Sigillo1
Seminari del Dipartimento di Matematica
Università di Bologna

16 Giu 2016
seminario di analisi matematica
Regularity results for elliptic equations and systems with variable growth exponent
Michela Eleuteri
We present a review on some regularity results I obtained in the last 10 years for elliptic equations whose prototype is the p(x)-Laplacian; they can be interpreted as the Euler-Lagrange equations of integral functionals appearing in the mathematical modelling of strongly anisotropic materials. Under suitable continuity assumptions on the function p, the results I'm going to present include: - Hoelder continuity results in the scalar case (also for the obstacle problem) - Calderon-Zygmund estimates for a class of obstacle problem with variable growth exponent - global regularity and stability of solutions to elliptic equations with non-standard growth - Lipschitz estimates for systems (thus in the vectorial setting) with ellipticity conditions at infinity
home