Some exercises in commutative algebra

Andrea Petracci
andrea.petracci@fu-berlin.de
https://userpage.fu-berlin.de/petracci/201819Algebra1

If A is a ring, then an A-module M is called finite if it is finitely generated (as A-module), or equivalently there exists an integer n and a surjective A-linear map $A^{n} \rightarrow M$.

Let $\varphi: A \rightarrow B$ be a ring homomorphism. We say that B is finite over A (or that B is a finite A-algebra) if B is a finite A-module.

Let $\varphi: A \rightarrow B$ be a ring homomorphism. We say that B is an A-algebra of finite type (or that B is a finitely generated algebra or that B is of finite type over A) if there exists a surjective A-algebra homomorphism $A\left[x_{1}, \ldots, x_{n}\right] \rightarrow B$. In other words, if there exist finitely many elements $b_{1}, \ldots, b_{n} \in B$ such that every element in B can be written as a polynomial in the b_{i} 's with coefficients in $\varphi(A)$.

For each of the following statements decide if it is true or false. If it is true, prove it. If it is false, find a counterexample. Let $\varphi: A \rightarrow B$ be a ring homomorphism and let M be an A-module.
(1) If B is finite over A, then B is of finite type over A.
(2) If B is of finite type over A and A is a noetherian ring, then B is a noetherian ring.
(3) If B is of finite type over A and A is a noetherian ring, then B is a noetherian A-module.
(4) If B is finite over A and A is a noetherian ring, then B is a noetherian ring.
(5) If φ is injective and B is a noetherian ring, then A is a noetherian ring.
(6) If φ is injective, B is a noetherian ring and B is a finite A-module, then A is a noetherian ring. [Very hard!]
(7) If φ is injective and A and B are both noetherian rings, then B is of finite type over A.
(8) Assume that φ is injective and $\psi: B \rightarrow C$ is an injective ring homomorphism. Assume that A is a noetherian ring, C is of finite type over A, and C is finite over B. Then B is of finite type over A.
(9) Let $K \supseteq k$ be a field extension. If K is a k-algebra of finite type, then K is finite over k.
(10) \mathbb{Q} is not of finite type over \mathbb{Z}.
(11) \mathbb{Q} is of finite type over $\mathbb{Z}_{(p)}$, which is the localisation of \mathbb{Z} at the prime ideal $(p)=p \mathbb{Z}$.
(12) If K is a field which is a \mathbb{Z}-algebra of finite type, then K is a finite field.
(13) If φ is surjective, then B is finite over A.
(14) If φ is surjective, then B is of finite type over A.
(15) If φ is surjective and B is a noetherian ring, then A is a noetherian ring.
(16) If φ is the localisation with respect to some multiplicative subset of A, then B is finite over A.
(17) If φ is the localisation with respect to some multiplicative subset of A, then B is of finite type over A.
(18) If φ is the localisation with respect to some multiplicative subset of A and A is a notherian ring, then B is a noetherian ring.
(19) If φ is the localisation with respect to some multiplicative subset of A and B is a notherian ring, then A is a noetherian ring.
(20) If φ is injective, B is a field and B is finite over A, then A is a field. [The assumption that B is finite over A can be relaxed to B being integral over A.]
(21) If φ is injective, B is a domain, A is a field and B is finite over A, then B is a field. [The assumption that B is finite over A can be relaxed to B being integral over A.]
(22) Consider the surjective ring homomorphism $\psi: A \llbracket x \rrbracket \rightarrow A$ defined by $f(x) \mapsto$ $f(0)$. Let \mathfrak{p} be a prime ideal in $A \llbracket x \rrbracket$ and let $\mathfrak{p}^{e} \subseteq A$ be the extension of \mathfrak{p} via ψ. Then: \mathfrak{p} is finitely generated if and only \mathfrak{p}^{e} is finitely generated. [Distinguish the two cases: $x \in \mathfrak{p}$ and $x \notin \mathfrak{p}$.]
(23) If every prime ideal of A is finitely generated, then A is a noetherian ring.
(24) A is a noetherian ring if and only if $A \llbracket x \rrbracket$ is a noetherian ring. [Give a proof of \Rightarrow by using the preceding two exercises.]
(25) If M is a finite A-module and A is a noetherian ring, then M is a noetherian A-module.
(26) If M is a non-zero noetherian A-module, then A is a noetherian ring.
(27) If M is a noetherian A-module, then $A / \operatorname{ann}_{A}(M)$ is a noetherian ring.
(28) If M is a faithful noetherian A-module, then A is a noetherian ring.
(29) If M if a finite A-module, then $M \otimes_{A} B$ is a finite B-module.
(30) If M is a flat A-module, then $M \otimes_{A} B$ is a flat B-module.
(31) If $M \otimes_{A} B$ is a flat B-module, then M is a flat A-module.
(32) If M and N are non-zero A-modules, then $M \otimes_{A} N$ is non-zero.
(33) If M and N are non-zero A-modules and A is a local ring, then $M \otimes_{A} N$ is non-zero.
(34) If M and N are non-zero finite A-modules and A is a local ring, then $M \otimes_{A} N$ is non-zero.
(35) If M and N are finite A-modules, then $M \otimes_{A} N$ is a finite A-module.
(36) If A is an artinian ring and M is a finite A-module, then M is an A-module of finite length.
(37) If φ is the localisation with respect to some multiplicative subset of A and A is reduced, then B is reduced. [A ring is called reduced if 0 is the unique nilpotent element.]
(38) If A is reduced, then $A_{\mathfrak{p}}$ is reduced for every $\mathfrak{p} \in \operatorname{Spec} A$.
(39) If $A_{\mathfrak{p}}$ is reduced for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is reduced.
(40) If A is a domain, then $A_{\mathfrak{p}}$ is a domain for every $\mathfrak{p} \in \operatorname{Spec} A$.
(41) If $A_{\mathfrak{p}}$ is a domain for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is a domain.
(42) If A is a noetherian ring, then $A_{\mathfrak{p}}$ is a noetherian ring for every $\mathfrak{p} \in \operatorname{Spec} A$.
(43) Assume that A is a boolean ring, i.e. for every element $a \in A$ we have $a^{2}=a$. For every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the quotient A / \mathfrak{p} and the localisation $A_{\mathfrak{p}}$ are both isomorphic to \mathbb{F}_{2}.
(44) If $A_{\mathfrak{p}}$ is a noetherian ring for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is a noetherian ring. [Hint: consider the ring $A=\prod_{i \in \mathbb{N}} \mathbb{F}_{2}$ and use 43).]
(45) Assume that $A_{\mathfrak{m}}$ is a noetherian ring for every $\mathfrak{m} \in \operatorname{mSpec} A$. Assume that for every element $x \in A \backslash\{0\}$ the set $\{\mathfrak{m} \in \operatorname{mSpec} A \mid x \in \mathfrak{m}\}$ is finite. Then A is a noetherian ring.
(46) If A is semilocal (i.e. the maximal ideals are finitely many) and $A_{\mathfrak{m}}$ is a noetherian ring for every $\mathfrak{m} \in \operatorname{mSpec} A$, then A is a noetherian ring.
(47) If A is a local ring with $\operatorname{dim} A=0$, then A is artinian.
(48) If A is a noetherian ring, then $\operatorname{dim} A$ is finite.
(49) If A is a local noetherian ring, then $\operatorname{dim} A$ is finite.
(50) If A is a noetherian ring, then $\operatorname{Spec} A$ is a noetherian topological space.
(51) If $\operatorname{Spec} A$ is a noetherian topological space, then A is noetherian.
(52) There exists a local ring which is isomorphic to the direct product of two non-zero rings.
(53) If $I \subseteq A$ is a finitely generated ideal such that $(0: I)=0$ and $J \subseteq A$ is an arbitrary ideal, then $J \subseteq(I J: I) \subseteq \sqrt{J}$.
(54) If $I \subseteq A$ is a finitely generated ideal, then the following statements are equivalent:
(a) the exact sequence $0 \rightarrow I \rightarrow A \rightarrow A / I \rightarrow 0$ splits,
(b) A / I is flat over A,
(c) $I=I^{2}$,
(d) there exists an element $e \in A$ such that $e=e^{2}$ and $I=A e$.
(55) If $A \neq 0$ and there exists a surjective A-linear homomorphism $A^{n} \rightarrow A^{m}$, then $n \geq m$.
(56) If $A \neq 0$ and there exists an isomorphism of A-modules between A^{n} and A^{m}, then $n=m$.
(57) If $A \neq 0$ and there exists an injective A-linear homomorphism $A^{n} \rightarrow A^{m}$, then $n \leq m$.
(58) If M is a finite A-module, then every surjective A-linear endomorphism of M is an isomorphism.
(59) If M is a finite A-module, then every injective A-linear endomorphism of M is an isomorphism.
(60) If M is an artinian A-module, then every injective A-linear endomorphism of M is an isomorphism.
(61) Ass $M \subseteq \operatorname{Supp} M \subseteq \mathrm{~V}\left(\operatorname{ann}_{A}(M)\right)$
(62) $\operatorname{Supp} M=\emptyset$ iff $M=0$.
(63) If M and N are finite A-modules, then $\operatorname{Supp} M \otimes_{A} N=\operatorname{Supp} M \cap \operatorname{Supp} N$.
(64) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of A-modules, then $\operatorname{Supp} M=\operatorname{Supp} M^{\prime} \cup \operatorname{Supp} M^{\prime \prime}$ and Ass $M^{\prime} \subseteq$ Ass $M \subseteq$ Ass $M^{\prime} \cup$ Ass $M^{\prime \prime}$.
(65) If $M=M_{1} \oplus \cdots \oplus M_{n}$ as A-modules, then $\operatorname{Supp} M=\operatorname{Supp} M_{1} \cup \cdots \cup$ Supp M_{n} and Ass $M=$ Ass $M_{1} \cup \cdots \cup$ Ass M_{n}.
(66) Let G be a finite abelian group (here "finite" means "with finitely many elements") with order n. Let p be a prime number. The ideal $p \mathbb{Z}$ is associated to the \mathbb{Z}-module G if and only if $p \mid n$.
(67) Let G be a finitely generated abelian group. The ideal 0 is associated to the \mathbb{Z}-module G iff G is not torsion iff the cardinality of G is infinite.
(68) If M is an A-module with $\operatorname{ann}_{A}(M) \subseteq I$, then $\operatorname{Ass}_{A / I} M=\operatorname{Ass}_{A} M$.
(69) If $S \subseteq A$ is multiplicative and N is an $S^{-1} A$-module, then $\operatorname{Supp}_{S^{-1} A} N \subseteq$ $\operatorname{Supp}_{A} N$ and $\operatorname{Ass}_{S^{-1} A} N=\operatorname{Ass}_{A} N$.
(70) If $S \subseteq A$ is multiplicative and M is an A-module, then $\operatorname{Supp}_{S^{-1} A} S^{-1} M \supseteq$ $\operatorname{Supp}_{A} M \cap \operatorname{Spec} S^{-1} A$ and $\operatorname{Ass}_{S^{-1} A} S^{-1} M \supseteq \operatorname{Ass}_{A} M \cap \operatorname{Spec} S^{-1} A$.
(71) If A is a noetherian ring, $S \subseteq A$ is multiplicative and M is an A-module, then $\operatorname{Ass}_{S^{-1} A} S^{-1} M=\operatorname{Ass}_{A} M \cap \operatorname{Spec} S^{-1} A$.
(72) If A is a noetherian ring, then Ass $M=\emptyset$ iff $M=0$.
(73) If M is a finite A-module, then $\operatorname{Supp} M=\mathrm{V}\left(\operatorname{ann}_{A}(M)\right)$.
(74) If A is a noetherian ring and M is a finite A-module, then:
(i) Ass M is a finite set;
(ii) Ass M and $\operatorname{Supp} M$ have the same minimal elements;
(iii) if $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is the set of minimal elements of Ass M, then Supp $M=$ $\mathrm{V}\left(\mathfrak{p}_{1}\right) \cup \cdots \cup \mathrm{V}\left(\mathfrak{p}_{n}\right), \sqrt{\operatorname{ann}_{A}(M)}=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n}$ and $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is the set of minimal primes of $A / \mathrm{ann}_{A}(M)$.
(75) Let A be a noetherian ring and M be a finite A-module. Consider a chain $0=M_{0} \varsubsetneqq M_{1} \varsubsetneqq \cdots \varsubsetneqq M_{n}=M$ of submodules where M_{i} / M_{i-1} is isomorphic to A / \mathfrak{p}_{i} for $\mathfrak{p}_{i} \in \operatorname{Spec} A$. Then Ass $M \subseteq\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \subseteq \operatorname{Supp} M$.
(76) Let A be a noetherian ring and M be a finite A-module. Then M has finite length iff Ass $M \subseteq \operatorname{mSpec} A$ iff Supp $M \subseteq \operatorname{mSpec} A$.
(77) Let k be a field and consider the k-algebra $A=k[x, y, z] /\left(x y-z^{2}\right)$ and the ideals $I=(x, z) /\left(x y-z^{2}\right) \subseteq A$ and $\mathfrak{m}=(x, y, z) /\left(x y-z^{2}\right) \subseteq A$. Then \mathfrak{m} is a maximal ideal of A and the ideal $I A_{\mathfrak{m}} \subseteq A_{\mathfrak{m}}$ is not principal. [In algebraic geometry, this is the famous example of a Weil divisor which is not Cartier.]
(78) If A is a domain, then $A=\bigcap_{\mathfrak{p} \in \operatorname{Spec} A} A_{\mathfrak{p}}=\bigcap_{\mathfrak{m} \in \operatorname{mSpec} A} A_{\mathfrak{m}}$, where the intersections take place in the fraction field of A.
(79) Let $\operatorname{Spec} \varphi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ be the continuous map induced by the ring homomorphism $\varphi: A \rightarrow B$. If $\mathfrak{p} \in \operatorname{Spec} A$ then the fibre $(\operatorname{Spec} \varphi)^{-1}(\mathfrak{p})=$ $\left\{\mathfrak{q} \in \operatorname{Spec} B \mid \varphi^{-1}(\mathfrak{q})=\mathfrak{p}\right\}$ is canonically homeomorphic to $\operatorname{Spec}\left(B \otimes_{A} \kappa(\mathfrak{p})\right)$.
(80) Consider the ideal $\mathfrak{p}=(2,1+\sqrt{-5})$ in the ring $A=\mathbb{Z}[\sqrt{-5}]$. Prove that:

- A is finite over \mathbb{Z};
- \mathfrak{p} is a non-principal maximal ideal of A with residue field \mathbb{F}_{2};
- the ideal $\mathfrak{p} A_{\mathfrak{p}} \subseteq A_{\mathfrak{p}}$ is principal.
(81) Let k be a field and let A be a finite k-algebra. Then the cardinality of $\operatorname{Spec} A$ is not greater than $\operatorname{dim}_{k} A$. [Hint: use the Chinese remainder theorem.]
(82) If B is generated as an A-module by n elements, then every fibre of $\operatorname{Spec} \varphi$ has cardinality not greater than n. [Use (79p and (81).]
(83) If B is finite over A, then every fibre of $\operatorname{Spec} \varphi$ has finitely many points.
(84) Let A be a local domain with maximal ideal \mathfrak{m}. Let K be the fraction field of A and let $k=A / \mathfrak{m}$. Let M be a finite A-module. Prove the following statements:
(a) $\operatorname{dim}_{k} M \otimes_{A} k \geq \operatorname{dim}_{K} M \otimes_{A} K$;
(b) M is flat A-module iff M is a free A-module iff $\operatorname{dim}_{k} M \otimes_{A} k=$ $\operatorname{dim}_{K} M \otimes_{A} K$.
(85) Let k be a field and consider the inclusion of rings $k\left[x^{2}, x^{3}\right] \subseteq k[x]$. Is $k[x]$ finite/of finite type/flat over $k\left[x^{2}, x^{3}\right]$?
(86) Let k be a field and let A be a finite k-algebra. Show that A is an artinian ring. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}$ be the prime ideals of A. For each $i=1, \ldots, n$, let e_{i} be the length of $A_{\mathfrak{m}_{i}}$ and let f_{i} be the dimension of $\kappa\left(\mathfrak{m}_{i}\right)$ as a k-vector space. Then

$$
\operatorname{dim}_{k} A=\sum_{i=1}^{n} e_{i} f_{i}
$$

[Hint: via the structure theorem for artinian rings, reduce to the case when A is local]
(87) Let A be a ring and M be an A-module. M is flat if and only for every finitely generated ideal $I \subseteq A$ the natural map $I \otimes_{A} M \rightarrow M$ is injective.
(88) Let A be a PID and let M be an A-module. M is flat if and only if M is torsion free.
(89) Let A be a subring of \mathbb{C} which is finite over \mathbb{Z}. Let $\iota: \mathbb{Z} \rightarrow A$ be the unique ring homomorphism from \mathbb{Z} to A. We say that a prime ideal $\mathfrak{q} \in \operatorname{Spec} A$ lies over (or is lying over) $p \mathbb{Z}$, for some prime number p, if it is in the fibre $(\operatorname{Spec} \iota)^{-1}(p \mathbb{Z})$, i.e. if $\mathfrak{q} \cap \mathbb{Z}=p \mathbb{Z}$. If $\mathfrak{q} \in \operatorname{Spec} A$ lies over $p \mathbb{Z}$, then there is a natural local ring homomorphism $\mathbb{Z}_{(p)} \rightarrow A_{\mathfrak{q}}$, where $\mathbb{Z}_{(p)}$ denotes the localisation of \mathbb{Z} at the prime ideal $(p)=p \mathbb{Z}$. If $\mathfrak{q} \in \operatorname{Spec} A$ lies over $p \mathbb{Z}$, then the ramification index is defined to be

$$
e(\mathfrak{q} / p):=\text { length of } A_{\mathfrak{q}} / p A_{\mathfrak{q}} \text { as } A_{\mathfrak{q}} \text {-module }
$$

and the inertia degree is defined to be

$$
f(\mathfrak{q} / p):=\operatorname{dim}_{\mathbb{F}_{p}} \kappa(\mathfrak{q})
$$

where $\kappa(\mathfrak{q})$ denotes the residue field of \mathfrak{q}. Let K be the fraction field of A. Fix a prime $p \in \mathbb{Z}$ and prove the following statements.
(a) A is flat over \mathbb{Z}. [Hint: use (88).]
(b) A is a free \mathbb{Z}-module of finite rank. [Hint: use the structure theorem of finitely generated abelian groups.]
(c) The ring of fractions $(\mathbb{Z} \backslash\{0\})^{-1} A$ coincides with K. [Hint: By (21) we have that $(\mathbb{Z} \backslash\{0\})^{-1} A$ is a field, because it is a domain and is finite over \mathbb{Q}.]
(d) A is a free \mathbb{Z}-module of rank equal to $\operatorname{dim}_{\mathbb{Q}} K$. [Hint: use the natural isomorphism $(\mathbb{Z} \backslash\{0\})^{-1} A \simeq A \otimes_{\mathbb{Z}} \mathbb{Q}$.]
(e) If $\mathfrak{q} \in \operatorname{Spec} A$ lies over $p \mathbb{Z}$, then \mathfrak{q} is a maximal ideal of A and $A_{\mathfrak{q}} / p A_{\mathfrak{q}}$ is a local artinian ring.
(f) $A / p A$ is an artinian ring and $\operatorname{dim}_{\mathbb{F}_{p}} A / p A=\operatorname{dim}_{\mathbb{Q}} K$.
(g) We have an isomorphism of A-algebras

$$
A / p A \simeq \prod_{\mathfrak{q} \text { lying over } p \mathbb{Z}} A_{\mathfrak{q}} / p A_{\mathfrak{q}} .
$$

(h) There is the equality:

$$
\operatorname{dim}_{\mathbb{Q}} K=\sum_{\mathfrak{q} \text { lying over } p \mathbb{Z}} e(\mathfrak{q} / p) \cdot f(\mathfrak{q} / p) .
$$

[This is a fundamental formula in algebraic number theory. Hint: consider $\operatorname{dim}_{\mathbb{F}_{p}} A / p A$ and use 86).]
[From (82) we knew that the number of primes of A lying over a fixed prime ideal of \mathbb{Z} is not greater that $\operatorname{dim}_{\mathbb{Q}} K$. In the formula in (h) we are giving a quantitative interpretation for the difference between $\operatorname{dim}_{\mathbb{Q}} K$ and the number of primes of A lying over a fixed prime ideal of \mathbb{Z}. Also, the formula in (h) has a geometric meaning for the morphism of schemes $\operatorname{Spec} A \rightarrow \operatorname{Spec} \mathbb{Z}$ which is similar, but slightly more complicated, to the theory of non-constant holomorphic maps between Riemann surfaces.]
(90) Consider the ring $A=\mathbb{Z}[i]$ of Gaussian integers. Prove that A is finite over \mathbb{Z}. For every prime $p \in \mathbb{Z}$, study the primes of A which lie over $p \mathbb{Z}$, their ramification indexes and their inertia degrees.
(91) Consider the ring $A=\mathbb{Z}[\sqrt[3]{2}]$. Prove that A is finite over \mathbb{Z}. Show the following statements.
(a) There is a unique prime of A lying over $2 \mathbb{Z}$; it has ramification index 3 and inertia degree 1 .
(b) There is a unique prime of A lying over $3 \mathbb{Z}$; it has ramification index 3 and inertia degree 1.
(c) There are two primes of A lying over $5 \mathbb{Z}$ and their ramification indexes and inertia degrees are $(e, f)=(1,1)$ and $(e, f)=(1,2)$.
(d) There is a unique prime of A lying over $7 \mathbb{Z}$; it has ramification index 1 and inertia degree 3 .

