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If A is a ring, then an A-module M is called finite if it is finitely generated (as
A-module), or equivalently there exists an integer n and a surjective A-linear map
An →M .

Let ϕ : A→ B be a ring homomorphism. We say that B is finite over A (or that
B is a finite A-algebra) if B is a finite A-module.

Let ϕ : A→ B be a ring homomorphism. We say that B is an A-algebra of finite
type (or that B is a finitely generated algebra or that B is of finite type over A)
if there exists a surjective A-algebra homomorphism A[x1, . . . , xn] → B. In other
words, if there exist finitely many elements b1, . . . , bn ∈ B such that every element
in B can be written as a polynomial in the bi’s with coefficients in ϕ(A).

For each of the following statements decide if it is true or false. If it is true, prove
it. If it is false, find a counterexample. Let ϕ : A → B be a ring homomorphism
and let M be an A-module.

(1) If B is finite over A, then B is of finite type over A.
(2) If B is of finite type over A and A is a noetherian ring, then B is a noetherian

ring.
(3) If B is of finite type over A and A is a noetherian ring, then B is a noetherian

A-module.
(4) If B is finite over A and A is a noetherian ring, then B is a noetherian ring.
(5) If ϕ is injective and B is a noetherian ring, then A is a noetherian ring.
(6) If ϕ is injective, B is a noetherian ring and B is a finite A-module, then A

is a noetherian ring. [Very hard!]
(7) If ϕ is injective and A and B are both noetherian rings, then B is of finite

type over A.
(8) Assume that ϕ is injective and ψ : B → C is an injective ring homomor-

phism. Assume that A is a noetherian ring, C is of finite type over A, and
C is finite over B. Then B is of finite type over A.

(9) Let K ⊇ k be a field extension. If K is a k-algebra of finite type, then K
is finite over k.

(10) Q is not of finite type over Z.
(11) Q is of finite type over Z(p), which is the localisation of Z at the prime ideal

(p) = pZ.
(12) If K is a field which is a Z-algebra of finite type, then K is a finite field.
(13) If ϕ is surjective, then B is finite over A.
(14) If ϕ is surjective, then B is of finite type over A.
(15) If ϕ is surjective and B is a noetherian ring, then A is a noetherian ring.
(16) If ϕ is the localisation with respect to some multiplicative subset of A, then

B is finite over A.
(17) If ϕ is the localisation with respect to some multiplicative subset of A, then

B is of finite type over A.
(18) If ϕ is the localisation with respect to some multiplicative subset of A and

A is a notherian ring, then B is a noetherian ring.
(19) If ϕ is the localisation with respect to some multiplicative subset of A and

B is a notherian ring, then A is a noetherian ring.
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(20) If ϕ is injective, B is a field and B is finite over A, then A is a field. [The
assumption that B is finite over A can be relaxed to B being integral over
A.]

(21) If ϕ is injective, B is a domain, A is a field and B is finite over A, then B is
a field. [The assumption that B is finite over A can be relaxed to B being
integral over A.]

(22) Consider the surjective ring homomorphism ψ : A[[x]]→ A defined by f(x) 7→
f(0). Let p be a prime ideal in A[[x]] and let pe ⊆ A be the extension of
p via ψ. Then: p is finitely generated if and only pe is finitely generated.
[Distinguish the two cases: x ∈ p and x /∈ p.]

(23) If every prime ideal of A is finitely generated, then A is a noetherian ring.
(24) A is a noetherian ring if and only if A[[x]] is a noetherian ring. [Give a proof

of ⇒ by using the preceding two exercises.]
(25) If M is a finite A-module and A is a noetherian ring, then M is a noetherian

A-module.
(26) If M is a non-zero noetherian A-module, then A is a noetherian ring.
(27) If M is a noetherian A-module, then A/annA(M) is a noetherian ring.
(28) If M is a faithful noetherian A-module, then A is a noetherian ring.
(29) If M if a finite A-module, then M ⊗A B is a finite B-module.
(30) If M is a flat A-module, then M ⊗A B is a flat B-module.
(31) If M ⊗A B is a flat B-module, then M is a flat A-module.
(32) If M and N are non-zero A-modules, then M ⊗A N is non-zero.
(33) If M and N are non-zero A-modules and A is a local ring, then M ⊗A N

is non-zero.
(34) If M and N are non-zero finite A-modules and A is a local ring, then

M ⊗A N is non-zero.
(35) If M and N are finite A-modules, then M ⊗A N is a finite A-module.
(36) If A is an artinian ring and M is a finite A-module, then M is an A-module

of finite length.
(37) If ϕ is the localisation with respect to some multiplicative subset of A and

A is reduced, then B is reduced. [A ring is called reduced if 0 is the unique
nilpotent element.]

(38) If A is reduced, then Ap is reduced for every p ∈ SpecA.
(39) If Ap is reduced for every p ∈ SpecA, then A is reduced.
(40) If A is a domain, then Ap is a domain for every p ∈ SpecA.
(41) If Ap is a domain for every p ∈ SpecA, then A is a domain.
(42) If A is a noetherian ring, then Ap is a noetherian ring for every p ∈ SpecA.
(43) Assume that A is a boolean ring, i.e. for every element a ∈ A we have

a2 = a. For every prime ideal p ∈ SpecA, the quotient A/p and the
localisation Ap are both isomorphic to F2.

(44) If Ap is a noetherian ring for every p ∈ SpecA, then A is a noetherian ring.
[Hint: consider the ring A =

∏
i∈N F2 and use (43).]

(45) Assume that Am is a noetherian ring for every m ∈ mSpecA. Assume that
for every element x ∈ A\{0} the set {m ∈ mSpecA | x ∈ m} is finite. Then
A is a noetherian ring.

(46) If A is semilocal (i.e. the maximal ideals are finitely many) and Am is a
noetherian ring for every m ∈ mSpecA, then A is a noetherian ring.

(47) If A is a local ring with dimA = 0, then A is artinian.
(48) If A is a noetherian ring, then dimA is finite.
(49) If A is a local noetherian ring, then dimA is finite.
(50) If A is a noetherian ring, then SpecA is a noetherian topological space.
(51) If SpecA is a noetherian topological space, then A is noetherian.



3

(52) There exists a local ring which is isomorphic to the direct product of two
non-zero rings.

(53) If I ⊆ A is a finitely generated ideal such that (0 : I) = 0 and J ⊆ A is an

arbitrary ideal, then J ⊆ (IJ : I) ⊆
√
J .

(54) If I ⊆ A is a finitely generated ideal, then the following statements are
equivalent:
(a) the exact sequence 0→ I → A→ A/I → 0 splits,
(b) A/I is flat over A,
(c) I = I2,
(d) there exists an element e ∈ A such that e = e2 and I = Ae.

(55) If A 6= 0 and there exists a surjective A-linear homomorphism An → Am,
then n ≥ m.

(56) If A 6= 0 and there exists an isomorphism of A-modules between An and
Am, then n = m.

(57) If A 6= 0 and there exists an injective A-linear homomorphism An → Am,
then n ≤ m.

(58) If M is a finite A-module, then every surjective A-linear endomorphism of
M is an isomorphism.

(59) If M is a finite A-module, then every injective A-linear endomorphism of
M is an isomorphism.

(60) If M is an artinian A-module, then every injective A-linear endomorphism
of M is an isomorphism.

(61) AssM ⊆ SuppM ⊆ V(annA(M))
(62) SuppM = ∅ iff M = 0.
(63) If M and N are finite A-modules, then SuppM ⊗AN = SuppM ∩SuppN .
(64) If 0 → M ′ → M → M ′′ → 0 is an exact sequence of A-modules, then

SuppM = SuppM ′ ∪ SuppM ′′ and AssM ′ ⊆ AssM ⊆ AssM ′ ∪AssM ′′.
(65) If M = M1 ⊕ · · · ⊕Mn as A-modules, then SuppM = SuppM1 ∪ · · · ∪

SuppMn and AssM = AssM1 ∪ · · · ∪AssMn.
(66) Let G be a finite abelian group (here “finite” means “with finitely many ele-

ments”) with order n. Let p be a prime number. The ideal pZ is associated
to the Z-module G if and only if p|n.

(67) Let G be a finitely generated abelian group. The ideal 0 is associated to
the Z-module G iff G is not torsion iff the cardinality of G is infinite.

(68) If M is an A-module with annA(M) ⊆ I, then AssA/I M = AssAM .

(69) If S ⊆ A is multiplicative and N is an S−1A-module, then SuppS−1AN ⊆
SuppAN and AssS−1AN = AssAN .

(70) If S ⊆ A is multiplicative and M is an A-module, then SuppS−1A S
−1M ⊇

SuppAM ∩ SpecS−1A and AssS−1A S
−1M ⊇ AssAM ∩ SpecS−1A.

(71) If A is a noetherian ring, S ⊆ A is multiplicative and M is an A-module,
then AssS−1A S

−1M = AssAM ∩ SpecS−1A.
(72) If A is a noetherian ring, then AssM = ∅ iff M = 0.
(73) If M is a finite A-module, then SuppM = V(annA(M)).
(74) If A is a noetherian ring and M is a finite A-module, then:

(i) AssM is a finite set;
(ii) AssM and SuppM have the same minimal elements;
(iii) if {p1, . . . , pn} is the set of minimal elements of AssM , then SuppM =

V(p1)∪ · · · ∪V(pn),
√

annA(M) = p1 ∩ · · · ∩ pn and {p1, . . . , pn} is the
set of minimal primes of A/annA(M).

(75) Let A be a noetherian ring and M be a finite A-module. Consider a chain
0 = M0 $ M1 $ · · · $ Mn = M of submodules where Mi/Mi−1 is isomor-
phic to A/pi for pi ∈ SpecA. Then AssM ⊆ {p1, . . . , pn} ⊆ SuppM .
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(76) Let A be a noetherian ring and M be a finite A-module. Then M has finite
length iff AssM ⊆ mSpecA iff SuppM ⊆ mSpecA.

(77) Let k be a field and consider the k-algebra A = k[x, y, z]/(xy− z2) and the
ideals I = (x, z)/(xy − z2) ⊆ A and m = (x, y, z)/(xy − z2) ⊆ A. Then
m is a maximal ideal of A and the ideal IAm ⊆ Am is not principal. [In
algebraic geometry, this is the famous example of a Weil divisor which is
not Cartier.]

(78) If A is a domain, then A =
⋂

p∈SpecAAp =
⋂

m∈mSpecAAm, where the
intersections take place in the fraction field of A.

(79) Let Specϕ : SpecB → SpecA be the continuous map induced by the ring
homomorphism ϕ : A → B. If p ∈ SpecA then the fibre (Specϕ)−1(p) =
{q ∈ SpecB | ϕ−1(q) = p} is canonically homeomorphic to Spec(B⊗Aκ(p)).

(80) Consider the ideal p = (2, 1 +
√
−5) in the ring A = Z[

√
−5]. Prove that:

• A is finite over Z;
• p is a non-principal maximal ideal of A with residue field F2;
• the ideal pAp ⊆ Ap is principal.

(81) Let k be a field and let A be a finite k-algebra. Then the cardinality
of SpecA is not greater than dimk A. [Hint: use the Chinese remainder
theorem.]

(82) If B is generated as an A-module by n elements, then every fibre of Specϕ
has cardinality not greater than n. [Use (79) and (81).]

(83) If B is finite over A, then every fibre of Specϕ has finitely many points.
(84) Let A be a local domain with maximal ideal m. Let K be the fraction field

of A and let k = A/m. Let M be a finite A-module. Prove the following
statements:
(a) dimkM ⊗A k ≥ dimK M ⊗A K;
(b) M is flat A-module iff M is a free A-module iff dimkM ⊗A k =

dimK M ⊗A K.
(85) Let k be a field and consider the inclusion of rings k[x2, x3] ⊆ k[x]. Is k[x]

finite/of finite type/flat over k[x2, x3]?
(86) Let k be a field and let A be a finite k-algebra. Show that A is an artinian

ring. Let m1, . . . ,mn be the prime ideals of A. For each i = 1, . . . , n, let
ei be the length of Ami

and let fi be the dimension of κ(mi) as a k-vector
space. Then

dimk A =

n∑
i=1

eifi.

[Hint: via the structure theorem for artinian rings, reduce to the case when
A is local]

(87) Let A be a ring and M be an A-module. M is flat if and only for every
finitely generated ideal I ⊆ A the natural map I ⊗A M →M is injective.

(88) Let A be a PID and let M be an A-module. M is flat if and only if M is
torsion free.

(89) Let A be a subring of C which is finite over Z. Let ι : Z→ A be the unique
ring homomorphism from Z to A. We say that a prime ideal q ∈ SpecA
lies over (or is lying over) pZ, for some prime number p, if it is in the fibre
(Spec ι)−1(pZ), i.e. if q ∩ Z = pZ. If q ∈ SpecA lies over pZ, then there
is a natural local ring homomorphism Z(p) → Aq, where Z(p) denotes the
localisation of Z at the prime ideal (p) = pZ. If q ∈ SpecA lies over pZ,
then the ramification index is defined to be

e(q/p) := length of Aq/pAq as Aq-module
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and the inertia degree is defined to be

f(q/p) := dimFp κ(q),

where κ(q) denotes the residue field of q. Let K be the fraction field of A.
Fix a prime p ∈ Z and prove the following statements.
(a) A is flat over Z. [Hint: use (88).]
(b) A is a free Z-module of finite rank. [Hint: use the structure theorem

of finitely generated abelian groups.]
(c) The ring of fractions (Z \ {0})−1A coincides with K. [Hint: By (21)

we have that (Z\{0})−1A is a field, because it is a domain and is finite
over Q.]

(d) A is a free Z-module of rank equal to dimQK. [Hint: use the natural
isomorphism (Z \ {0})−1A ' A⊗Z Q.]

(e) If q ∈ SpecA lies over pZ, then q is a maximal ideal of A and Aq/pAq

is a local artinian ring.
(f) A/pA is an artinian ring and dimFp

A/pA = dimQK.
(g) We have an isomorphism of A-algebras

A/pA '
∏

q lying over pZ
Aq/pAq.

(h) There is the equality:

dimQK =
∑

q lying over pZ
e(q/p) · f(q/p).

[This is a fundamental formula in algebraic number theory. Hint: con-
sider dimFp

A/pA and use (86).]
[From (82) we knew that the number of primes of A lying over a fixed
prime ideal of Z is not greater that dimQK. In the formula in (h) we
are giving a quantitative interpretation for the difference between dimQK
and the number of primes of A lying over a fixed prime ideal of Z. Also,
the formula in (h) has a geometric meaning for the morphism of schemes
SpecA → SpecZ which is similar, but slightly more complicated, to the
theory of non-constant holomorphic maps between Riemann surfaces.]

(90) Consider the ring A = Z[i] of Gaussian integers. Prove that A is finite over
Z. For every prime p ∈ Z, study the primes of A which lie over pZ, their
ramification indexes and their inertia degrees.

(91) Consider the ring A = Z[ 3
√

2]. Prove that A is finite over Z. Show the
following statements.
(a) There is a unique prime of A lying over 2Z; it has ramification index

3 and inertia degree 1.
(b) There is a unique prime of A lying over 3Z; it has ramification index

3 and inertia degree 1.
(c) There are two primes of A lying over 5Z and their ramification indexes

and inertia degrees are (e, f) = (1, 1) and (e, f) = (1, 2).
(d) There is a unique prime of A lying over 7Z; it has ramification index

1 and inertia degree 3.


