Some exercises in commutative algebra

Andrea Petracci andrea.petracci@fu-berlin.de https://userpage.fu-berlin.de/petracci/201819Algebra1

If A is a ring, then an A-module M is called finite if it is finitely generated (as A-module), or equivalently there exists an integer n and a surjective A-linear map $A^n \to M$.

Let $\varphi \colon A \to B$ be a ring homomorphism. We say that B is finite over A (or that B is a finite A-algebra) if B is a finite A-module.

Let $\varphi: A \to B$ be a ring homomorphism. We say that B is an A-algebra of finite type (or that B is a finitely generated algebra or that B is of finite type over A) if there exists a surjective A-algebra homomorphism $A[x_1, \ldots, x_n] \to B$. In other words, if there exist finitely many elements $b_1, \ldots, b_n \in B$ such that every element in B can be written as a polynomial in the b_i 's with coefficients in $\varphi(A)$.

For each of the following statements decide if it is true or false. If it is true, prove it. If it is false, find a counterexample. Let $\varphi \colon A \to B$ be a ring homomorphism and let M be an A-module.

- (1) If B is finite over A, then B is of finite type over A.
- (2) If B is of finite type over A and A is a noetherian ring, then B is a noetherian ring.
- (3) If B is of finite type over A and A is a noetherian ring, then B is a noetherian A-module.
- (4) If B is finite over A and A is a noetherian ring, then B is a noetherian ring.
- (5) If φ is injective and B is a noetherian ring, then A is a noetherian ring.
- (6) If φ is injective, B is a noetherian ring and B is a finite A-module, then A is a noetherian ring. [Very hard!]
- (7) If φ is injective and A and B are both noetherian rings, then B is of finite type over A.
- (8) Assume that φ is injective and ψ: B → C is an injective ring homomorphism. Assume that A is a noetherian ring, C is of finite type over A, and C is finite over B. Then B is of finite type over A.
- (9) Let $K \supseteq k$ be a field extension. If K is a k-algebra of finite type, then K is finite over k.
- (10) \mathbb{Q} is not of finite type over \mathbb{Z} .
- (11) \mathbb{Q} is of finite type over $\mathbb{Z}_{(p)}$, which is the localisation of \mathbb{Z} at the prime ideal $(p) = p\mathbb{Z}$.
- (12) If K is a field which is a \mathbb{Z} -algebra of finite type, then K is a finite field.
- (13) If φ is surjective, then B is finite over A.
- (14) If φ is surjective, then B is of finite type over A.
- (15) If φ is surjective and B is a noetherian ring, then A is a noetherian ring.
- (16) If φ is the localisation with respect to some multiplicative subset of A, then B is finite over A.
- (17) If φ is the localisation with respect to some multiplicative subset of A, then B is of finite type over A.
- (18) If φ is the localisation with respect to some multiplicative subset of A and A is a notherian ring, then B is a noetherian ring.
- (19) If φ is the localisation with respect to some multiplicative subset of A and B is a notherian ring, then A is a noetherian ring.

- (20) If φ is injective, *B* is a field and *B* is finite over *A*, then *A* is a field. [The assumption that *B* is finite over *A* can be relaxed to *B* being integral over *A*.]
- (21) If φ is injective, *B* is a domain, *A* is a field and *B* is finite over *A*, then *B* is a field. [The assumption that *B* is finite over *A* can be relaxed to *B* being integral over *A*.]
- (22) Consider the surjective ring homomorphism ψ: A[[x]] → A defined by f(x) → f(0). Let p be a prime ideal in A[[x]] and let p^e ⊆ A be the extension of p via ψ. Then: p is finitely generated if and only p^e is finitely generated. [Distinguish the two cases: x ∈ p and x ∉ p.]
- (23) If every prime ideal of A is finitely generated, then A is a noetherian ring.
- (24) A is a noetherian ring if and only if A[x] is a noetherian ring. [Give a proof of \Rightarrow by using the preceding two exercises.]
- (25) If M is a finite A-module and A is a noetherian ring, then M is a noetherian A-module.
- (26) If M is a non-zero noetherian A-module, then A is a noetherian ring.
- (27) If M is a noetherian A-module, then $A/\operatorname{ann}_A(M)$ is a noetherian ring.
- (28) If M is a faithful noetherian A-module, then A is a noetherian ring.
- (29) If M if a finite A-module, then $M \otimes_A B$ is a finite B-module.
- (30) If M is a flat A-module, then $M \otimes_A B$ is a flat B-module.
- (31) If $M \otimes_A B$ is a flat *B*-module, then *M* is a flat *A*-module.
- (32) If M and N are non-zero A-modules, then $M \otimes_A N$ is non-zero.
- (33) If M and N are non-zero A-modules and A is a local ring, then $M \otimes_A N$ is non-zero.
- (34) If M and N are non-zero finite A-modules and A is a local ring, then $M \otimes_A N$ is non-zero.
- (35) If M and N are finite A-modules, then $M \otimes_A N$ is a finite A-module.
- (36) If A is an artinian ring and M is a finite A-module, then M is an A-module of finite length.
- (37) If φ is the localisation with respect to some multiplicative subset of A and A is reduced, then B is reduced. [A ring is called reduced if 0 is the unique nilpotent element.]
- (38) If A is reduced, then $A_{\mathfrak{p}}$ is reduced for every $\mathfrak{p} \in \operatorname{Spec} A$.
- (39) If $A_{\mathfrak{p}}$ is reduced for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is reduced.
- (40) If A is a domain, then $A_{\mathfrak{p}}$ is a domain for every $\mathfrak{p} \in \operatorname{Spec} A$.
- (41) If $A_{\mathfrak{p}}$ is a domain for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is a domain.
- (42) If A is a noetherian ring, then $A_{\mathfrak{p}}$ is a noetherian ring for every $\mathfrak{p} \in \operatorname{Spec} A$.
- (43) Assume that A is a boolean ring, i.e. for every element $a \in A$ we have $a^2 = a$. For every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the quotient A/\mathfrak{p} and the localisation $A_{\mathfrak{p}}$ are both isomorphic to \mathbb{F}_2 .
- (44) If $A_{\mathfrak{p}}$ is a noetherian ring for every $\mathfrak{p} \in \operatorname{Spec} A$, then A is a noetherian ring. [Hint: consider the ring $A = \prod_{i \in \mathbb{N}} \mathbb{F}_2$ and use (43).]
- (45) Assume that $A_{\mathfrak{m}}$ is a noetherian ring for every $\mathfrak{m} \in \mathrm{mSpec} A$. Assume that for every element $x \in A \setminus \{0\}$ the set $\{\mathfrak{m} \in \mathrm{mSpec} A \mid x \in \mathfrak{m}\}$ is finite. Then A is a noetherian ring.
- (46) If A is semilocal (i.e. the maximal ideals are finitely many) and $A_{\mathfrak{m}}$ is a noetherian ring for every $\mathfrak{m} \in \mathrm{mSpec} A$, then A is a noetherian ring.
- (47) If A is a local ring with dim A = 0, then A is artinian.
- (48) If A is a noetherian ring, then dim A is finite.
- (49) If A is a local noetherian ring, then dim A is finite.
- (50) If A is a noetherian ring, then $\operatorname{Spec} A$ is a noetherian topological space.
- (51) If $\operatorname{Spec} A$ is a noetherian topological space, then A is noetherian.

- (52) There exists a local ring which is isomorphic to the direct product of two non-zero rings.
- (53) If $I \subseteq A$ is a finitely generated ideal such that (0:I) = 0 and $J \subseteq A$ is an arbitrary ideal, then $J \subseteq (IJ:I) \subseteq \sqrt{J}$.
- (54) If $I \subseteq A$ is a finitely generated ideal, then the following statements are equivalent:
 - (a) the exact sequence $0 \to I \to A \to A/I \to 0$ splits,
 - (b) A/I is flat over A,
 - (c) $I = I^2$,
 - (d) there exists an element $e \in A$ such that $e = e^2$ and I = Ae.
- (55) If $A \neq 0$ and there exists a surjective A-linear homomorphism $A^n \to A^m$, then $n \geq m$.
- (56) If $A \neq 0$ and there exists an isomorphism of A-modules between A^n and A^m , then n = m.
- (57) If $A \neq 0$ and there exists an injective A-linear homomorphism $A^n \to A^m$, then $n \leq m$.
- (58) If M is a finite A-module, then every surjective A-linear endomorphism of M is an isomorphism.
- (59) If M is a finite A-module, then every injective A-linear endomorphism of M is an isomorphism.
- (60) If M is an artinian A-module, then every injective A-linear endomorphism of M is an isomorphism.
- (61) Ass $M \subseteq \operatorname{Supp} M \subseteq \operatorname{V}(\operatorname{ann}_A(M))$
- (62) Supp $M = \emptyset$ iff M = 0.
- (63) If M and N are finite A-modules, then $\operatorname{Supp} M \otimes_A N = \operatorname{Supp} M \cap \operatorname{Supp} N$.
- (64) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of A-modules, then Supp $M = \text{Supp } M' \cup \text{Supp } M''$ and Ass $M' \subseteq \text{Ass } M \subseteq \text{Ass } M' \cup \text{Ass } M''$.
- (65) If $M = M_1 \oplus \cdots \oplus M_n$ as A-modules, then $\operatorname{Supp} M = \operatorname{Supp} M_1 \cup \cdots \cup \operatorname{Supp} M_n$ and $\operatorname{Ass} M = \operatorname{Ass} M_1 \cup \cdots \cup \operatorname{Ass} M_n$.
- (66) Let G be a finite abelian group (here "finite" means "with finitely many elements") with order n. Let p be a prime number. The ideal $p\mathbb{Z}$ is associated to the \mathbb{Z} -module G if and only if p|n.
- (67) Let G be a finitely generated abelian group. The ideal 0 is associated to the \mathbb{Z} -module G iff G is not torsion iff the cardinality of G is infinite.
- (68) If M is an A-module with $\operatorname{ann}_A(M) \subseteq I$, then $\operatorname{Ass}_{A/I} M = \operatorname{Ass}_A M$.
- (69) If $S \subseteq A$ is multiplicative and N is an $S^{-1}A$ -module, then $\operatorname{Supp}_{S^{-1}A} N \subseteq \operatorname{Supp}_A N$ and $\operatorname{Ass}_{S^{-1}A} N = \operatorname{Ass}_A N$.
- (70) If $S \subseteq A$ is multiplicative and M is an A-module, then $\operatorname{Supp}_{S^{-1}A} S^{-1}M \supseteq$ $\operatorname{Supp}_A M \cap \operatorname{Spec} S^{-1}A$ and $\operatorname{Ass}_{S^{-1}A} S^{-1}M \supseteq \operatorname{Ass}_A M \cap \operatorname{Spec} S^{-1}A$.
- (71) If A is a noetherian ring, $S \subseteq A$ is multiplicative and M is an A-module, then $\operatorname{Ass}_{S^{-1}A} S^{-1}M = \operatorname{Ass}_A M \cap \operatorname{Spec} S^{-1}A$.
- (72) If A is a noetherian ring, then Ass $M = \emptyset$ iff M = 0.
- (73) If M is a finite A-module, then Supp $M = V(\operatorname{ann}_A(M))$.
- (74) If A is a noetherian ring and M is a finite A-module, then:
 - (i) Ass M is a finite set;
 - (ii) Ass M and Supp M have the same minimal elements;
 - (iii) if $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ is the set of minimal elements of Ass M, then Supp $M = V(\mathfrak{p}_1) \cup \cdots \cup V(\mathfrak{p}_n), \sqrt{\operatorname{ann}_A(M)} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n$ and $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ is the set of minimal primes of $A/\operatorname{ann}_A(M)$.
- (75) Let A be a noetherian ring and M be a finite A-module. Consider a chain $0 = M_0 \subsetneqq M_1 \subsetneqq \cdots \subsetneqq M_n = M$ of submodules where M_i/M_{i-1} is isomorphic to A/\mathfrak{p}_i for $\mathfrak{p}_i \in \operatorname{Spec} A$. Then Ass $M \subseteq {\mathfrak{p}_1, \ldots, \mathfrak{p}_n} \subseteq \operatorname{Supp} M$.

- (76) Let A be a noetherian ring and M be a finite A-module. Then M has finite length iff Ass $M \subseteq \operatorname{mSpec} A$ iff Supp $M \subseteq \operatorname{mSpec} A$.
- (77) Let k be a field and consider the k-algebra $A = k[x, y, z]/(xy z^2)$ and the ideals $I = (x, z)/(xy z^2) \subseteq A$ and $\mathfrak{m} = (x, y, z)/(xy z^2) \subseteq A$. Then \mathfrak{m} is a maximal ideal of A and the ideal $IA_{\mathfrak{m}} \subseteq A_{\mathfrak{m}}$ is not principal. [In algebraic geometry, this is the famous example of a Weil divisor which is not Cartier.]
- (78) If A is a domain, then $A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} A_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in \operatorname{mSpec} A} A_{\mathfrak{m}}$, where the intersections take place in the fraction field of A.
- (79) Let Spec φ : Spec $B \to$ Spec A be the continuous map induced by the ring homomorphism $\varphi: A \to B$. If $\mathfrak{p} \in$ Spec A then the fibre (Spec $\varphi)^{-1}(\mathfrak{p}) =$ $\{\mathfrak{q} \in$ Spec $B \mid \varphi^{-1}(\mathfrak{q}) = \mathfrak{p}\}$ is canonically homeomorphic to Spec $(B \otimes_A \kappa(\mathfrak{p}))$.
- (80) Consider the ideal p = (2, 1 + √-5) in the ring A = Z[√-5]. Prove that:
 A is finite over Z;
 - \mathfrak{p} is a non-principal maximal ideal of A with residue field \mathbb{F}_2 ;
 - the ideal $\mathfrak{p}A_{\mathfrak{p}} \subseteq A_{\mathfrak{p}}$ is principal.
- (81) Let k be a field and let A be a finite k-algebra. Then the cardinality of Spec A is not greater than $\dim_k A$. [Hint: use the Chinese remainder theorem.]
- (82) If B is generated as an A-module by n elements, then every fibre of Spec φ has cardinality not greater than n. [Use (79) and (81).]
- (83) If B is finite over A, then every fibre of Spec φ has finitely many points.
- (84) Let A be a local domain with maximal ideal \mathfrak{m} . Let K be the fraction field of A and let $k = A/\mathfrak{m}$. Let M be a finite A-module. Prove the following statements:
 - (a) $\dim_k M \otimes_A k \ge \dim_K M \otimes_A K$;
 - (b) M is flat A-module iff M is a free A-module iff $\dim_k M \otimes_A k = \dim_K M \otimes_A K$.
- (85) Let k be a field and consider the inclusion of rings $k[x^2, x^3] \subseteq k[x]$. Is k[x] finite/of finite type/flat over $k[x^2, x^3]$?
- (86) Let k be a field and let A be a finite k-algebra. Show that A is an artinian ring. Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be the prime ideals of A. For each $i = 1, \ldots, n$, let e_i be the length of $A_{\mathfrak{m}_i}$ and let f_i be the dimension of $\kappa(\mathfrak{m}_i)$ as a k-vector space. Then

$$\dim_k A = \sum_{i=1}^n e_i f_i.$$

[Hint: via the structure theorem for artinian rings, reduce to the case when A is local]

- (87) Let A be a ring and M be an A-module. M is flat if and only for every finitely generated ideal $I \subseteq A$ the natural map $I \otimes_A M \to M$ is injective.
- (88) Let A be a PID and let M be an A-module. M is flat if and only if M is torsion free.
- (89) Let A be a subring of \mathbb{C} which is finite over \mathbb{Z} . Let $\iota \colon \mathbb{Z} \to A$ be the unique ring homomorphism from \mathbb{Z} to A. We say that a prime ideal $\mathfrak{q} \in \operatorname{Spec} A$ *lies over* (or *is lying over*) $p\mathbb{Z}$, for some prime number p, if it is in the fibre $(\operatorname{Spec} \iota)^{-1}(p\mathbb{Z})$, i.e. if $\mathfrak{q} \cap \mathbb{Z} = p\mathbb{Z}$. If $\mathfrak{q} \in \operatorname{Spec} A$ lies over $p\mathbb{Z}$, then there is a natural local ring homomorphism $\mathbb{Z}_{(p)} \to A_{\mathfrak{q}}$, where $\mathbb{Z}_{(p)}$ denotes the localisation of \mathbb{Z} at the prime ideal $(p) = p\mathbb{Z}$. If $\mathfrak{q} \in \operatorname{Spec} A$ lies over $p\mathbb{Z}$, then the *ramification index* is defined to be

 $e(\mathfrak{q}/p) :=$ length of $A_\mathfrak{q}/pA_\mathfrak{q}$ as $A_\mathfrak{q}$ -module

4

and the *inertia degree* is defined to be

$$f(\mathfrak{q}/p) := \dim_{\mathbb{F}_p} \kappa(\mathfrak{q}),$$

where $\kappa(\mathfrak{q})$ denotes the residue field of \mathfrak{q} . Let K be the fraction field of A. Fix a prime $p \in \mathbb{Z}$ and prove the following statements.

- (a) A is flat over \mathbb{Z} . [Hint: use (88).]
- (b) A is a free \mathbb{Z} -module of finite rank. [Hint: use the structure theorem of finitely generated abelian groups.]
- (c) The ring of fractions $(\mathbb{Z} \setminus \{0\})^{-1}A$ coincides with K. [Hint: By (21) we have that $(\mathbb{Z} \setminus \{0\})^{-1}A$ is a field, because it is a domain and is finite over \mathbb{Q} .]
- (d) A is a free \mathbb{Z} -module of rank equal to $\dim_{\mathbb{Q}} K$. [Hint: use the natural isomorphism $(\mathbb{Z} \setminus \{0\})^{-1}A \simeq A \otimes_{\mathbb{Z}} \mathbb{Q}$.]
- (e) If $q \in \operatorname{Spec} A$ lies over $p\mathbb{Z}$, then q is a maximal ideal of A and A_q/pA_q is a local artinian ring.
- (f) A/pA is an artinian ring and $\dim_{\mathbb{F}_p} A/pA = \dim_{\mathbb{Q}} K$.
- (g) We have an isomorphism of A-algebras

$$A/pA \simeq \prod_{\mathfrak{q} \text{ lying over } p\mathbb{Z}} A_{\mathfrak{q}}/pA_{\mathfrak{q}}.$$

(h) There is the equality:

$$\dim_{\mathbb{Q}} K = \sum_{\mathfrak{q} \text{ lying over } p\mathbb{Z}} e(\mathfrak{q}/p) \cdot f(\mathfrak{q}/p).$$

[This is a fundamental formula in algebraic number theory. Hint: consider $\dim_{\mathbb{F}_n} A/pA$ and use (86).]

[From (82) we knew that the number of primes of A lying over a fixed prime ideal of \mathbb{Z} is not greater that $\dim_{\mathbb{Q}} K$. In the formula in (h) we are giving a quantitative interpretation for the difference between $\dim_{\mathbb{Q}} K$ and the number of primes of A lying over a fixed prime ideal of \mathbb{Z} . Also, the formula in (h) has a geometric meaning for the morphism of schemes $\operatorname{Spec} A \to \operatorname{Spec} \mathbb{Z}$ which is similar, but slightly more complicated, to the theory of non-constant holomorphic maps between Riemann surfaces.]

- (90) Consider the ring $A = \mathbb{Z}[i]$ of Gaussian integers. Prove that A is finite over \mathbb{Z} . For every prime $p \in \mathbb{Z}$, study the primes of A which lie over $p\mathbb{Z}$, their ramification indexes and their inertia degrees.
- (91) Consider the ring $A = \mathbb{Z}[\sqrt[3]{2}]$. Prove that A is finite over Z. Show the following statements.
 - (a) There is a unique prime of A lying over $2\mathbb{Z}$; it has ramification index 3 and inertia degree 1.
 - (b) There is a unique prime of A lying over 3Z; it has ramification index 3 and inertia degree 1.
 - (c) There are two primes of A lying over $5\mathbb{Z}$ and their ramification indexes and inertia degrees are (e, f) = (1, 1) and (e, f) = (1, 2).
 - (d) There is a unique prime of A lying over $7\mathbb{Z}$; it has ramification index 1 and inertia degree 3.