2
xu(t, x, y)−∆yu(t, x, y) = 0,

(t, x, y) ∈ (0, T )× R+ × Rn−1,

Dtu(t, 0, y)− γDxu(t, 0, y) + v · ∇yu(t, 0, y) = 0, (t, y) ∈ (0, T )× Rn−1,

u(0, x, y) = u0(x, y), (x, y) ∈ R+ × Rn−1.
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Let u0 ∈ Lp(Rn
+)). Then, ∀h0 ∈ W 1−1/p,p(Rn−1), there is a unique element u of C([0, T ];

Lp(Rn
+)) ∩ C1((0, T ];W 2,p(Rn

+)), with ux=0 ∈ C1((0, T ];W 1−1/p,p(Rn−1), such that:

(I) u satisfies (12);

(II) limt→0 ‖u(t, 0, ·)− h0‖W 1−1/p,p(Rn−1) = 0.

Of course, (u(t, ·), u|x=0(t, ·)) = etG(u0, h0). Corollaries 1-2 suggest that (5) has, at most,

one solution in the setting of solutions u which are regular, in the sense that the prescribed

regularity implies that the trace at u|t=0 has a trace at x = 0, which must coincide with

the trace at t = 0 of u|x=0.

This enlightens the statement of Theorem 1: if u ∈ W 1,p((0, T );Lp(Ω))∩Lp((0, T );W 2,p

(Ω)), then u0 = u|t=0 ∈ B2−2/p
p,p (Ω), coinciding with W 2−2/p,p (Ω) if 2 − 2

p
6∈ N. If p > 3

2
,

2− 2
p
> 1

p
, which implies that u|t=0 admits a trace in x = 0. Moreover, the belonging of u to

W 1,p((0, T );Lp(Ω))∩Lp((0, T );W 2,p (Ω)) implies that u|(0,T )×∂Ω ∈ W 1−1/(2p),2−1/p((0, T )×

∂Ω)) = W 1−1/(2p),p((0, T );Lp(∂Ω))∩Lp((0, T ),W 2−1/p,p(∂Ω)). However, we are requiring a

stronger regularity of u in (0, T )×∂Ω, namely that g := u|(0,T )×∂Ω ∈ W 1,p((0, T );W 1−1/p,p

(∂Ω)) ∩ Lp((0, T ),W 2−1/p,p(∂Ω)). This implies that g|t=0 is well defined and belongs to

B
2−2/p
p,p (∂Ω). So, in case p > 3

2
, g|t=0 must coincide with u0|∂Ω = u(0, ·)|∂Ω. In this case, we

have to take u0 ∈ B2−2/p
p,p (Ω), such that u0|∂Ω = g|t=0 ∈ B2−2/p

p,p (∂Ω). In case p < 3
2
, u0 does

not admit a trace at t = 0. In this case, we can choose g|t=0 arbitrarily in B
2−2/p
p,p (∂Ω) and

we can prove that, for any choice, we obtain a solution with the prescribed regularity.
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