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• Mi 17. Okt. (Prime) ideals, operations of ideals, invertible elements, nilpo-
tent elements, zero-divisors in the rings Z and Z/60Z. In a ring with finitely
many elements, each element is either invertible or a zero-divisor. Recap of
inductively ordered sets and Zorn lemma. An ideal which is maximal among
the ideals which contain a given ideal and are disjoint from a multiplicative
set is prime. An ideal which is maximal among non finitely generated ideals
is prime (left as exercise). In a ring, all ideals are finitely generated if and
only if all prime ideals are finitely generated. Every prime ideal contains
a minimal prime ideal (left as exercise; hint: consider the poset of prime
ideals with the reversed inclusion).
• Mo 22. Okt. Corrections of Problems 1, 3, 4. Extensions and contractions

of prime/maximal ideals. Spec is a functor. If A is a UFD, then A[x] is
a UFD; Gauss’ lemma (statement). The polynomial y2 − x3 is irreducible
in k[x, y], when k is a field. Recap of category theory; initial objects and
examples. If F is a functor from a category A to the category of sets and C
is the category cofibred over A associated to F , then C has an initial object
if and only if F is corepresentable.

• Mi 24. Okt. Corrections of Problems 1, 2, 3, 4. Spec is a functor. The
functor hX = Hom(X, ·). Definition of corepresentable functor and univer-
sal pair. If F is a functor from a category A to the category of sets and C
is the category cofibred over A associated to F , then C has an initial object
if and only if F is corepresentable.

• Mo 29. Okt. Corrections of Problems 5 and 8. Definition of full, faithful
and fully faithful functors. Definition of functor represented by an object:
hX = Hom(·, X). Definition of natural transformation and of category of
functors. Yoneda lemma. If a is an element in the ring A, then A[x]/(x−a)
is isomorphic to A. How to decompose explicit rings in products of fields:
Z[i]/(3), Z[i]/(5) and Z[ 3

√
2]/(5).

• Mi 31. Okt. Corrections of Problems 5 and 8. Definition of opposite
category. Definition of full, faithful and fully faithful functors. Definition
of natural transformation and of category of functors. Definition of functor
represented by an object: hX = Hom(·, X). Yoneda lemma. Nilpotents,
units and zero-divisors in A[x]. Nilpotents and units in A[[x]]. The ring Z[i]
is isomorphic to Z[x]/(x2 + 1). If f is the minimal polinomial of a over the
field K, then K[a] is isomorphic to K[x]/(f). How to decompose explicit

rings in products of fields: Z[i]/(3), Z[i]/(5) and Z[ 3
√

2]/(5).
• Mo 5. Nov. Definition of adjoint functors. The tensor product corepresents

the functor of bilinear forms; the tensor product functor is adjoint to the
Hom functor. Correction of Problems 10 and 12a.
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• Mi 7. Nov. Corrections of Problems 9, 10, 12a, 12b. If I is an ideal in
a ring A, then A/I has only one prime ideal if and only if the radical of
I is maximal. Definition of graded ring w.r.t. a commutative monoid,
definition of homogeneous ideal; an ideal I is homogeneous if and only if
all homogeneous parts of every element of I lie in I.

• Mo 12. Nov. (Exercise session led by Karin Schaller) Correction of Problem
13. Several proofs of the fact that M ⊗A A/I is isomorphic to M/IM .
Comparison between I ⊗AM and IM .

• Mi 14. Nov. Definition of adjoint functors. The tensor product corepre-
sents the functor of bilinear forms; the tensor product functor is adjoint
to the Hom functor. Extension and restriction of scalars with respect to a
ring homomorphism are adjoint functors. Correction of Problem 14. Com-
parison between IM and I ⊗A M . The element 2 ⊗Z (1 + 2Z) is zero in
Z⊗Z Z/2Z, but is not zero in 2Z⊗Z Z/2Z. Several proofs of the fact that
M ⊗AA/I is isomorphic to M/IM . Statement of snake lemma. Correction
of Problem 13. The natural map from R⊗Q R to R⊗R R = R is surjective,
but not injective; R ⊗Q R is isomorphic to R as a Q-vector space; the two
natural R-vector space structures on R⊗Q R are different from each other
and they are not isomorphic to the R-vector space R.
• Mo 19. Nov. Relationship between tensor product and direct product/sum

of modules. Correction of Problem 17. If A → B a ring homomorphism,
then the natural map B⊗AA[[x]]→ B[[x]] needn’t be injective nor surjective;
the subrings A[[x]][y] and A[y][[x]] of A[[x, y]] are different; if I is a non finitely
generated ideal of the ring A, then the extended ideal of I to A[[x]] can be
strictly smaller than I[[x]]. If B and C are A-algebras, then the tensor
product B ⊗A C has a natural A-algebra structure. Base change of an
algebra of finite type: if A→ B is a ring homomorphism and I is an ideal
in A[x1, ..., xn], then B ⊗A A[x1, ..., xn]/I is isomorphic to B[x1, ..., xn]/Ie,
where Ie is the extended ideal. The R-algebra C ⊗R C is isomorphic to
C×C. The Q-algebra Q( 3

√
2)⊗QQ( 3

√
2) is isomorphic to the direct product

of two fields. If K ′ ⊇ K is a field extension and L ⊇ K is a finite separable
field extension, then K ′ ⊗K L is a product of fields (left as an exercise);
counterexample when L ⊇ K is not separable: ifK = Fp(t) and L = Fp( p

√
t)

then L⊗K L is isomorphic to L[x]/(xp).
• Mi 21. Nov. If {Mλ}λ∈Λ is a family of A-modules, then the direct sum⊕

λ∈ΛMλ represents the functor
∏
λ∈Λ HomA(Mλ, ·) and the direct product∏

λ∈ΛMλ represents the functor
∏
λ∈Λ HomA(·,Mλ). Relationship between

tensor product and direct product/sum of modules. Correction of Problem
17. If A → B a ring homomorphism, then the natural map B ⊗A A[[x]] →
B[[x]] needn’t be injective nor surjective; the subrings A[[x]][y] and A[y][[x]]
of A[[x, y]] are different; if I is a non finitely generated ideal of the ring
A, then the extended ideal of I to A[[x]] can be strictly smaller than I[[x]].
Base change of an algebra of finite type: if A→ B is a ring homomorphism
and I is an ideal in A[x1, ..., xn], then B ⊗A A[x1, ..., xn]/I is isomorphic
to B[x1, ..., xn]/Ie, where Ie is the extended ideal. The R-algebra C ⊗R C
is isomorphic to C× C. The Q-algebra Q( 3

√
2)⊗Q Q( 3

√
2) is isomorphic to

Q( 3
√

2) × Q( 3
√

2, ζ3). If K ′ ⊇ K is a field extension and L ⊇ K is a finite
separable field extension, then K ′ ⊗K L is a product of fields (left as an
exercise); counterexample when L ⊇ K is not separable: if K = Fp(t) and

L = Fp( p
√
t) then L⊗K L is isomorphic to L[x]/(xp). Definition of torsion

submodule for a module over a domain. If A is an integral domain, M is
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an A-module and K is the fraction field of A, then the torsion submodule
M tor is the kernel of the natural map M →M ⊗A K.
• Mo 26. Nov. Exercises 3.7 and 3.8 in the book by Atiyah and MacDonald;

definition of a saturated multiplicative subset in a ring; a subset of a ring
is multiplicative and saturated if and only if its complement is a union of
prime ideals; if S ⊆ T ⊆ A are multiplicative subsets, then the natural ring
homomorphism S−1A → T−1A is bijective if and only if T is contained
in the saturation of S. Explicit study of all multiplicative subsets and all
localisations of the ring Z/6Z; correction of Problem 19a. If A and B are
two rings, then all ideals of A×B are of the form I × J for I ⊆ A, J ⊆ B
ideals; (A×B)/(I ×J) ' A/I ×B/J ; description of prime ideals of A×B;
the spectrum of A × B is homeomorphic to the disjoint union of SpecA
and SpecB; if p ∈ SpecA then (A × B)p×B ' Ap. Definition of torsion
submodule for a module over a domain. If A is a domain, M is an A-
module and K is the fraction field of A, then the torsion submodule M tor

is the kernel of the natural map M →M ⊗A K. If (A,m, k) is a local ring
and M is a finite A-module, then every minimal set of generators of M has
cardinality dimkM⊗Ak. Definition of residue field of a prime ideal in a ring:
κ(p) = Ap/pAp = Frac(A/p) = Ap ⊗A A/p. If m is a maximal ideal in the
ring A and M is an A-module such that m ⊆ annA(M), then the localisation
map M → Mm is an isomorphism. If m is a maximal ideal in the ring A,
then for each integer i ≥ 0 the natural map mi/mi+1 → miAm/m

i+1Am is
an isomorphism. Correction of Problem 12c. If f ∈ C[x, y] is a non-zero
polynomial such that f(0, 0) = 0, A = C[x, y]/(f) and m = (x, y)/(f) ⊆ A,
then every minimal set of generators of the ideal mAm in Am has cardinality
equal to 1 (resp. 2) if ∇f(0, 0) 6= (0, 0) (resp. ∇f(0, 0) = (0, 0)) (left as
an exercise). Quick geometric interpretation about the last exercise and
smoothness of plane algebraic curves.
• Mi 28. Nov. Exercises 3.7 and 3.8 in the book by Atiyah and MacDonald;

definition of a saturated multiplicative subset in a ring; a subset of a ring
is multiplicative and saturated if and only if its complement is a union of
prime ideals; if S ⊆ T ⊆ A are multiplicative subsets, then the natural ring
homomorphism S−1A → T−1A is bijective if and only if T is contained
in the saturation of S. Explicit study of all multiplicative subsets and all
localisations of the ring Z/6Z; correction of Problem 19a. A localisation
S−1A is zero if and only if 0 ∈ S. If S ⊆ A is multiplicative and f : A→ B
is a ring homomorphism such that f(S) ⊆ B∗, then the induced homomor-
phism g : S−1A → B is such that ker g = S−1 ker f . If A and B are two
rings, then all ideals of A×B are of the form I×J for I ⊆ A, J ⊆ B ideals;
(A × B)/(I × J) ' A/I × B/J ; description of prime ideals of A × B; the
spectrum of A × B is homeomorphic to the disjoint union of SpecA and
SpecB; if p ∈ SpecA then (A × B)p×B ' Ap. If (A,m, k) is a local ring
and M is a finite A-module, then every minimal set of generators of M has
cardinality dimkM ⊗A k. Definition of residue field of a prime ideal in a
ring: κ(p) = Ap/pAp = Frac(A/p) = Ap⊗AA/p. If m is a maximal ideal in
the ring A and M is an A-module such that m ⊆ annA(M), then the locali-
sation map M →Mm is an isomorphism. If m is a maximal ideal in the ring
A, then for each integer i ≥ 0 the natural map mi/mi+1 → miAm/m

i+1Am

is an isomorphism. Correction of Problem 12c. If f ∈ C[x, y] is a non-zero
polynomial such that f(0, 0) = 0, A = C[x, y]/(f) and m = (x, y)/(f) ⊆ A,
then every minimal set of generators of the ideal mAm in Am has cardinality
equal to 1 (resp. 2) if ∇f(0, 0) 6= (0, 0) (resp. ∇f(0, 0) = (0, 0)) (left as
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an exercise). Quick geometric interpretation about the last exercise and
smoothness of plane algebraic curves.

• Mo 3. Dez. Correction of Problem 21. If A is a noetherian ring, then
A[[x]] is a noetherian ring. If p is a prime number, then the ring Zp :=
Z[[x]]/(x− p) of p-adic numbers is noetherian. Correction of Problem 23. If
A is a noetherian domain and M is a finite A-module with AssA(M) = {0},
then M is clean (i.e. there exists a filtration where each quotient of two
consecutive submodules is isomorphic to the quotient of A with respect
to an associated prime of M) if and only if M is free. Definition of split
short exact sequence: existence of a compatible isomorphism to the direct
sum, existence of a section of the surjection, existence of a retraction of
the injection. A short exact sequence splits if the third module is free.
Correction of Problem 28. Definition of monomial ideals: generated by
monomials, or such that if a polynomial lies in the ideal then every term
lies in the ideal. Two monomial ideals coincide if and only if they contain
the same monomials. If I = (mi)i and J = (nj)j are monomial ideals in
a polynomial ring over a field with finitely many variables, then I + J =
(mi, nj)i,j , IJ = (minj)i,j , I ∩ J = (lcm(mi, nj))i,j ,

√
I = (

√
mi)i, and

(I : J) =
⋂
j(mi/gcd(mi, nj))i.

• Mi 5. Dez. Correction of Problem 21. Definition of split short exact se-
quence: existence of a compatible isomorphism to the direct sum, existence
of a section of the surjection, existence of a retraction of the injection.
A short exact sequence splits if the third module is free. A finite mod-
ule M over a noetherian ring A is called clean if there exists a filtration
M = Mn ⊇Mn−1 ⊇ · · · ⊇M1 ⊇M0 = 0 such that Mi/Mi−1 is isomorphic
to A/pi for some pi ∈ AssM . If A is a noetherian domain and M is a
finite A-module with AssA(M) = {0}, then M is clean if and only if M
is free. If A is a ring and I ⊆ A is an ideal which is not principal, then
I is not a free A-module. If A is a noetherian domain and I ⊆ A is an
ideal which is not principal, then I is not a clean A-module. Correction
of Problem 23. Correction of Problem 28. If A is a noetherian ring, then
A[[x]] is a noetherian ring (without proof). If p is a prime number, then the
ring Zp := Z[[x]]/(x−p) of p-adic numbers is noetherian. There is a natural
injective ring homomorphism Z(p) → Zp, where Z(p) is the localisation of
Z at the prime ideal (p) = pZ (left as exercise). Recap about monomial
ideals: an ideal I ⊆ k[x1, . . . , xn] is generated by some monomials if and
only if whenever f ∈ I all monomials appearing in f lie in I. If S is a set
of monomial generators of a monomial ideal I and u is a monomial, then
u ∈ I iff there exists s ∈ S such that s|u. Two monomial ideals coincide if
and only if they contain the same monomials. Existence and uniqueness of
the minimal monomial basis of a monomial ideal. From any set of mono-
mial generators of a monomial ideal it is possible to extract the minimal
monomial basis of that ideal. If I and J are monomial ideals, then I + J ,
IJ , I ∩ J ,

√
I and (I : J) are monomial ideals; more precisely if {mi}i is a

set of monomial generators of I and {nj}j is a set of monomial generators
of J , then I + J = (mi, nj)i,j , IJ = (minj)i,j , I ∩ J = (lcm(mi, nj))i,j ,√
I = (

√
mi)i, and (I : J) =

⋂
j(mi/gcd(mi, nj))i.

• Mo 10. Dez. Recap on operations of monomial ideals. Two monomial
ideals coincide if and only if they contain the same monomials. Existence
and uniqueness of the minimal monomial basis of a monomial ideal. If I is
a monomial ideal in k[x1, . . . , xn] with minimal monomial basis B then: I is
maximal ⇔ B = {x1, . . . , xn}; I is prime ⇔ B ⊆ {x1, . . . , xn}; I is radical
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⇔ B = {0, 1}n, i.e. in each monomial in B every variable appears with
exponent 0 or 1; I is irreducible ⇔ B consists of powers of some variables
(the proof of⇐ is omitted); I is primary⇔ B = {xa1i1 , . . . , x

ar
ir
,m1, . . . ,ms}

where 1 ≤ i1 < · · · < ir ≤ n, a1, . . . , ar ≥ 1 and each mj is a monomial in
xi1 , . . . , xir . If m is a maximal ideal in a ring A and I ⊆ A is an ideal such

that
√
I = m, then I is m-primary. If q is a p-primary ideal in A, then q[x]

is a p[x]-primary ideal in A[x]. If m1, . . . ,mr, u, v are monomials such that
gcd(u, v) = 1, then (m1, . . . ,mr, uv) = (m1, . . . ,mr, u) ∩ (m1, . . . ,mr, v).
Algorithm to express a monomial ideal as intersection of irreducible mono-
mial ideals. Primary decomposition of monomial ideals. Correction of
Problem 30. If A is a noetherian ring, then dimA[x] = 1 + dimA (proof
omitted). Irreducible closed subsets of SpecA are in one-to-one correspon-
dence with points of SpecA (proof omitted). Irreducible components of
SpecA are in one-to-one correspondence with minimal primes of A. If A
is a noetherian ring and p1, . . . , pn are its minimal primes, then dimA =
max1≤i≤n dimA/pi (the dimension of SpecA is the maximum of the dimen-
sion of its irreducible components). Examples of computing the dimension
and the associated/minimal/embedding primes of the quotient of a polyno-
mial ring over a field modulo a monomial ideal. Geometric interpretation.

• Mi 12. Dez. If I is a monomial ideal in k[x1, . . . , xn] with minimal mono-
mial basis B then: I is maximal ⇔ B = {x1, . . . , xn}; I is prime ⇔
B ⊆ {x1, . . . , xn}; I is radical ⇔ B = {0, 1}n, i.e. in each monomial
in B every variable appears with exponent 0 or 1; I is irreducible ⇔ B
consists of powers of some variables (the proof of ⇐ is omitted); I is pri-
mary ⇔ B = {xa1i1 , . . . , x

ar
ir
,m1, . . . ,ms} where 1 ≤ i1 < · · · < ir ≤ n,

a1, . . . , ar ≥ 1 and each mj is a monomial in xi1 , . . . , xir . If m is a max-

imal ideal in a ring A and I ⊆ A is an ideal such that
√
I = m, then I

is m-primary. If q is a p-primary ideal in A, then q[x] is a p[x]-primary
ideal in A[x]. If m1, . . . ,mr, u, v are monomials such that gcd(u, v) = 1,
then (m1, . . . ,mr, uv) = (m1, . . . ,mr, u) ∩ (m1, . . . ,mr, v). Algorithm to
express a monomial ideal as intersection of irreducible monomial ideals.
Primary decomposition of monomial ideals. If A is a noetherian ring, then
dimA[x] = 1 + dimA (proof omitted). Irreducible closed subsets of SpecA
are in one-to-one correspondence with points of SpecA (proof omitted).
Irreducible components of SpecA are in one-to-one correspondence with
minimal primes of A. If A is a noetherian ring and p1, . . . , pn are its mini-
mal primes, then dimA = max1≤i≤n dimA/pi (the dimension of SpecA is
the maximum of the dimension of its irreducible components). Examples
of computing the dimension and the associated/minimal/embedding primes
of the quotient of a polynomial ring over a field modulo a monomial ideal.
Geometric interpretation.

• Mo 17. Dez. Correction of Problem 36; if A ⊆ B is an integral extension,
then SpecB → SpecA is surjective and closed. Definition of normal do-
main. Correction of Problem 34: a UFD is a normal domain. Definition of
semigroup algebra associated to a commutative monoid. Definition of the
Grothendieck group associated to a commutative monoid. The intersection
of normal domains with the same fraction field is a normal domain. Cor-
rection of Problem 35. A proposition on the integral closure in a quadratic
extension: if A is a UFD with fraction field K, 2 6= 0 in A, α is an element of
the algebraic closure of K such that α2 is equal to an element a ∈ A which is
not a square in A and is square-free, then the integral closure B of A inK(α)
is such that A[α] ⊆ B ⊆ {c0 + c1α | c0, c1 ∈ K s.t. 2c0, 2c1, c

2
0 − ac21 ∈ A};
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if in addition 2 is invertible in A, then B = A[α]. If k is a field of charac-
teristic different from 2 and f ∈ k[x] is a non-constant polynomial which
is square-free, then k[x, y]/(y2 − f(x)) is a normal domain. If k is a field,
then the domain k[x, y]/(y2 − x3) is not normal. Integral closure of Z in
the quadratic field extensions of Q (left as an exercise).
• Mi 19. Dez. Correction of Problem 36; if A ⊆ B is an integral extension,

then SpecB → SpecA is surjective and closed. Definition of normal do-
main. Correction of Problem 34: a UFD is a normal domain. Definition
of semigroup algebra associated to a commutative monoid. The intersec-
tion of normal domains with the same fraction field is a normal domain.
Correction of Problem 35.
• Mo 7. Jan. Recap on finitely presented modules and projective modules.

Correction of Problem 40. If A is non-zero ring and An → Am is an
injective (resp. surjective) A-linear morphism, then n ≤ m (resp. n ≥ m).
Correction of Problem 38. Correction of Problem 37a.
• Mi 9. Jan. Recap on projective modules. If A is a ring and M is a

finitely presented module, then the following conditions are equivalent: M
is projective, M is flat, there exist f1, . . . , fr ∈ A such that (f1, . . . , fr) = A
and Mfi is a free Afi -module for each i = 1, . . . , r, for every p ∈ SpecA
Mp is a free Ap-module, for every m ∈ SpecmA Mm is a free Am-module
(statement and the proof of some of the implications). A finite projective
module over a local ring is free. Correction of Problem 40a and 40b. In
a ring two non-zero elements are always linearly dependent. Correction of
Problem 38a and 38b.

• Mo 14. Jan. Recap on the connecting homomorphism in the long exact
sequence in homology and on the cone complex. Correction of Problems
44 and 42. Computation of TorZi (M,N) when M is a finitely generated
abelian group and N is an arbitrary abelian group.

• Mi 16. Jan. Recap on properties of Tor. Computation of TorZi (M,N) when
M and N are finitely generated abelian groups. Recap on the connecting
homomorphism in the long exact sequence in homology and on the cone
complex. Correction of Problem 44a,b.

• Mo 21. Jan. Correction of Problems 46 and 47. If A is a PID, then every
submodule of a free A-module is free (without proof). If A is a PID, then
every A-module has a projective resolution of length ≤ 1. If A is a PID
and M and N are A-modules, then TorAi (M,N) = 0 and ExtiA(M,N) = 0
for each i ≥ 2. If (A,m, k) is a noetherian local ring of dimension n, then
dimk m/m

2 = n iff every (finite) A-module has a projective resolution of
length ≤ n; if this is the case the ring A is called regular (without proof).
Computation of Ext1

Z(M,N) when M is a finitely generated abelian group
and N is an arbitrary abelian group.

• Mi 23. Jan. Computation of Ext1
Z(M,N) when M is a finitely generated

abelian group and N is an arbitrary abelian group. Correction of Problem
46. If A is a PID, then every submodule of a free A-module is free (without
proof). If A is a PID, then every A-module has a projective resolution of

length ≤ 1. If A is a PID and M and N are A-modules, then TorAi (M,N) =
0 and ExtiA(M,N) = 0 for each i ≥ 2. Correction of Problem 47. If
(A,m, k) is a noetherian local ring of dimension n, then dimk m/m

2 = n iff
every (finite) A-module has a projective resolution of length ≤ n; if this is
the case the ring A is called regular (without proof). Quick discussion of
the geometric meaning of regular rings: the local ring at the origin of the
cuspidal cubic is not regular.
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• Mo 28. Jan. (extra session). If A ⊆ B is an integral extension, then
dimA = dimB. Correction of Problem 27. Recap on associated primes.
Correction of Problem 25. The local lengths of a finite module over an
artinian ring; explicit example of Z/72Z. Characterization of artinian mod-
ules over a noetherian ring.

• Mo 28. Jan. Correction of Problem 49. Quick comment on Problem 50.
Correction of Problem 51: characterization of prime/primary homogeneous
ideals in an N-graded ring. If S is an N-graded ring, then S is noetherian iff
S0 is noetherian and S is a finitely generated S0-algebra. If S is an N-graded
ring which is finitely generated over S0 andM is a finite Z-graded S-module,
then Mn is a finite S0-module for each n ∈ Z. Correction of Problem 52.
Recap on Hilbert series, Hilbert polynomial, Hilbert function. Example of
k[x, y]/(x2, xy) with standard grading. Statement of the theorem of the
dimension of a local noetherian ring.
• Mi 30. Jan. Correction of Problem 49. Quick comment on Problem 50.

Correction of Problem 51: characterization of prime/primary homogeneous
ideals in an N-graded ring. If S is an N-graded ring, then S is noetherian
iff S0 is noetherian and S is a finitely generated S0-algebra. If S is an N-
graded ring which is finitely generated over S0 and M is a finite Z-graded
S-module, then Mn is a finite S0-module for each n ∈ Z. Correction of
Problem 52. Computation of the Hilbert function, of the Hilbert series, and
of the Hilbert polynomial of k[x, y]/(x2, xy) with the standard grading.

• Mi 4. Feb. Comparison between the Rees algebra BlIA and GrIA. Discus-
sion about the blowup of A2 at the origin. Correction of Problems 53, 55,
56. Computation of GrPR, where P is the ideal generated by x and y in
the ring R = k[x, y]/(y2−x3): the normal cone of the origin in the cuspidal
elliptic curve is k[X,Y ]/(Y 2).

• Mo 6. Feb. Comparison between the Rees algebra BlIA and GrIA. Cor-
rection of Problems 53, 54, 55, 56.

• Mi 13. Feb. Klausureinsicht.


