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If A is a ring, then an A-module M is called finite if it is finitely generated (as
A-module), or equivalently there exists an integer n and a surjective A-linear map
A" — M.

Let ¢: A — B be a ring homomorphism. We say that B is finite over A (or that
B is a finite A-algebra) if B is a finite A-module.

Let ¢: A — B be a ring homomorphism. We say that B is an A-algebra of finite
type (or that B is a finitely generated algebra or that B is of finite type over A)
if there exists a surjective A-algebra homomorphism Alxy,...,z,] — B. In other
words, if there exist finitely many elements by, ...,b, € B such that every element
in B can be written as a polynomial in the b;’s with coefficients in ¢ (A).

For each of the following statements decide if it is true or false. If it is true, prove
it. If it is false, find a counterexample. Let ¢: A — B be a ring homomorphism
and let M be an A-module.

(1) If B is finite over A, then B is of finite type over A.
(2) If B is of finite type over A and A is a noetherian ring, then B is a noetherian
ring.
(3) If B is of finite type over A and A is a noetherian ring, then B is a noetherian
A-module.
(4) If B is finite over A and A is a noetherian ring, then B is a noetherian ring.
(5) If ¢ is injective and B is a noetherian ring, then A is a noetherian ring.
(6) If ¢ is injective, B is a noetherian ring and B is a finite A-module, then A
is a noetherian ring. [Very hard!]
(7) If ¢ is injective and A and B are both noetherian rings, then B is of finite
type over A.
(8) Assume that ¢ is injective and ¢»: B — C' is an injective ring homomor-
phism. Assume that A is a noetherian ring, C' is of finite type over A, and
C is finite over B. Then B is of finite type over A.
(9) Let K D k be a field extension. If K is a k-algebra of finite type, then K
is finite over k.
(10) Q is not of finite type over Z.
(11) Qs of finite type over Z,), which is the localisation of Z at the prime ideal
(p) = pZ.
(12) If K is a field which is a Z-algebra of finite type, then K is a finite field.
(13) If ¢ is surjective, then B is finite over A.
(14) If ¢ is surjective, then B is of finite type over A.
(15) If ¢ is surjective and B is a noetherian ring, then A is a noetherian ring.
(16) If ¢ is the localisation with respect to some multiplicative subset of A, then
B is finite over A.
(17) If ¢ is the localisation with respect to some multiplicative subset of A, then
B is of finite type over A.
(18) If ¢ is the localisation with respect to some multiplicative subset of A and
A is a notherian ring, then B is a noetherian ring.
(19) If ¢ is the localisation with respect to some multiplicative subset of A and
B is a notherian ring, then A is a noetherian ring.
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If ¢ is injective, B is a field and B is finite over A, then A is a field. [The
assumption that B is finite over A can be relaxed to B being integral over
Al

If o is injective, B is a domain, A is a field and B is finite over A, then B is
a field. [The assumption that B is finite over A can be relaxed to B being
integral over A.]

Consider the surjective ring homomorphism ¢: Az] — A defined by f(z) —
f(0). Let p be a prime ideal in A[z] and let p® C A be the extension of
p via ¢. Then: p is finitely generated if and only p® is finitely generated.
[Distinguish the two cases: x € p and = ¢ p.]

If every prime ideal of A is finitely generated, then A is a noetherian ring.
A is a noetherian ring if and only if Az] is a noetherian ring. [Give a proof
of = by using the preceding two exercises.]

If M is a finite A-module and A is a noetherian ring, then M is a noetherian
A-module.

If M is a non-zero noetherian A-module, then A is a noetherian ring.

If M is a noetherian A-module, then A/ann4 (M) is a noetherian ring,.

If M is a faithful noetherian A-module, then A is a noetherian ring.

If M if a finite A-module, then M ®4 B is a finite B-module.

If M is a flat A-module, then M ® 4 B is a flat B-module.

If M ®4 B is a flat B-module, then M is a flat A-module.

If M and N are non-zero A-modules, then M ® 4 N is non-zero.

If M and N are non-zero A-modules and A is a local ring, then M ® 4 N
is non-zero.

If M and N are non-zero finite A-modules and A is a local ring, then
M ®4 N is non-zero.

If M and N are finite A-modules, then M ® 4 N is a finite A-module.

If A is an artinian ring and M is a finite A-module, then M is an A-module
of finite length.

If ¢ is the localisation with respect to some multiplicative subset of A and
A is reduced, then B is reduced. [A ring is called reduced if 0 is the unique
nilpotent element.]

If A is reduced, then A, is reduced for every p € Spec A.

If A, is reduced for every p € Spec A, then A is reduced.

If A is a domain, then A, is a domain for every p € Spec A.

If A, is a domain for every p € Spec A4, then A is a domain.

If A is a noetherian ring, then A, is a noetherian ring for every p € Spec A.
Assume that A is a boolean ring, i.e. for every element a € A we have
a?> = a. For every prime ideal p € Spec A4, the quotient A/p and the
localisation A, are both isomorphic to Fa.

If A, is a noetherian ring for every p € Spec A, then A is a noetherian ring.
[Hint: consider the ring A = [,y F2 and use (43).]

Assume that Ay, is a noetherian ring for every m € mSpec A. Assume that
for every element x € A\ {0} the set {m € mSpec A | x € m} is finite. Then
A is a noetherian ring.

If A is semilocal (i.e. the maximal ideals are finitely many) and Ay, is a
noetherian ring for every m € mSpec A, then A is a noetherian ring.

If A is a local ring with dim A = 0, then A is artinian.

If A is a noetherian ring, then dim A is finite.

If A is a local noetherian ring, then dim A is finite.

If A is a noetherian ring, then Spec A is a noetherian topological space.

If Spec A is a noetherian topological space, then A is noetherian.
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(52) There exists a local ring which is isomorphic to the direct product of two
non-zero rings.

(53) If I C A is a finitely generated ideal such that (0: 1) =0 and J C A is an
arbitrary ideal, then J C (IJ : I) CV/J.

(54) If I C A is a finitely generated ideal, then the following statements are
equivalent:

(a) the exact sequence 0 — I — A — A/I — 0 splits,

(b) A/I is flat over A,

(c) I =12

(d) there exists an element e € A such that e = €2 and I = Ae.

(55) If A # 0 and there exists a surjective A-linear homomorphism A™ — A™,
then n > m.

(56) If A # 0 and there exists an isomorphism of A-modules between A™ and
A™ then n = m.

(57) If A # 0 and there exists an injective A-linear homomorphism A™ — A™,
then n < m.

(58) If M is a finite A-module, then every surjective A-linear endomorphism of
M is an isomorphism.

(59) If M is a finite A-module, then every injective A-linear endomorphism of
M is an isomorphism.

(60) If M is an artinian A-module, then every injective A-linear endomorphism

of M is an isomorphism.

) Ass M C Supp M C V(anna(M))

) SuppM =0 iff M = 0.

) If M and N are finite A-modules, then Supp M ® 4 N = Supp M NSupp N.

YU 0 —- M — M — M” — 0is an exact sequence of A-modules, then

Supp M = Supp M’ U Supp M"” and Ass M’ C Ass M C Ass M’ U Ass M".

(65) If M = My & --- & M, as A-modules, then Supp M = SuppM; U ---U
Supp M,, and Ass M = Ass My U---U Ass M,,.

(66) Let G be a finite abelian group (here “finite” means “with finitely many ele-
ments”) with order n. Let p be a prime number. The ideal pZ is associated
to the Z-module G if and only if p|n.

(67) Let G be a finitely generated abelian group. The ideal 0 is associated to
the Z-module G iff G is not torsion iff the cardinality of G is infinite.

(68) If M is an A-module with anny (M) C I, then Ass,/;; M = Assq M.

(69) If S C A is multiplicative and N is an S~!A-module, then Suppg-14 N C
Supp4 NV and Assg-14 N = Assy N.

(70) If S C A is multiplicative and M is an A-module, then Suppg—14 S™'M D
Supps M N Spec S~ A and Assg-14 S™1M D Assq M N Spec S™LA.

(71) If A is a noetherian ring, S C A is multiplicative and M is an A-module,
then Assg-14 S '!M = Assq, M N Spec S™1A.

(72) If A is a noetherian ring, then Ass M = () iff M = 0.

(73) If M is a finite A-module, then Supp M = V(ann (M)).

(74) If A is a noetherian ring and M is a finite A-module, then:

(i) Ass M is a finite set;
(ii) Ass M and Supp M have the same minimal elements;

(iii) if {p1,...,pn} is the set of minimal elements of Ass M, then Supp M =
V(p1)U---UV(py), Vanna(M) =piN---Np, and {p1,...,pn} is the
set of minimal primes of A/ann4(M).

(75) Let A be a noetherian ring and M be a finite A-module. Consider a chain
0=MyG M G--- S M, =M of submodules where M;/M;_; is isomor-
phic to A/p; for p; € Spec A. Then Ass M C {p1,...,pn} C Supp M.



(76)

(77)

(78)

(79)

(80)

(87)
(88)

(89)

Let A be a noetherian ring and M be a finite A-module. Then M has finite
length iff Ass M C mSpec A iff Supp M C mSpec A.
Let k be a field and consider the k-algebra A = k[z,y, z]/(zy — 2%) and the
ideals I = (x,2)/(zy — 22) € A and m = (z,y,2)/(zy — 22) C A. Then
m is a maximal ideal of A and the ideal TA, C A, is not principal. [In
algebraic geometry, this is the famous example of a Weil divisor which is
not Cartier.]
If Ais a domain, then A = N, cqpecadp = )
intersections take place in the fraction field of A.
Let Specy: Spec B — Spec A be the continuous map induced by the ring
homomorphism ¢: A — B. If p € Spec A then the fibre (Spec)~!(p) =
{q € Spec B | »=1(q) = p} is canonically homeomorphic to Spec(B® 4 x(p)).
Consider the ideal p = (2,1 +1/=5) in the ring A = Z[/—5]. Prove that:

e A is finite over Z;

e p is a non-principal maximal ideal of A with residue field Fo;

e the ideal pA, C A, is principal.
Let k be a field and let A be a finite k-algebra. Then the cardinality
of Spec A is not greater than dimy A. [Hint: use the Chinese remainder
theorem.
If B is generated as an A-module by n elements, then every fibre of Spec ¢
has cardinality not greater than n. [Use and (81)]
If B is finite over A, then every fibre of Spec ¢ has finitely many points.
Let A be a local domain with maximal ideal m. Let K be the fraction field
of A and let k = A/m. Let M be a finite A-module. Prove the following
statements:
(a) dimp M ®4 k > dimg M ®4 K;
(b) M is flat A-module iff M is a free A-module iff dimy M ®4 k =

dimg M ®4 K.

Let k be a field and consider the inclusion of rings k[z?2, 23] C k[z]. Is k[x]
finite/of finite type/flat over k[x2, 23]?
Let k be a field and let A be a finite k-algebra. Show that A is an artinian
ring. Let mq,..., m, be the prime ideals of A. For each i = 1,...,n, let
e; be the length of Ay, and let f; be the dimension of k(m;) as a k-vector
space. Then

memSpec A A, where the

dimk A= i 61f2

=1

[Hint: via the structure theorem for artinian rings, reduce to the case when
A is local]

Let A be a ring and M be an A-module. M is flat if and only for every
finitely generated ideal I C A the natural map I ® 4 M — M is injective.
Let A be a PID and let M be an A-module. M is flat if and only if M is
torsion free.

Let A be a subring of C which is finite over Z. Let ¢: Z — A be the unique
ring homomorphism from Z to A. We say that a prime ideal q € Spec A
lies over (or is lying over) pZ, for some prime number p, if it is in the fibre
(Spect)~Y(pZ), i.e. if qNZ = pZ. If q € Spec A lies over pZ, then there
is a natural local ring homomorphism Z,) — A, where Z,) denotes the
localisation of Z at the prime ideal (p) = pZ. If q € Spec A lies over pZ,
then the ramification index is defined to be

e(q/p) := length of Aq/pA, as Aq-module



and the inertia degree is defined to be

f(a/p) := dimg, £(a),
where k(q) denotes the residue field of q. Let K be the fraction field of A.
Fix a prime p € Z and prove the following statements.

(a) Ais flat over Z. [Hint: use (88).]

(b) A is a free Z-module of finite rank. [Hint: use the structure theorem
of finitely generated abelian groups.]

(c) The ring of fractions (Z\ {0}) ' A coincides with K. [Hint: By
we have that (Z\ {0})~1A is a field, because it is a domain and is finite
over Q.]

(d) Ais a free Z-module of rank equal to dimg K. [Hint: use the natural
isomorphism (Z\ {0}) !4 ~ A @7 Q.]

(e) If g € Spec A lies over pZ, then q is a maximal ideal of A and A,/pA,
is a local artinian ring.

(f) A/pAis an artinian ring and dimp, A/pA = dimg K.

(g) We have an isomorphism of A-algebras

A/pA ~ II  Ad/pAs

q lying over pZ
(h) There is the equality:

dimgK = Y e(a/p)- f(a/p).

q lying over pZ

[This is a fundamental formula in algebraic number theory. Hint: con-
sider dimg, A/pA and use (36)).]
[From we knew that the number of primes of A lying over a fixed
prime ideal of Z is not greater that dimg K. In the formula in (h) we
are giving a quantitative interpretation for the difference between dimg K
and the number of primes of A lying over a fixed prime ideal of Z. Also,
the formula in (h) has a geometric meaning for the morphism of schemes
Spec A — SpecZ which is similar, but slightly more complicated, to the
theory of non-constant holomorphic maps between Riemann surfaces.|
(90) Consider the ring A = Z[i] of Gaussian integers. Prove that A is finite over
Z. For every prime p € Z, study the primes of A which lie over pZ, their
ramification indexes and their inertia degrees.
(91) Consider the ring A = Z[V/2]. Prove that A is finite over Z. Show the
following statements.
(a) There is a unique prime of A lying over 2Z; it has ramification index
3 and inertia degree 1.
(b) There is a unique prime of A lying over 3Z; it has ramification index
3 and inertia degree 1.
(¢) There are two primes of A lying over 5Z and their ramification indexes
and inertia degrees are (e, f) = (1,1) and (e, f) = (1,2).
(d) There is a unique prime of A lying over 7Z; it has ramification index
1 and inertia degree 3.



