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Mi 17. Okt. (Prime) ideals, operations of ideals, invertible elements, nilpo-
tent elements, zero-divisors in the rings Z and Z/60Z. In a ring with finitely
many elements, each element is either invertible or a zero-divisor. Recap of
inductively ordered sets and Zorn lemma. An ideal which is maximal among
the ideals which contain a given ideal and are disjoint from a multiplicative
set is prime. An ideal which is maximal among non finitely generated ideals
is prime (left as exercise). In a ring, all ideals are finitely generated if and
only if all prime ideals are finitely generated. Every prime ideal contains
a minimal prime ideal (left as exercise; hint: consider the poset of prime
ideals with the reversed inclusion).
Mo 22. Okt. Corrections of Problems 1, 3, 4. Extensions and contractions
of prime/maximal ideals. Spec is a functor. If A is a UFD, then A[x] is
a UFD; Gauss’ lemma (statement). The polynomial 2 — 2 is irreducible
in k[z,y], when k is a field. Recap of category theory; initial objects and
examples. If F'is a functor from a category A to the category of sets and C
is the category cofibred over A associated to F', then C has an initial object
if and only if F' is corepresentable.
Mi 24. Okt. Corrections of Problems 1, 2, 3, 4. Spec is a functor. The
functor h* = Hom(X,-). Definition of corepresentable functor and univer-
sal pair. If F' is a functor from a category A to the category of sets and C
is the category cofibred over A associated to F', then C has an initial object
if and only if F' is corepresentable.
Mo 29. Okt. Corrections of Problems 5 and 8. Definition of full, faithful
and fully faithful functors. Definition of functor represented by an object:
hx = Hom(-, X). Definition of natural transformation and of category of
functors. Yoneda lemma. If @ is an element in the ring A, then A[z]/(x—a)
is isomorphic to A. How to decompose explicit rings in products of fields:
Z[i)/(3), Z[i]/(5) and Z[V/2]/(5).
Mi 31. Okt. Corrections of Problems 5 and 8. Definition of opposite
category. Definition of full, faithful and fully faithful functors. Definition
of natural transformation and of category of functors. Definition of functor
represented by an object: hx = Hom(-, X). Yoneda lemma. Nilpotents,
units and zero-divisors in A[x]. Nilpotents and units in A[z]. The ring Z[i]
is isomorphic to Z[z]/(x? 4+ 1). If f is the minimal polinomial of a over the
field K, then KJa] is isomorphic to K|z]/(f). How to decompose explicit
rings in products of fields: Z[i]/(3), Z[i]/(5) and Z[+/2]/(5).
Mo 5. Nov. Definition of adjoint functors. The tensor product corepresents
the functor of bilinear forms; the tensor product functor is adjoint to the
Hom functor. Correction of Problems 10 and 12a.
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e Mi 7. Nov. Corrections of Problems 9, 10, 12a, 12b. If I is an ideal in
a ring A, then A/I has only one prime ideal if and only if the radical of
I is maximal. Definition of graded ring w.r.t. a commutative monoid,
definition of homogeneous ideal; an ideal I is homogeneous if and only if
all homogeneous parts of every element of I lie in I.

e Mo 12. Nov. (Exercise session led by Karin Schaller) Correction of Problem
13. Several proofs of the fact that M ®4 A/I is isomorphic to M/IM.
Comparison between I ® 4 M and IM.

e Mi 14. Nov. Definition of adjoint functors. The tensor product corepre-
sents the functor of bilinear forms; the tensor product functor is adjoint
to the Hom functor. Extension and restriction of scalars with respect to a
ring homomorphism are adjoint functors. Correction of Problem 14. Com-
parison between IM and I ® 4 M. The element 2 ®z (1 + 2Z) is zero in
Z ®7 Z/2Z, but is not zero in 27 ®yz Z/27Z. Several proofs of the fact that
M ®4 A/I is isomorphic to M/IM. Statement of snake lemma. Correction
of Problem 13. The natural map from R ®g R to R ®g R = R is surjective,
but not injective; R ®g R is isomorphic to R as a Q-vector space; the two
natural R-vector space structures on R ®g R are different from each other
and they are not isomorphic to the R-vector space R.

e Mo 19. Nov. Relationship between tensor product and direct product/sum
of modules. Correction of Problem 17. If A — B a ring homomorphism,
then the natural map B® 4 AJz] — B[z] needn’t be injective nor surjective;
the subrings A[x][y] and A[y][z] of A[z,y] are different; if I is a non finitely
generated ideal of the ring A, then the extended ideal of I to Afz] can be
strictly smaller than Iz]. If B and C are A-algebras, then the tensor
product B ®4 C has a natural A-algebra structure. Base change of an
algebra of finite type: if A — B is a ring homomorphism and I is an ideal
in Alzy,...,x,], then B®a Az, ..., 2,]/1 is isomorphic to B[z, ..., z,]/I¢,
where I¢ is the extended ideal. The R-algebra C ®g C is isomorphic to
C x C. The Q-algebra Q(¥/2) ®g Q(+/2) is isomorphic to the direct product
of two fields. If K’ D K is a field extension and L D K is a finite separable
field extension, then K’ @ L is a product of fields (left as an exercise);
counterexample when L O K is not separable: if K = F,(¢) and L = F,({/t)
then L ®p L is isomorphic to L{z]/(xP).

e Mi 21. Nov. If {M)}rea is a family of A-modules, then the direct sum
@ ,ca M) represents the functor [, ., Hom4 (M, ) and the direct product
[1,ca M represents the functor [ [, Homa(-, My). Relationship between
tensor product and direct product/sum of modules. Correction of Problem
17. If A — B a ring homomorphism, then the natural map B ® 4 AJz] —
B[z] needn’t be injective nor surjective; the subrings A[z][y] and A[y][z]
of Afx,y] are different; if I is a non finitely generated ideal of the ring
A, then the extended ideal of I to A[z] can be strictly smaller than I[z].
Base change of an algebra of finite type: if A — B is a ring homomorphism
and I is an ideal in A[zq,...,2,], then B ®4 Alx1,...,2,]/T is isomorphic
to Blz1,...,xyn]/I¢, where I° is the extended ideal. The R-algebra C @ C
is isomorphic to C x C. The Q-algebra Q(¥/2) ®q Q(+/2) is isomorphic to
Q(\g/ﬁ) X Q(\g/i, (3). If K/ O K is a field extension and L 2 K is a finite
separable field extension, then K’ ®x L is a product of fields (left as an
exercise); counterexample when L D K is not separable: if K = F,(t) and
L =TF,(/t) then L @ L is isomorphic to L[z]/(x?). Definition of torsion
submodule for a module over a domain. If A is an integral domain, M is
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an A-module and K is the fraction field of A, then the torsion submodule
M*°T is the kernel of the natural map M — M ®4 K.

Mo 26. Nov. Exercises 3.7 and 3.8 in the book by Atiyah and MacDonald;
definition of a saturated multiplicative subset in a ring; a subset of a ring
is multiplicative and saturated if and only if its complement is a union of
prime ideals; if S C T C A are multiplicative subsets, then the natural ring
homomorphism S~'A — T~'A is bijective if and only if T is contained
in the saturation of S. Explicit study of all multiplicative subsets and all
localisations of the ring Z/6Z; correction of Problem 19a. If A and B are
two rings, then all ideals of A x B are of the form I x J for [ C A, JC B
ideals; (A x B)/(I x J) ~ A/I x B/J; description of prime ideals of A x B;
the spectrum of A x B is homeomorphic to the disjoint union of Spec A
and Spec B; if p € Spec A then (A X B)pxp =~ A,. Definition of torsion
submodule for a module over a domain. If A is a domain, M is an A-
module and K is the fraction field of A, then the torsion submodule M ®°r
is the kernel of the natural map M — M ®4 K. If (A, m, k) is a local ring
and M is a finite A-module, then every minimal set of generators of M has
cardinality dimy M ® g k. Definition of residue field of a prime ideal in a ring:
k(p) = Ap/pA, = Frac(4/p) = Ay, ®4 A/p. If m is a maximal ideal in the
ring A and M is an A-module such that m C ann 4 (M), then the localisation
map M — My, is an isomorphism. If m is a maximal ideal in the ring A,
then for each integer i > 0 the natural map m/mi*t — miA, /mtL1A, is
an isomorphism. Correction of Problem 12¢c. If f € Clz,y| is a non-zero
polynomial such that f(0,0) =0, A = C[z,y]/(f) and m = (z,y)/(f) C A,
then every minimal set of generators of the ideal mA,, in A, has cardinality
equal to 1 (resp. 2) if Vf£(0,0) # (0,0) (resp. Vf(0,0) = (0,0)) (left as
an exercise). Quick geometric interpretation about the last exercise and
smoothness of plane algebraic curves.

Mi 28. Nov. Exercises 3.7 and 3.8 in the book by Atiyah and MacDonald;
definition of a saturated multiplicative subset in a ring; a subset of a ring
is multiplicative and saturated if and only if its complement is a union of
prime ideals; if S C T C A are multiplicative subsets, then the natural ring
homomorphism S~'A — T~'A is bijective if and only if T is contained
in the saturation of S. Explicit study of all multiplicative subsets and all
localisations of the ring Z/6Z; correction of Problem 19a. A localisation
S~1A is zero if and only if 0 € S. If S C A is multiplicative and f: A — B
is a ring homomorphism such that f(S) C B*, then the induced homomor-
phism g: S™'A — B is such that kerg = S~'ker f. If A and B are two
rings, then all ideals of A x B are of the form I x J for I C A, J C B ideals;
(Ax B)/(I xJ)~ A/I x B/J; description of prime ideals of A x B; the
spectrum of A x B is homeomorphic to the disjoint union of Spec A and
Spec B; if p € Spec A then (A x B)yxp ~ A,. If (A,m, k) is a local ring
and M is a finite A-module, then every minimal set of generators of M has
cardinality dimg M ® 4 k. Definition of residue field of a prime ideal in a
ring: k(p) = Ay /pA, = Frac(A/p) = A, ®4 A/p. If m is a maximal ideal in
the ring A and M is an A-module such that m C ann4 (M), then the locali-
sation map M — M, is an isomorphism. If m is a maximal ideal in the ring
A, then for each integer i > 0 the natural map m’/m'*t — miA, /miT14,
is an isomorphism. Correction of Problem 12c. If f € C[z,y] is a non-zero
polynomial such that f(0,0) =0, A = C[z,y]/(f) and m = (z,y)/(f) C A,
then every minimal set of generators of the ideal mAy, in Ay, has cardinality
equal to 1 (resp. 2) if Vf£(0,0) # (0,0) (resp. Vf(0,0) = (0,0)) (left as
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an exercise). Quick geometric interpretation about the last exercise and
smoothness of plane algebraic curves.

Mo 3. Dez. Correction of Problem 21. If A is a noetherian ring, then
Alz] is a noetherian ring. If p is a prime number, then the ring Z, :=
Z[z]/(x —p) of p-adic numbers is noetherian. Correction of Problem 23. If
A is a noetherian domain and M is a finite A-module with Ass (M) = {0},
then M is clean (i.e. there exists a filtration where each quotient of two
consecutive submodules is isomorphic to the quotient of A with respect
to an associated prime of M) if and only if M is free. Definition of split
short exact sequence: existence of a compatible isomorphism to the direct
sum, existence of a section of the surjection, existence of a retraction of
the injection. A short exact sequence splits if the third module is free.
Correction of Problem 28. Definition of monomial ideals: generated by
monomials, or such that if a polynomial lies in the ideal then every term
lies in the ideal. Two monomial ideals coincide if and only if they contain
the same monomials. If I = (m;); and J = (n;); are monomial ideals in
a polynomial ring over a field with finitely many variables, then I + J =
(mi,nj)i,j, 1J = (m,'nj)i,j, InJd = (lcm(mi,nj))i,j, \/T = (\/ﬁ)z, and
(13 ) = N, (ma/ged(me ny)i

Mi 5. Dez. Correction of Problem 21. Definition of split short exact se-
quence: existence of a compatible isomorphism to the direct sum, existence
of a section of the surjection, existence of a retraction of the injection.
A short exact sequence splits if the third module is free. A finite mod-
ule M over a noetherian ring A is called clean if there exists a filtration
M = Mn D) Mn—l DD M1 D) MO = 0 such that Mi/Mi—l is isomorphic
to A/p; for some p; € AssM. If A is a noetherian domain and M is a
finite A-module with Asss(M) = {0}, then M is clean if and only if M
is free. If A is a ring and I C A is an ideal which is not principal, then
I is not a free A-module. If A is a noetherian domain and I C A is an
ideal which is not principal, then I is not a clean A-module. Correction
of Problem 23. Correction of Problem 28. If A is a noetherian ring, then
Alz] is a noetherian ring (without proof). If p is a prime number, then the
ring Z,, := Z[z]/(x —p) of p-adic numbers is noetherian. There is a natural
injective ring homomorphism Z,y — Z,, where Z,) is the localisation of
Z at the prime ideal (p) = pZ (left as exercise). Recap about monomial
ideals: an ideal I C k[zy,...,x,] is generated by some monomials if and
only if whenever f € I all monomials appearing in f lie in I. If S is a set
of monomial generators of a monomial ideal I and u is a monomial, then
u € I iff there exists s € S such that s|lu. Two monomial ideals coincide if
and only if they contain the same monomials. Existence and uniqueness of
the minimal monomial basis of a monomial ideal. From any set of mono-
mial generators of a monomial ideal it is possible to extract the minimal
monomial basis of that ideal. If I and J are monomial ideals, then I + J,
IJ, INJ, VT and (I:J) are monomial ideals; more precisely if {m;}; is a
set of monomial generators of I and {n;}; is a set of monomial generators
of J, then I 4+ J = (mi,nj)iyj, 1J = (minj)i7j, InJg= (lcm(mi,nj))i,j,
VT = ()i, and (12 J) = (), (mi/ged(mi, ).

Mo 10. Dez. Recap on operations of monomial ideals. Two monomial
ideals coincide if and only if they contain the same monomials. Existence
and uniqueness of the minimal monomial basis of a monomial ideal. If I is
a monomial ideal in k[z1, ..., z,] with minimal monomial basis B then: I is
maximal < B = {z1,...,z,}; I is prime & B C {x1,...,z,}; I is radical
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< B = {0,1}", i.e. in each monomial in B every variable appears with
exponent 0 or 1; [ is irreducible < B consists of powers of some variables
(the proof of <= is omitted); I is primary < B = {z{!,..., 2", m1,...,ms}
where 1 <14 <--- <4 <n, ay,...,a, > 1 and each m; is a monomial in
Ziys---,Ti.. If mis a maximal ideal in a ring A and I C A is an ideal such
that /T = m, then I is m-primary. If q is a p-primary ideal in A, then q[z]
is a plx]-primary ideal in Alx]. If mq, ..., m,, u,v are monomials such that
ged(u,v) = 1, then (mq,...,mp,uv) = (My,...,mpu) N (M1, ..., My, 0).
Algorithm to express a monomial ideal as intersection of irreducible mono-
mial ideals. Primary decomposition of monomial ideals. Correction of
Problem 30. If A is a noetherian ring, then dim A[z] = 1 4 dim A (proof
omitted). Irreducible closed subsets of Spec A are in one-to-one correspon-
dence with points of Spec A (proof omitted). Irreducible components of
Spec A are in one-to-one correspondence with minimal primes of A. If A
is a noetherian ring and pi,...,p, are its minimal primes, then dim A =
maxj<;<n dim A/p; (the dimension of Spec A is the maximum of the dimen-
sion of its irreducible components). Examples of computing the dimension
and the associated /minimal/embedding primes of the quotient of a polyno-
mial ring over a field modulo a monomial ideal. Geometric interpretation.

Mi 12. Dez. If I is a monomial ideal in k[z1,...,2z,] with minimal mono-
mial basis B then: I is maximal < B = {z1,...,2z,}; I is prime <
B C {z1,...,zp}; I is radical & B = {0,1}", ie. in each monomial

in B every variable appears with exponent 0 or 1; [ is irreducible < B
consists of powers of some variables (the proof of < is omitted); I is pri-
mary < B = {z{',...,2{",my,...,ms} where 1 < i < .- <, < n,
ai,...,ar > 1 and each m; is a monomial in x;,,...,z; . If m is a max-
imal ideal in a ring A and I C A is an ideal such that v/ = m, then I
is m-primary. If q is a p-primary ideal in A, then q[z] is a p[z]-primary
ideal in Alz]. If mq,...,m,,u,v are monomials such that ged(u,v) = 1,
then (mq,...,m.,uv) = (my,...,mp,u) N (mq,...,my,v). Algorithm to
express a monomial ideal as intersection of irreducible monomial ideals.
Primary decomposition of monomial ideals. If A is a noetherian ring, then
dim Afz] = 1+ dim A (proof omitted). Irreducible closed subsets of Spec A
are in one-to-one correspondence with points of Spec A (proof omitted).
Irreducible components of Spec A are in one-to-one correspondence with
minimal primes of A. If A is a noetherian ring and p1,...,p, are its mini-
mal primes, then dim A = maxj<;<, dim A/p; (the dimension of Spec A is
the maximum of the dimension of its irreducible components). Examples
of computing the dimension and the associated /minimal/embedding primes
of the quotient of a polynomial ring over a field modulo a monomial ideal.
Geometric interpretation.

Mo 17. Dez. Correction of Problem 36; if A C B is an integral extension,
then Spec B — Spec A is surjective and closed. Definition of normal do-
main. Correction of Problem 34: a UFD is a normal domain. Definition of
semigroup algebra associated to a commutative monoid. Definition of the
Grothendieck group associated to a commutative monoid. The intersection
of normal domains with the same fraction field is a normal domain. Cor-
rection of Problem 35. A proposition on the integral closure in a quadratic
extension: if A is a UFD with fraction field K, 2 £ 0 in A, « is an element of
the algebraic closure of K such that o? is equal to an element a € A which is
not a square in A and is square-free, then the integral closure B of A in K («)
is such that Afa] C B C {co + c1a0 | cp,c1 € K s.t. 2¢9,2¢1,¢3 — act € A};
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if in addition 2 is invertible in A, then B = Ala]. If k is a field of charac-
teristic different from 2 and f € k[x] is a non-constant polynomial which
is square-free, then k[z,y]/(y?> — f(z)) is a normal domain. If k is a field,
then the domain k[z,y]/(y? — %) is not normal. Integral closure of Z in
the quadratic field extensions of Q (left as an exercise).

Mi 19. Dez. Correction of Problem 36; if A C B is an integral extension,
then Spec B — Spec A is surjective and closed. Definition of normal do-
main. Correction of Problem 34: a UFD is a normal domain. Definition
of semigroup algebra associated to a commutative monoid. The intersec-
tion of normal domains with the same fraction field is a normal domain.
Correction of Problem 35.

Mo 7. Jan. Recap on finitely presented modules and projective modules.
Correction of Problem 40. If A is non-zero ring and A™ — A™ is an
injective (resp. surjective) A-linear morphism, then n < m (resp. n > m).
Correction of Problem 38. Correction of Problem 37a.

Mi 9. Jan. Recap on projective modules. If A is a ring and M is a
finitely presented module, then the following conditions are equivalent: M
is projective, M is flat, there exist fi,..., fr € A such that (f1,...,f.) = A
and My, is a free Ay,-module for each ¢ = 1,...,r, for every p € Spec 4
M, is a free Ap-module, for every m € Specm A My, is a free Ay-module
(statement and the proof of some of the implications). A finite projective
module over a local ring is free. Correction of Problem 40a and 40b. In
a ring two non-zero elements are always linearly dependent. Correction of
Problem 38a and 38b.

Mo 14. Jan. Recap on the connecting homomorphism in the long exact
sequence in homology and on the cone complex. Correction of Problems
44 and 42. Computation of TorZ-Z(M ,N) when M is a finitely generated
abelian group and N is an arbitrary abelian group.

Mi 16. Jan. Recap on properties of Tor. Computation of TorZZ(M, N) when
M and N are finitely generated abelian groups. Recap on the connecting
homomorphism in the long exact sequence in homology and on the cone
complex. Correction of Problem 44a,b.

Mo 21. Jan. Correction of Problems 46 and 47. If A is a PID, then every
submodule of a free A-module is free (without proof). If A is a PID, then
every A-module has a projective resolution of length < 1. If A is a PID
and M and N are A-modules, then Tor;' (M, N) = 0 and Ext’y (M, N) =0
for each i > 2. If (A, m, k) is a noetherian local ring of dimension n, then
dimy, m/m? = n iff every (finite) A-module has a projective resolution of
length < n; if this is the case the ring A is called regular (without proof).
Computation of Ext (M, N) when M is a finitely generated abelian group
and N is an arbitrary abelian group.

Mi 23. Jan. Computation of Ext} (M, N) when M is a finitely generated
abelian group and N is an arbitrary abelian group. Correction of Problem
46. If A is a PID, then every submodule of a free A-module is free (without
proof). If A is a PID, then every A-module has a projective resolution of
length < 1. If A is a PID and M and N are A-modules, then Tor?' (M, N) =
0 and Ext%(M,N) = 0 for each i > 2. Correction of Problem 47. If
(A, m, k) is a noetherian local ring of dimension n, then dim; m/m? = n iff
every (finite) A-module has a projective resolution of length < n; if this is
the case the ring A is called regular (without proof). Quick discussion of
the geometric meaning of regular rings: the local ring at the origin of the
cuspidal cubic is not regular.
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Mo 28. Jan. (extra session). If A C B is an integral extension, then
dim A = dim B. Correction of Problem 27. Recap on associated primes.
Correction of Problem 25. The local lengths of a finite module over an
artinian ring; explicit example of Z/727Z. Characterization of artinian mod-
ules over a noetherian ring.

Mo 28. Jan. Correction of Problem 49. Quick comment on Problem 50.
Correction of Problem 51: characterization of prime/primary homogeneous
ideals in an N-graded ring. If S is an N-graded ring, then S is noetherian iff
Sp is noetherian and S is a finitely generated Sy-algebra. If S is an N-graded
ring which is finitely generated over Sy and M is a finite Z-graded S-module,
then M, is a finite Sy-module for each n € Z. Correction of Problem 52.
Recap on Hilbert series, Hilbert polynomial, Hilbert function. Example of
k[z,y]/(x?, zy) with standard grading. Statement of the theorem of the
dimension of a local noetherian ring.

Mi 30. Jan. Correction of Problem 49. Quick comment on Problem 50.
Correction of Problem 51: characterization of prime/primary homogeneous
ideals in an N-graded ring. If S is an N-graded ring, then S is noetherian
iff Sy is noetherian and S is a finitely generated Sp-algebra. If S is an N-
graded ring which is finitely generated over Sy and M is a finite Z-graded
S-module, then M, is a finite Sp-module for each n € Z. Correction of
Problem 52. Computation of the Hilbert function, of the Hilbert series, and
of the Hilbert polynomial of k[z,y]/(x?, zy) with the standard grading.
Mi 4. Feb. Comparison between the Rees algebra Bl; A and GryA. Discus-
sion about the blowup of A2 at the origin. Correction of Problems 53, 55,
56. Computation of GrpR, where P is the ideal generated by = and y in
the ring R = k[z, y]/(y* — 2®): the normal cone of the origin in the cuspidal
elliptic curve is k[X,Y]/(Y?).

Mo 6. Feb. Comparison between the Rees algebra Bl; A and GryA. Cor-
rection of Problems 53, 54, 55, 56.

Mi 13. Feb. Klausureinsicht.



