1-FORMS ON OPEN SUBSETS OF \mathbb{R}^n

This note has been written by Andrea Petracci (andrea.petracci@fu-berlin.de) for some lectures of the course Complex Analysis (Funktionentheorie), which is taught at Freie Universität Berlin in the Summer Semester 2019.

If G is a group, the *derived subgroup* of G is the subgroup $G' \subseteq G$ generated by the commutators $ghg^{-1}h^{-1}$, as $g, h \in G$. One can easily show that G' is a normal subgroup of G. The quotient G/G' is called the *abelianisation* of G and is denoted by G^{ab} . It is easy to see that G^{ab} is an abelian group. If G is an abelian group, then the derived subgroup G' is trivial and the quotient projection $G \to G^{ab}$ is an isomorphism. Thanks to the homomorphism theorem, for every abelian group H there is a natural bijection between $\{G \to H \text{ group homomorphism}\}$ and $\{G^{ab} \to H \text{ group homomorphism}\}$.

Definition 1. Let X be a path-connected topological space. The 1st singular homology group with coefficients in \mathbb{Z} of X is the abelianisation of the fundamental group of X: $H_1(X;\mathbb{Z}) := \pi_1(X, x_0)^{ab}$ for some $x_0 \in X$.

Remark 2. We need to show that this group does not depend on the point x_0 . Let's pick another point $x_1 \in X$. Since X is path-connected, there exists a path $\gamma \in \Omega(X, x_0, x_1)$. We consider the group isomorphism

$$\gamma_{\sharp} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$$

given by $[\alpha] \mapsto [\iota(\gamma) * \alpha * \gamma]$. This induces the isomorphism

$$\gamma_\star \colon \pi_1(X, x_0)^{\mathrm{ab}} \to \pi_1(X, x_1)^{\mathrm{ab}}$$

given by $[\alpha]\pi_1(X, x_0)' \mapsto [\iota(\gamma) * \alpha * \gamma]\pi_1(X, x_1)'$. If we pick another path $\tilde{\gamma} \in \Omega(X, x_0, x_1)$, we need to prove that $\gamma_{\star} = \tilde{\gamma}_{\star}$. We need to show that for every $\alpha \in \Omega(X, x_0, x_0)$

$$[\iota(\gamma) * \alpha * \gamma]\pi_1(X, x_1)' = [\iota(\tilde{\gamma}) * \alpha * \tilde{\gamma}]\pi_1(X, x_1)'$$

i.e. the derived subgroup $\pi_1(X, x_1)' \subseteq \pi_1(X, x_1)$ contains

$$[\iota(\gamma) * \alpha * \gamma][\iota(\tilde{\gamma}) * \alpha * \tilde{\gamma}]^{-1} = [\iota(\gamma) * \alpha * \gamma * \iota(\tilde{\gamma}) * \iota(\alpha) * \tilde{\gamma}] = [\iota(\gamma) * \alpha * \gamma][\iota(\tilde{\gamma}) * \gamma][\iota(\gamma) * \alpha * \gamma]^{-1}[\iota(\tilde{\gamma}) * \gamma]^{-1}$$

which is a commutator.

Clearly, if X is simply connected then $H_1(X; \mathbb{Z}) = 0$.

Definition 3. Let X be a path-connected topological space. A *loop* in X is a path $\alpha: [0,1] \to X$ such that $\alpha(0) = \alpha(1)$. Two loops α and $\tilde{\alpha}$ in X are called *homologous* if they induce the same element of $H_1(X;\mathbb{Z})$, i.e. for some/every path $\gamma \in \Omega(X, \alpha(0), \tilde{\alpha}(0))$ the path-homotopy class of $\alpha * \gamma * \iota(\tilde{\alpha}) * \iota(\gamma)$ lies in the derived subgroup of $\pi_1(X, \alpha(0))$.

If α and β are path-homotopic paths in a path-connected topological space X, then α and β are homologous.

We denote by $(\mathbb{R}^n)^{\vee}$ the dual of the vector space \mathbb{R}^n . Let dx_1, \ldots, dx_n be the dual of the standard basis of \mathbb{R}^n .

Definition 4. A 1-form on an open subset $U \subseteq \mathbb{R}^n$ is a continuous map $\omega \colon U \to (\mathbb{R}^n)^{\vee}$.

We can write a 1-form uniquely as $\omega = \sum_{i=1}^{n} \omega_i dx_i$, where $\omega_1, \ldots, \omega_n$ are continuous functions on U. We say that ω is C^k if the functions $\omega_1, \ldots, \omega_n$ are C^k .

If $F: U \to \mathbb{R}$ is a C^1 function, then its differential $dF := \sum_{i=1}^n \frac{\partial F}{\partial x_i} dx_i$ is a 1-form on U.

Definition 5. A 1-form ω on an open subset $U \subseteq \mathbb{R}^n$ is called:

- exact if there exists a C^1 function $F: U \to \mathbb{R}$ such that $\omega = dF$; (such an F is called a *primitive* of ω)
- locally exact if there exists an open cover $\{U_{\lambda}\}_{\lambda}$ of U such that, for each λ , the restriction $\omega|_{U_{\lambda}}$ is an exact form on U_{λ} ;
- closed if ω is C^1 and for all $1 \leq i, j \leq n$ we have the following equality of functions on U:

$$\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}$$

If $U \subseteq \mathbb{R}^n$ is a connected open subset and ω is an exact 1-form on U, then the primitive of ω is unique up to an additive constant.

Obviously an exact 1-form is locally exact. In Proposition 15 we will see that being closed is the same as being locally exact and C^1 . So, for a C^1 1-form it is very easy to understand if it is locally exact: it is enough to compute some partial derivatives. The discrepancy between being exact and being locally exact depends only on the topology of the open subset $U \subseteq \mathbb{R}^n$, as we will see below.

It is clear that, fixed an open subset $U \subseteq \mathbb{R}^n$, the sets of 1-forms, exact 1-forms, locally exact 1-forms, closed 1-forms on U are real vector spaces of infinite dimension.

Definition 6. The 1st de Rham cohomology group of an open subset $U \subseteq \mathbb{R}^n$ is the following real vector space:

$$H^{1}_{dR}(U) := \frac{\{\text{locally exact 1-forms on } U\}}{\{\text{exact 1-forms on } U\}}$$

Given an open subset $U \subseteq \mathbb{R}^n$, we have that $\mathrm{H}^1_{\mathrm{dR}}(U) = 0$ if and only if every locally exact 1-form on U is exact.

Definition 7. Let ω be a locally exact 1-form on the open subset $U \subseteq \mathbb{R}^n$ and let $\gamma : [a, b] \to U$ be a path. A primitive of ω along γ is a continuous function $f : [a, b] \to \mathbb{R}$ such that: for every $\tau \in [a, b]$, there exists an open neighbourhood V of $\gamma(\tau)$ in U such that $\omega|_V$ is exact, $F : V \to \mathbb{R}$ is a primitive of $\omega|_V$ and $F \circ \gamma|_{\gamma^{-1}(V)} = f|_{\gamma^{-1}(V)}$.

Proposition 8. Let ω be a locally exact 1-form on the open subset $U \subseteq \mathbb{R}^n$ and let $\gamma: [a,b] \to U$ be a path. Then a primitive of ω along γ exists and is unique up to an additive constant.

Proof. See [Car95, Theorem 1, p. 57] or [Lan93, III, §4].

Existence: we know that ω is locally exact, so there exists an open cover $\{U_{\lambda}\}_{\lambda}$ of U such that $\omega|_{U_{\lambda}}$ is exact for each λ . Since [a, b] is compact and $\gamma: [a, b] \to U$ is continuous, by the Lebesgue number there exists a finite sequence of points $a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b$ such that, for each integer $i = 0, \ldots, r, \gamma([t_i, t_{i+1}]) \subseteq U_{\lambda_i}$ for some λ_i . Let F_i be a primitive of $\omega|_{U_{\lambda_i}}$. We notice that $\gamma(t_{i+1}) \in U_{\lambda_i} \cap U_{\lambda_{i+1}}$, for each $i = 0, \ldots, r$. Up to adding a constant to F_1 , we can assume that $F_0(\gamma(t_1)) = F_1(\gamma(t_1))$. Up to adding a constant to F_2 , we can assume that $F_1(\gamma(t_2)) = F_2(\gamma(t_2))$. And so on until $F_{r-1}(\gamma(t_r)) = F_r(\gamma(t_r))$. Now define $f: [a, b] \to \mathbb{R}$ by $f(t) = F_i(\gamma(t))$ if $t \in [t_i, t_{i+1}]$, for each $i = 0, \ldots, r$. It is obvious that f is continuous and that f is a primitive of ω along γ .

Uniqueness: let f_1 and f_2 be two primitives of ω along γ . Fix $\tau \in [a, b]$. Then by the definition, we can find an open neighbourhood of τ in [a, b] where $f_1 - f_2$ is constant, thanks to the uniqueness of the primitive of a 1-form. We have proved that $f_1 - f_2$ is locally constant. As [a, b] is connected and $f_1 - f_2$ is continuous, we have that $f_1 - f_2$ is constant.

Now we want to define the integral of a 1-form along a path.

Definition 9. Let ω be a 1-form on the open subset $U \subseteq \mathbb{R}^n$ and let $\gamma: [a, b] \to U$ be a path. The *integral of* ω along γ is the real number, denoted by $\int_{\gamma} \omega$, defined in the following two (overlapping) cases.

• Assume that γ is piecewise C^1 . Then

$$\int_{\gamma} \omega := \int_{a}^{b} \omega(\gamma(t))(\gamma'(t))dt = \int_{a}^{b} \sum_{i=1}^{n} \omega_{i}(\gamma(t))\gamma'_{i}(t)dt$$

This definition makes sense because γ' is not defined in at most finitely many points in [a, b].

• Assume that ω is locally exact. Then

$$\int_{\gamma} \omega := f(b) - f(a)$$

where $f: [a, b] \to \mathbb{R}$ is a primitive of ω along γ . This definition makes sense by Proposition 8.

Proposition 10. The two definitions of $\int_{\gamma} \omega$ in Definition 9 are compatible.

Proof. Assume that ω is locally exact and that $\gamma: [a, b] \to U$ is piecewise C^1 . As in the proof of Proposition 8, there exist open subsets $U_0, \ldots, U_r \subseteq U$ such that $\omega|_{U_0}, \ldots, \omega|_{U_r}$ are exact and there exists a finite sequence of points $a = t_0 < t_1 < \cdots < t_r < t_{r+1} = b$ such that, for each integer $i = 0, \ldots, r, \gamma([t_i, t_{i+1}]) \subseteq U_i$. Let $F_i: U_i \to \mathbb{R}$ be a primitive of $\omega|_{U_i}$ and assume that $F_i(\gamma(t_{i+1})) = F_{i+1}(\gamma(t_{i+1}))$, for all $i = 0, \ldots, r$. Consider the primitive f of ω along γ given by $f(t) = F_i(\gamma(t))$ if $t \in [t_i, t_{i+1}]$. Then

$$\int_{a}^{b} \sum_{j=1}^{n} \omega_{j}(\gamma(t))\gamma_{j}'(t)dt = \sum_{i=0}^{r} \int_{t_{i}}^{t_{i+1}} \sum_{j=1}^{n} \omega_{j}(\gamma(t))\gamma_{j}'(t)dt = \sum_{i=0}^{r} \int_{t_{i}}^{t_{i+1}} \sum_{j=1}^{n} \frac{\partial F_{i}}{\partial x_{j}}(\gamma(t))\gamma_{j}'(t)dt = \sum_{i=0}^{r} \int_{t_{i}}^{t_{i+1}} (F_{i} \circ \gamma)'(t)dt = \sum_{i=0}^{r} (f(t_{i+1}) - f(t_{i})) = f(b) - f(a).$$

Proposition 11. Let ω be a 1-form on the open subset $U \subseteq \mathbb{R}^n$ and let $\gamma \colon [a, b] \to U$ be a path. Assume either that γ is piecewise C^1 or that ω is locally exact. Then $\int_{\gamma} \omega$ does not depend on reparametrizations of γ .

Proof. Let $\varphi \colon [a_1, b_1] \to [a, b]$ be an increasing homeomorphism.

Assume that γ is piecewise C^1 and that φ is piecewise C^1 . Then

$$\int_{\gamma \circ \varphi} \omega = \int_{a_1}^{b_1} \sum_{i=1}^n \omega_i(\gamma(\varphi(s))) \cdot (\gamma_i \circ \varphi)'(s) ds = \int_{a_1}^{b_1} \sum_{i=1}^n \omega_i(\gamma(\varphi(s))) \gamma_i'(\varphi(s)) \varphi'(s) ds =$$
$$= \int_a^b \sum_{i=1}^n \omega_i(\gamma(t)) \gamma_i'(t) dt = \int_{\gamma} \omega.$$

Assume that ω is locally exact. If f is a primitive of ω along γ , then $f \circ \varphi$ is a primitive of ω along $\gamma \circ \varphi$. Therefore

$$\int_{\gamma \circ \varphi} \omega = f(\varphi(b_1)) - f(\varphi(a_1)) = f(b) - f(a) = \int_{\gamma} \omega.$$

Thanks to the proposition above we will often assume that paths are defined over [0, 1].

Remark 12. Let $\omega = \sum_{i=1}^{3} \omega_i dx_i$ be a 1-form on an open subset $U \subseteq \mathbb{R}^3$. Consider the vector field $\mathbf{F} = (\omega_1, \omega_2, \omega_3) \colon U \to \mathbb{R}^3$.

- ω is exact if and only if **F** is conservative. A primitive of ω is exactly a potential of **F**, i.e. a C^1 function $V: U \to \mathbb{R}$ such that $\nabla V = \mathbf{F}$.
- Assume that ω is C^1 . Recall that the curl of **F** is the vector field

$$\nabla \times \mathbf{F} := \left(\frac{\partial \omega_3}{\partial x_2} - \frac{\partial \omega_2}{\partial x_3}, \frac{\partial \omega_1}{\partial x_3} - \frac{\partial \omega_3}{\partial x_1}, \frac{\partial \omega_2}{\partial x_1} - \frac{\partial \omega_1}{\partial x_2}\right)$$

Therefore ω is closed if and only if **F** is irrotational, i.e. its curl $\nabla \times \mathbf{F}$ vanishes. If $\gamma: [a, b] \to U$ is the (piecewise C^1) trajectory of a point in U and **F** is a force field, then

$$\int_{\gamma} \omega = \int_{a}^{b} \mathbf{F}(\gamma(t)) \bullet \dot{\gamma}(t) dt$$

(where • denotes the scalar product) is the work done by the force **F** along the path γ .

Proposition 13 (Bilinearity of the integral). Let $U \subseteq \mathbb{R}^n$ be an open subset. Assume that all the integrals below are defined.

• Let ω be a 1-form on U and let $\gamma_1, \gamma_2: [0,1] \to U$ be two paths such that $\gamma_1(1) = \gamma_2(0)$. Consider the concatenation $\gamma_1 * \gamma_2: [0,1] \to U$. Then

$$\int_{\gamma_1 * \gamma_2} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega.$$

• Let ω be a 1-form on U and let $\gamma: [0,1] \to U$ be a path. Consider the inverse $\iota(\gamma): [0,1] \to U$ of γ . Then

$$\int_{\iota(\gamma)} \omega = -\int_{\gamma} \omega.$$

• Let ω and η be two 1-forms on U and let $\gamma: [0,1] \to U$ be a path. Then

$$\int_{\gamma} (\omega + \eta) = \int_{\gamma} \omega + \int_{\gamma} \eta.$$

• Let ω be a 1-form on U, let $\lambda \in \mathbb{R}$, and let $\gamma : [0,1] \to U$ be a path. Then

$$\int_{\gamma} \lambda \omega = \lambda \int_{\gamma} \omega.$$

Proof. Left to the reader.

Proposition 14. Let $U \subseteq \mathbb{R}^n$ be a star-shaped open subset and let ω be a closed 1-form on U. Then ω is exact.

Proof. Assume that U is star-shaped with respect to the point $\bar{x} \in U$. For each point $x \in U$ consider the segment $\gamma_x \colon [0,1] \to U$ defined by $t \mapsto \bar{x} + t(x - \bar{x})$. Consider the function $F \colon U \to \mathbb{R}$ defined by

$$F(x) = \int_{\gamma_x} \omega = \int_0^1 \sum_{i=1}^n \omega_i \left(\bar{x} + t(x - \bar{x}) \right) \cdot (x_i - \bar{x}_i) dt.$$

We want to show that F is a primitive of ω . Fix $1 \leq k \leq n$ and $x \in U$. Consider the function $G(t) = \omega_k (\bar{x} + t(x - \bar{x}))$ on [0, 1]. By the chain rule we have

$$G'(t) = \sum_{i=1}^{n} \frac{\partial \omega_k}{\partial x_i} \left(\bar{x} + t(x - \bar{x}) \right) \cdot \left(x_i - \bar{x}_i \right) = \sum_{i=1}^{n} \frac{\partial \omega_i}{\partial x_k} \left(\bar{x} + t(x - \bar{x}) \right) \cdot \left(x_i - \bar{x}_i \right),$$

where we have used that ω is closed. Thus

$$\frac{\partial F}{\partial x_k}(x) = \int_0^1 \sum_{i=1}^n \frac{\partial}{\partial x_k} \left[\omega_i \left(\bar{x} + t(x - \bar{x}) \right) \cdot \left(x_i - \bar{x}_i \right) \right] dt$$
$$= \int_0^1 \left\{ \sum_{i=1}^n \frac{\partial}{\partial x_k} \left[\omega_i \left(\bar{x} + t(x - \bar{x}) \right) \right] \cdot \left(x_i - \bar{x}_i \right) + \omega_k \left(\bar{x} + t(x - \bar{x}) \right) \right\} dt$$
$$= \int_0^1 \left[G'(t)t + G(t) \right] dt = \int_0^1 \left[\frac{d}{dt} (G(t)t) \right] dt = G(1) = \omega_k(x).$$

Proposition 15 (Closed = locally exact + C^1). Let ω be a 1-form on an open subset $U \subseteq \mathbb{R}^n$. Then ω is closed if and only if it is C^1 and locally exact.

Proof. ⇒) Assume that ω is closed. Since every open ball is star-shaped, by Proposition 14 we have that the restriction of ω to each open ball contained in U is exact. Conclude by choosing an open cover of U made up of open balls.

 \Leftarrow) Assume that ω is C^1 and locally exact. Let $\{U_\lambda\}_\lambda$ be an open cover of U such that $\omega|_{U_\lambda}$ is exact for each λ . Let $F_\lambda: U_\lambda \to \mathbb{R}$ be a primitive of $\omega|_{U_\lambda}$, i.e. $\partial F_\lambda/\partial x_i = \omega_i|_{U_\lambda}$. Since F_λ is C^2 , we have

$$\frac{\partial \omega_i}{\partial x_j} = \frac{\partial^2 F_\lambda}{\partial x_j \partial x_i} = \frac{\partial^2 F_\lambda}{\partial x_i \partial x_j} = \frac{\partial \omega_j}{\partial x_i}$$

on U_{λ} . Conclude because $U = \bigcup_{\lambda} U_{\lambda}$.

Theorem 16 (Homotopy invariance of the integral of locally exact forms). If ω is a locally exact 1-form on an open subset $U \subseteq \mathbb{R}^n$ and let $\gamma_0, \gamma_1: [0, 1] \to U$ be two paths which are path-homotopic, then

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

Proof. See [Car95, II.1.6] or [Lan93, III, §5]. Let $\delta : [0,1] \times [0,1] \rightarrow U$ be the homotopy between γ_0 and γ_1 , i.e. a continuous map such that $\delta(\cdot, 0) = \gamma_0$, $\delta(\cdot, 1) = \gamma_1$ and $\delta(0, s) = \gamma_0(0) = \gamma_1(0)$, $\delta(1, s) = \gamma_0(1) = \gamma_1(1)$ for all $s \in [0,1]$.

In a similar way to Proposition 8 we want to construct "a primitive of ω along δ ". Let $\{U_{\lambda}\}_{\lambda}$ be an open cover such that $\omega|_{U_{\lambda}}$ is exact for each λ . Since $[0,1] \times [0,1]$ is compact and δ is continuous, by Lebesgue number we can find two finite sequences of points $0 = t_0 < t_1 < \cdots < t_r < t_{r+1} = 1$ and $0 = s_0 < s_1 < \cdots < s_r < s_{r+1} = 1$ such that, for all $0 \le i, j \le r$, $\delta([t_i, t_{i+1}] \times [s_j, s_{j+1}]) \subseteq U_{\lambda_{i,j}}$ for some $\lambda_{i,j}$. Let $F_{i,j}: U_{\lambda_{i,j}} \to \mathbb{R}$ be a primitive of $\omega|_{U_{\lambda_{i,j}}}$.

Keep j fixed. We can add a constant to $F_{i,j}$ in such a way that $F_{i,j} \circ \delta|_{\{t_{i+1}\}\times[s_j,s_{j+1}]} = F_{i+1,j} \circ \delta|_{\{t_{i+1}\}\times[s_j,s_{j+1}]}$. We construct the continuous function $f_j: [a,b] \times [s_j,s_{j+1}] \to \mathbb{R}$ given by $f_j(t,s) = F_{i,j}(\delta(t,s))$ for $t \in [t_i, t_{i+1}]$. It is clear that for each $s \in [s_j, s_{j+1}]$ the function $f(\cdot, s)$ is a primitive of ω along $\delta(\cdot, s)$.

If we add some constants to the f_j s, we can assume that for each j = 0, ..., r we have $f_j(\cdot, s_{j+1}) = f_j(\cdot, s_j)$. We can glue all these f_j s to a continuous function $f: [0,1] \times [0,1] \to \mathbb{R}$, such that for each $s \in [0,1]$ $f(\cdot, s)$ is a primitive of $\delta(\cdot, s)$. Therefore $\int_{\gamma_0} \omega = f(1,0) - f(0,0)$ and $\int_{\gamma_1} \omega = f(1,1) - f(0,1)$. But $\delta(\cdot, 0)$ and $\delta(\cdot, 1)$ are constant; therefore f(1,0) = f(1,1) and f(0,0) = f(0,1).

Corollary 17 (Homology invariance of the integral of locally exact forms). Let $U \subseteq \mathbb{R}^n$ be a connected open subset and let γ_1 and γ_2 two loops in U which are homologous. If ω is a locally exact 1-form on U, then $\int_{\gamma_1} \omega = \int_{\gamma_2} \omega$.

Proof. Choose a path $\gamma \in \Omega(U, \gamma_1(0), \gamma_2(0))$. Consider the loop $\tilde{\gamma} := \gamma_1 * \gamma * \iota(\gamma_2) * \iota(\gamma)$. Since γ_1 and γ_2 are homologous, the path-homotopy class $[\tilde{\gamma}]$ lies in the derived subgroup of $\pi_1(X, \gamma_1(0))$. There exist loops $\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r \in \Omega(X, \gamma_1(0), \gamma_1(0))$ such that $\tilde{\gamma}$ is path-homotopic to $(\alpha_1 * \beta_1 * \iota(\alpha_1) * \iota(\beta_1)) * \cdots * (\alpha_r * \beta_r * \iota(\alpha_r) * \iota(\beta_r))$. By Theorem 16 and Proposition 13,

$$\int_{\gamma_1} \omega - \int_{\gamma_2} \omega = \int_{\tilde{\gamma}} \omega = \sum_{i=1}^r \int_{\alpha_i * \beta_i * \iota(\alpha_i) * \iota(\beta_i)} \omega = 0.$$

If x and y are two points in an open subset U of \mathbb{R}^n , we denote by $\Omega(U, x, y)_{C^1}$ (resp. $\Omega(U, x, y)_{\text{aff}}$) the set of paths in U from x to y which are piecewise C^1 (resp. piecewise affine with segments parallel to the coordinate axes).

The following theorem gives a criterion for testing whether a locally exact 1-form is exact.

Theorem 18 (Characterisation of exact forms). Let ω be a 1-form on a connected open subset $U \subseteq \mathbb{R}^n$. Let $\bar{x} \in U$ be a point. Let \mathcal{F} be a collection of loops in U such that their homology classes form a set a generators of the group $H_1(U;\mathbb{Z})$. Then the following statements are equivalent:

- (1) ω is exact:
- (2) ω is locally exact and $\forall x \in U, \forall \gamma \in \Omega(U, x, x), \int_{\gamma} \omega = 0;$
- (2') $\forall x \in U, \forall \gamma \in \Omega(U, x, x)_{C^1}, \int_{\gamma} \omega = 0;$
- (2") $\forall x \in U, \forall \gamma \in \Omega(U, x, x)_{aff}, \int_{\gamma} \omega = 0;$
- (3) ω is locally exact and $\forall \gamma \in \Omega(U, \bar{x}, \bar{x}), \int_{\gamma} \omega = 0;$
- (3') $\forall \gamma \in \Omega(U, \bar{x}, \bar{x})_{C^1}, \int_{\gamma} \omega = 0;$
- (3") $\forall \gamma \in \Omega(U, \bar{x}, \bar{x})_{\text{aff}}, \int_{\gamma} \omega = 0;$
- (4) ω is locally exact and $\forall x, y \in U, \forall \gamma_1, \gamma_2 \in \Omega(U, x, y), \int_{\gamma_1} \omega = \int_{\gamma_2} \omega;$
- (4') $\forall x, y \in U, \forall \gamma_1, \gamma_2 \in \Omega(U, x, y)_{C^1}, \int_{\gamma_1} \omega = \int_{\gamma_2} \omega;$
- $\begin{array}{l} (4") \ \forall x, y \in U, \forall \gamma_1, \gamma_2 \in \Omega(U, x, y)_{\text{aff}}, \int_{\gamma_1}^{\gamma_1} \omega = \int_{\gamma_2}^{\gamma_2} \omega; \\ (5) \ \omega \ is \ locally \ exact \ and \ for \ every \ \gamma \in \mathcal{F} \ we \ have \ \int_{\gamma} \omega = 0. \end{array}$

Proof. The implications $(2) \Rightarrow (2') \Rightarrow (2''), (3) \Rightarrow (3') \Rightarrow (3''), (4) \Rightarrow (4') \Rightarrow (4''), (2) \Rightarrow (3), (2') \Rightarrow (3'), (2'') \Rightarrow (3''), (2'') \Rightarrow (3''), (3'') \Rightarrow (3$ \Rightarrow (3"), and (2) \Rightarrow (5) are obvious.

- $\begin{array}{l} (2) \Rightarrow (4): \text{ let } x, y \in U \text{ and } \gamma_1, \gamma_2 \in \Omega(U, x, y). \text{ Then } \gamma_1 * \iota(\gamma_2) \in \Omega(U, x, x); \text{ then } 0 = \int_{\gamma_1 * \iota(\gamma_2)} \omega = \int_{\gamma_1} \omega \int_{\gamma_2} \omega. \\ (4) \Rightarrow (2): \text{ let } x \in U \text{ and } \gamma \in \Omega(U, x, x); \text{ let } c_x \text{ be the constant path at } x. \text{ Therefore } 0 = \int_{c_x} \omega = \int_{\gamma} \omega. \end{array}$
- $(2') \Leftrightarrow (4'), (2'') \Leftrightarrow (4'')$: same proofs.

 $(3) \Rightarrow (2)$: let $x \in U$ and $\gamma \in \Omega(U, x, x)$. Since U is connected, there exists $\beta \in \Omega(U, \bar{x}, x)$. Then $\beta * \gamma * \iota(\beta) \in \Omega(U, \bar{x}, x)$. $\Omega(U, \bar{x}, \bar{x})$. Therefore $0 = \int_{\beta * \gamma * \iota(\beta)} \omega = \int_{\beta} \omega + \int_{\gamma} \omega - \int_{\beta} \omega = \int_{\gamma} \omega$.

$$(3') \Rightarrow (2'), (3'') \Rightarrow (2'')$$
: same proof.

(1) \Rightarrow (2): let $F \in C^1(U)$ such that $\omega = dF$. Fix a loop $\gamma: [0,1] \to U$ based at an arbitrary point $x \in U$. Then $F \circ \gamma$ is a primitive of ω along γ . Therefore $\int_{\gamma} \omega = F(\gamma(1)) - F(\gamma(0)) = F(x) - F(x) = 0$.

 $(5) \Rightarrow (2)$: without loss of generality, up to enlarge \mathcal{F} , we assume that whenever a loop is in \mathcal{F} also its inverse is in \mathcal{F} . Let $\gamma \in \Omega(U, x, x)$. Then there exist $\gamma_1, \ldots, \gamma_r \in \mathcal{F}$ such that the equality $[\gamma] = [\gamma_1] + \cdots + [\gamma_r]$ holds in the group $H_1(U;\mathbb{Z})$. This implies that there exist $\alpha_i \in \Omega(U, x, \gamma_i(0))$ such that the path-homotopy class of the loop

$$\beta := \iota(\gamma) * \alpha_1 * \gamma_1 * \iota(\alpha_1) * \dots * \alpha_r * \gamma_1 * \iota(\alpha_r) \in \Omega(U, x, x)$$

lies in the derived subgroup of $\pi_1(U, \bar{x})'$, i.e. $[\beta] \in \pi_1(U, \bar{x})'$. By Corollary 17 we have

$$0 = \int_{\beta} \omega = \int_{\iota(\gamma) * \alpha_1 * \gamma_1 * \iota(\alpha_1) * \dots * \alpha_r * \gamma_r * \iota(\alpha_r)} \omega = -\int_{\gamma} \omega + \int_{\gamma_1} \omega + \dots + \int_{\gamma_r} \omega = -\int_{\gamma} \omega.$$

 $(4^{"}) \Rightarrow (1)$: we define the function $F: U \to \mathbb{R}$ as $F(x) = \int_{\gamma_{m}} \omega$, where $\gamma_{x} \in \Omega(U, \bar{x}, x)_{\text{aff}}$. The function F is well defined because of (4"). We will show that, in every point of U, the partial derivatives of F are equal to the components of ω .

Fix $x \in U$ and $1 \le k \le n$. Choose $h \in \mathbb{R} \setminus \{0\}$ such that the closed ball $\overline{B_{|h|}(x)}$ is contained in U. Consider the path $\gamma: [0,1] \to U$ defined by $t \mapsto x + the_k$. So $\gamma_x * \gamma \in \Omega(U, \bar{x}, x)_{\text{aff}}$. Therefore $F(x + he_k) = \int_{\gamma_x * \gamma} \omega = \int_{\gamma_x *$ $\int_{\gamma_x} \omega + \int_{\gamma} \omega \text{ and then } F(x + he_k) - F(x) = \int_{\gamma_x} \omega = \int_0^1 \omega_k (x + the_k) h dt = \int_0^h \omega_k (x + se_k) ds. \text{ Since } \omega_k \text{ is continuous,}$ there exists $\xi \in \mathbb{R}$ between 0 and h such that $\frac{1}{h}[F(x+he_k)-F(x)] = \frac{1}{h}\int_0^h \omega_k(x+se_k)ds = \omega_k(x+\xi e_k)$. As $h \to 0$ we have that also $\xi \to 0$, and then $x + \xi e_k \to x$. So by the continuity of ω_k we get $\frac{\partial F}{\partial x_k}(x) = \omega_k(x)$. \Box

If G and H are abelian groups, we denote by $\operatorname{Hom}_{\mathbb{Z}}(G,H)$ the abelian group whose elements are the group homomorphisms from G to H. For every abelian group G, the abelian group $\operatorname{Hom}_{\mathbb{Z}}(G,\mathbb{R})$ has a natural structure of vector space over \mathbb{R} .

Theorem 19 (de Rham). If $U \subseteq \mathbb{R}^n$ is a connected open subset, then the integration of 1-forms along paths gives an injective \mathbb{R} -linear map $\mathrm{H}^{1}_{\mathrm{dR}}(U) \hookrightarrow \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{1}(U;\mathbb{Z}),\mathbb{R}).$

Remark 20. Actually the \mathbb{R} -linear map $\mathrm{H}^{1}_{\mathrm{dR}}(U) \hookrightarrow \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{1}(U;\mathbb{Z}),\mathbb{R})$ is bijective, but we will not prove this. This is the de Rham theorem for 1-forms on open subsets of \mathbb{R}^n ; it can be generalised to p-forms on smooth manifolds.

Proof of Theorem 19. Fix $\bar{x} \in U$. We consider the map

{locally exact 1-forms on U} × $\Omega(U, \bar{x}, \bar{x}) \longrightarrow \mathbb{R}$

given by $(\omega, \gamma) \mapsto \int_{\gamma} \omega$. By Theorem 16 we get a map

{locally exact 1-forms on U} $\times \pi_1(U, \bar{x}) \longrightarrow \mathbb{R}$.

By Corollary 17 we get a bilinear map

{locally exact 1-forms on U} × H₁(U; \mathbb{Z}) $\longrightarrow \mathbb{R}$.

By Theorem $18(1) \Rightarrow (3)$ we get a bilinear map

$$\mathrm{H}^{1}_{\mathrm{dB}}(U;\mathbb{R}) \times \mathrm{H}_{1}(U;\mathbb{Z}) \longrightarrow \mathbb{R}.$$

This gives a \mathbb{R} -linear map $\mathrm{H}^{1}_{\mathrm{dR}}(U) \to \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{1}(U;\mathbb{Z}),\mathbb{R})$, which is injective by the implication (5) \Rightarrow (1) of Theorem 18.

Corollary 21. Let $U \subseteq \mathbb{R}^n$ be a connected open subset. If the abelianisation of the fundamental group of U is a finite group (e.g. if U is simply connected), then every locally exact 1-form on U is exact.

A (compact) rectangle in \mathbb{R}^2 is a subset $R = [a, b] \times [c, d]$ for some $a, b, c, d \in \mathbb{R}$ such that a < b and c < d. We denote by ∂R the loop which covers the boundary of R, more precisely ∂R is the map $[0, 4] \to \mathbb{R}^2$ given by

$$t \mapsto \begin{cases} (b, (1-t)c + td) & \text{if } 0 \le t \le 1, \\ ((2-t)b + (t-1)a, d) & \text{if } 1 \le t \le 2, \\ (a, (3-t)d + (t-2)c) & \text{if } 2 \le t \le 3, \\ ((4-t)a + (t-3)b, c) & \text{if } 3 \le t \le 4. \end{cases}$$

Proposition 22. Let ω be a 1-form on an open subset $U \subseteq \mathbb{R}^2$. Then: ω is locally exact if and only if $\int_{\partial R} \omega = 0$ for every rectangle $R \subset U$.

Proof. ⇒) Fix a rectangle R ⊂ U. We can find an open rectangle V such that R ⊂ V ⊆ U. The form $ω|_V$ is locally exact. As V is simply connected, $ω|_V$ is exact. Then $\int_{\partial R} ω = \int_{\partial R} ω|_V = 0$ by Theorem 18(1)⇒(2").

 \Leftarrow) Fix an open ball $B \subseteq U$. We want to show that $\omega|_B$ is exact. Let γ be a loop in B which is piecewise affine and all the segments are parallel to the coordinate axes. Since B is a ball, it is possible to find a finite number of rectangles R_1, \ldots, R_r such that $\int_{\gamma} \omega = \sum_{j=1}^r \int_{\partial R_j} \omega$. By the assumption we get that $\int_{\gamma} \omega$. As γ was arbitrary, we get that $\omega|_B$ is exact by Theorem 18(2") \Rightarrow (1).

Another proof under an additional assumption. Let us assume that ω is C^1 . Write $\omega = Pdx + Qdy$, where P, Q are two real C^1 functions on U. By Green's theorem we get that

$$\int_{\partial R} \omega = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

for every rectangle $R \subset U$.

 \Rightarrow) Since ω is locally exact and C^1 , we have that ω is closed, i.e. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ on U. By the formula above we get that $\int_{\partial B} \omega = 0$ for every rectangle $R \subset U$.

 $\Leftarrow) \text{ Assume by contradiction that } \omega \text{ is not closed. Then there exists a point } p \in U \text{ such that } \frac{\partial Q}{\partial x}(p) - \frac{\partial P}{\partial y}(p) > 0.$ (The case $\frac{\partial Q}{\partial x}(p) - \frac{\partial P}{\partial y}(p) < 0$ is completely analogous.) By continuity of $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$, we can find a small rectangle R around p such that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} > 0$ on R. By the formula above we get $\int_{\partial R} \omega > 0$, which is absurd. \Box

References

- [Car95] Henri Cartan. Elementary theory of analytic functions of one or several complex variables. Dover Publications, Inc., New York, 1995. Translated from the French, Reprint of the 1973 edition.
- [Lan93] Serge Lang. Complex analysis, volume 103 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1993.