
1-FORMS ON OPEN SUBSETS OF Rn

This note has been written by Andrea Petracci (andrea.petracci@fu-berlin.de) for some lectures of the course
Complex Analysis (Funktionentheorie), which is taught at Freie Universität Berlin in the Summer Semester
2019.

If G is a group, the derived subgroup of G is the subgroup G′ ⊆ G generated by the commutators ghg−1h−1, as
g, h ∈ G. One can easily show that G′ is a normal subgroup of G. The quotient G/G′ is called the abelianisation
of G and is denoted by Gab. It is easy to see that Gab is an abelian group. If G is an abelian group, then the de-
rived subgroup G′ is trivial and the quotient projection G� Gab is an isomorphism. Thanks to the homomorph-
ism theorem, for every abelian group H there is a natural bijection between {G → H group homomorphism}
and {Gab → H group homomorphism}.

Definition 1. Let X be a path-connected topological space. The 1st singular homology group with coefficients
in Z of X is the abelianisation of the fundamental group of X: H1(X;Z) := π1(X,x0)ab for some x0 ∈ X.

Remark 2. We need to show that this group does not depend on the point x0. Let’s pick another point x1 ∈ X.
Since X is path-connected, there exists a path γ ∈ Ω(X,x0, x1). We consider the group isomorphism

γ] : π1(X,x0)→ π1(X,x1)

given by [α] 7→ [ι(γ) ∗ α ∗ γ]. This induces the isomorphism

γ? : π1(X,x0)ab → π1(X,x1)ab

given by [α]π1(X,x0)′ 7→ [ι(γ) ∗ α ∗ γ]π1(X,x1)′. If we pick another path γ̃ ∈ Ω(X,x0, x1), we need to prove
that γ? = γ̃?. We need to show that for every α ∈ Ω(X,x0, x0)

[ι(γ) ∗ α ∗ γ]π1(X,x1)′ = [ι(γ̃) ∗ α ∗ γ̃]π1(X,x1)′

i.e. the derived subgroup π1(X,x1)′ ⊆ π1(X,x1) contains

[ι(γ) ∗ α ∗ γ][ι(γ̃) ∗ α ∗ γ̃]−1 = [ι(γ) ∗ α ∗ γ ∗ ι(γ̃) ∗ ι(α) ∗ γ̃] = [ι(γ) ∗ α ∗ γ][ι(γ̃) ∗ γ][ι(γ) ∗ α ∗ γ]−1[ι(γ̃) ∗ γ]−1

which is a commutator.

Clearly, if X is simply connected then H1(X;Z) = 0.

Definition 3. Let X be a path-connected topological space. A loop in X is a path α : [0, 1] → X such that
α(0) = α(1). Two loops α and α̃ in X are called homologous if they induce the same element of H1(X;Z),
i.e. for some/every path γ ∈ Ω(X,α(0), α̃(0)) the path-homotopy class of α ∗ γ ∗ ι(α̃) ∗ ι(γ) lies in the derived
subgroup of π1(X,α(0)).

If α and β are path-homotopic paths in a path-connected topological space X, then α and β are homologous.

We denote by (Rn)∨ the dual of the vector space Rn. Let dx1, . . . , dxn be the dual of the standard basis of
Rn.

Definition 4. A 1-form on an open subset U ⊆ Rn is a continuous map ω : U → (Rn)∨.

We can write a 1-form uniquely as ω =
∑n
i=1 ωidxi, where ω1, . . . , ωn are continuous functions on U . We say

that ω is Ck if the functions ω1, . . . , ωn are Ck.
If F : U → R is a C1 function, then its differential dF :=

∑n
i=1

∂F
∂xi

dxi is a 1-form on U .

Definition 5. A 1-form ω on an open subset U ⊆ Rn is called:

• exact if there exists a C1 function F : U → R such that ω = dF ; (such an F is called a primitive of ω)
• locally exact if there exists an open cover {Uλ}λ of U such that, for each λ, the restriction ω|Uλ is an

exact form on Uλ;
• closed if ω is C1 and for all 1 ≤ i, j ≤ n we have the following equality of functions on U :

∂ωi
∂xj

=
∂ωj
∂xi

.
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If U ⊆ Rn is a connected open subset and ω is an exact 1-form on U , then the primitive of ω is unique up
to an additive constant.

Obviously an exact 1-form is locally exact. In Proposition 15 we will see that being closed is the same as
being locally exact and C1. So, for a C1 1-form it is very easy to understand if it is locally exact: it is enough to
compute some partial derivatives. The discrepancy between being exact and being locally exact depends only
on the topology of the open subset U ⊆ Rn, as we will see below.

It is clear that, fixed an open subset U ⊆ Rn, the sets of 1-forms, exact 1-forms, locally exact 1-forms, closed
1-forms on U are real vector spaces of infinite dimension.

Definition 6. The 1st de Rham cohomology group of an open subset U ⊆ Rn is the following real vector space:

H1
dR(U) :=

{locally exact 1-forms on U}
{exact 1-forms on U}

.

Given an open subset U ⊆ Rn, we have that H1
dR(U) = 0 if and only if every locally exact 1-form on U is

exact.

Definition 7. Let ω be a locally exact 1-form on the open subset U ⊆ Rn and let γ : [a, b]→ U be a path. A
primitive of ω along γ is a continuous function f : [a, b]→ R such that: for every τ ∈ [a, b], there exists an open
neighbourhood V of γ(τ) in U such that ω|V is exact, F : V → R is a primitive of ω|V and F ◦γ|γ−1(V ) = f |γ−1(V ).

Proposition 8. Let ω be a locally exact 1-form on the open subset U ⊆ Rn and let γ : [a, b] → U be a path.
Then a primitive of ω along γ exists and is unique up to an additive constant.

Proof. See [Car95, Theorem 1, p. 57] or [Lan93, III, §4].
Existence: we know that ω is locally exact, so there exists an open cover {Uλ}λ of U such that ω|Uλ is exact

for each λ. Since [a, b] is compact and γ : [a, b]→ U is continuous, by the Lebesgue number there exists a finite
sequence of points a = t0 < t1 < · · · < tr < tr+1 = b such that, for each integer i = 0, . . . , r, γ([ti, ti+1]) ⊆ Uλi
for some λi. Let Fi be a primitive of ω|Uλi . We notice that γ(ti+1) ∈ Uλi ∩ Uλi+1 , for each i = 0, . . . , r. Up

to adding a constant to F1, we can assume that F0(γ(t1)) = F1(γ(t1)). Up to adding a constant to F2, we
can assume that F1(γ(t2)) = F2(γ(t2)). And so on until Fr−1(γ(tr)) = Fr(γ(tr)). Now define f : [a, b] → R by
f(t) = Fi(γ(t)) if t ∈ [ti, ti+1], for each i = 0, . . . , r. It is obvious that f is continuous and that f is a primitive
of ω along γ.

Uniqueness: let f1 and f2 be two primitives of ω along γ. Fix τ ∈ [a, b]. Then by the definition, we can find
an open neighbourhood of τ in [a, b] where f1 − f2 is constant, thanks to the uniqueness of the primitive of a
1-form. We have proved that f1 − f2 is locally constant. As [a, b] is connected and f1 − f2 is continuous, we
have that f1 − f2 is constant. �

Now we want to define the integral of a 1-form along a path.

Definition 9. Let ω be a 1-form on the open subset U ⊆ Rn and let γ : [a, b] → U be a path. The integral of
ω along γ is the real number, denoted by

∫
γ
ω, defined in the following two (overlapping) cases.

• Assume that γ is piecewise C1. Then∫
γ

ω :=

∫ b

a

ω(γ(t))(γ′(t))dt =

∫ b

a

n∑
i=1

ωi(γ(t))γ′i(t)dt.

This definition makes sense because γ′ is not defined in at most finitely many points in [a, b].
• Assume that ω is locally exact. Then∫

γ

ω := f(b)− f(a)

where f : [a, b]→ R is a primitive of ω along γ. This definition makes sense by Proposition 8.

Proposition 10. The two definitions of
∫
γ
ω in Definition 9 are compatible.

Proof. Assume that ω is locally exact and that γ : [a, b]→ U is piecewise C1. As in the proof of Proposition 8,
there exist open subsets U0, . . . , Ur ⊆ U such that ω|U0

, . . . , ω|Ur are exact and there exists a finite sequence
of points a = t0 < t1 < · · · < tr < tr+1 = b such that, for each integer i = 0, . . . , r, γ([ti, ti+1]) ⊆ Ui. Let
Fi : Ui → R be a primitive of ω|Ui and assume that Fi(γ(ti+1)) = Fi+1(γ(ti+1)), for all i = 0, . . . , r. Consider
the primitive f of ω along γ given by f(t) = Fi(γ(t)) if t ∈ [ti, ti+1]. Then∫ b

a

n∑
j=1

ωj(γ(t))γ′j(t)dt =

r∑
i=0

∫ ti+1

ti

n∑
j=1

ωj(γ(t))γ′j(t)dt =

r∑
i=0

∫ ti+1

ti

n∑
j=1

∂Fi
∂xj

(γ(t))γ′j(t)dt =

=

r∑
i=0

∫ ti+1

ti

(Fi ◦ γ)′(t)dt =

r∑
i=0

(f(ti+1)− f(ti)) = f(b)− f(a). �
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Proposition 11. Let ω be a 1-form on the open subset U ⊆ Rn and let γ : [a, b]→ U be a path. Assume either
that γ is piecewise C1 or that ω is locally exact. Then

∫
γ
ω does not depend on reparametrizations of γ.

Proof. Let ϕ : [a1, b1]→ [a, b] be an increasing homeomorphism.
Assume that γ is piecewise C1 and that ϕ is piecewise C1. Then∫

γ◦ϕ
ω =

∫ b1

a1

n∑
i=1

ωi(γ(ϕ(s))) · (γi ◦ ϕ)′(s)ds =

∫ b1

a1

n∑
i=1

ωi(γ(ϕ(s)))γ′i(ϕ(s))ϕ′(s)ds =

=

∫ b

a

n∑
i=1

ωi(γ(t))γ′i(t)dt =

∫
γ

ω.

Assume that ω is locally exact. If f is a primitive of ω along γ, then f ◦ ϕ is a primitive of ω along γ ◦ ϕ.
Therefore ∫

γ◦ϕ
ω = f(ϕ(b1))− f(ϕ(a1)) = f(b)− f(a) =

∫
γ

ω.

�

Thanks to the proposition above we will often assume that paths are defined over [0, 1].

Remark 12. Let ω =
∑3
i=1 ωidxi be a 1-form on an open subset U ⊆ R3. Consider the vector field F =

(ω1, ω2, ω3) : U → R3.

• ω is exact if and only if F is conservative. A primitive of ω is exactly a potential of F, i.e. a C1 function
V : U → R such that ∇V = F.

• Assume that ω is C1. Recall that the curl of F is the vector field

∇× F :=

(
∂ω3

∂x2
− ∂ω2

∂x3
,
∂ω1

∂x3
− ∂ω3

∂x1
,
∂ω2

∂x1
− ∂ω1

∂x2

)
.

Therefore ω is closed if and only if F is irrotational, i.e. its curl ∇× F vanishes.

If γ : [a, b]→ U is the (piecewise C1) trajectory of a point in U and F is a force field, then∫
γ

ω =

∫ b

a

F(γ(t)) • γ̇(t)dt

(where • denotes the scalar product) is the work done by the force F along the path γ.

Proposition 13 (Bilinearity of the integral). Let U ⊆ Rn be an open subset. Assume that all the integrals
below are defined.

• Let ω be a 1-form on U and let γ1, γ2 : [0, 1] → U be two paths such that γ1(1) = γ2(0). Consider the
concatenation γ1 ∗ γ2 : [0, 1]→ U . Then∫

γ1∗γ2
ω =

∫
γ1

ω +

∫
γ2

ω.

• Let ω be a 1-form on U and let γ : [0, 1] → U be a path. Consider the inverse ι(γ) : [0, 1] → U of γ.
Then ∫

ι(γ)

ω = −
∫
γ

ω.

• Let ω and η be two 1-forms on U and let γ : [0, 1]→ U be a path. Then∫
γ

(ω + η) =

∫
γ

ω +

∫
γ

η.

• Let ω be a 1-form on U , let λ ∈ R, and let γ : [0, 1]→ U be a path. Then∫
γ

λω = λ

∫
γ

ω.

Proof. Left to the reader. �

Proposition 14. Let U ⊆ Rn be a star-shaped open subset and let ω be a closed 1-form on U . Then ω is exact.

Proof. Assume that U is star-shaped with respect to the point x̄ ∈ U . For each point x ∈ U consider the
segment γx : [0, 1]→ U defined by t 7→ x̄+ t(x− x̄). Consider the function F : U → R defined by

F (x) =

∫
γx

ω =

∫ 1

0

n∑
i=1

ωi (x̄+ t(x− x̄)) · (xi − x̄i)dt.
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We want to show that F is a primitive of ω. Fix 1 ≤ k ≤ n and x ∈ U . Consider the function G(t) =
ωk (x̄+ t(x− x̄)) on [0, 1]. By the chain rule we have

G′(t) =

n∑
i=1

∂ωk
∂xi

(x̄+ t(x− x̄)) · (xi − x̄i) =

n∑
i=1

∂ωi
∂xk

(x̄+ t(x− x̄)) · (xi − x̄i),

where we have used that ω is closed. Thus

∂F

∂xk
(x) =

∫ 1

0

n∑
i=1

∂

∂xk
[ωi (x̄+ t(x− x̄)) · (xi − x̄i)] dt

=

∫ 1

0

{
n∑
i=1

∂

∂xk
[ωi (x̄+ t(x− x̄))] · (xi − x̄i) + ωk (x̄+ t(x− x̄))

}
dt

=

∫ 1

0

[G′(t)t+G(t)] dt =

∫ 1

0

[
d

dt
(G(t)t)

]
dt = G(1) = ωk(x). �

Proposition 15 (Closed = locally exact + C1). Let ω be a 1-form on an open subset U ⊆ Rn . Then ω is
closed if and only if it is C1 and locally exact.

Proof. ⇒) Assume that ω is closed. Since every open ball is star-shaped, by Proposition 14 we have that the
restriction of ω to each open ball contained in U is exact. Conclude by choosing an open cover of U made up
of open balls.
⇐) Assume that ω is C1 and locally exact. Let {Uλ}λ be an open cover of U such that ω|Uλ is exact for each

λ. Let Fλ : Uλ → R be a primitive of ω|Uλ , i.e. ∂Fλ/∂xi = ωi|Uλ . Since Fλ is C2, we have

∂ωi
∂xj

=
∂2Fλ
∂xj∂xi

=
∂2Fλ
∂xi∂xj

=
∂ωj
∂xi

on Uλ. Conclude because U =
⋃
λ Uλ. �

Theorem 16 (Homotopy invariance of the integral of locally exact forms). If ω is a locally exact 1-form on an
open subset U ⊆ Rn and let γ0, γ1 : [0, 1]→ U be two paths which are path-homotopic, then∫

γ0

ω =

∫
γ1

ω.

Proof. See [Car95, II.1.6] or [Lan93, III, §5]. Let δ : [0, 1]× [0, 1]→ U be the homotopy between γ0 and γ1, i.e.
a continuous map such that δ(·, 0) = γ0, δ(·, 1) = γ1 and δ(0, s) = γ0(0) = γ1(0), δ(1, s) = γ0(1) = γ1(1) for all
s ∈ [0, 1].

In a similar way to Proposition 8 we want to construct “a primitive of ω along δ”. Let {Uλ}λ be an open cover
such that ω|Uλ is exact for each λ. Since [0, 1]× [0, 1] is compact and δ is continuous, by Lebesgue number we
can find two finite sequences of points 0 = t0 < t1 < · · · < tr < tr+1 = 1 and 0 = s0 < s1 < · · · < sr < sr+1 = 1
such that, for all 0 ≤ i, j ≤ r, δ([ti, ti+1] × [sj , sj+1]) ⊆ Uλi,j for some λi,j . Let Fi,j : Uλi,j → R be a primitive
of ω|Uλi,j .

Keep j fixed. We can add a constant to Fi,j in such a way that Fi,j◦δ|{ti+1}×[sj ,sj+1] = Fi+1,j◦δ|{ti+1}×[sj ,sj+1].
We construct the continuous function fj : [a, b]× [sj , sj+1]→ R given by fj(t, s) = Fi,j(δ(t, s)) for t ∈ [ti, ti+1].
It is clear that for each s ∈ [sj , sj+1] the function f(·, s) is a primitive of ω along δ(·, s).

If we add some constants to the fjs, we can assume that for each j = 0, . . . , r we have fj(·, sj+1) = fj(·, sj).
We can glue all these fjs to a continuous function f : [0, 1]× [0, 1]→ R, such that for each s ∈ [0, 1] f(·, s) is a
primitive of δ(·, s). Therefore

∫
γ0
ω = f(1, 0) − f(0, 0) and

∫
γ1
ω = f(1, 1) − f(0, 1). But δ(·, 0) and δ(·, 1) are

constant; therefore f(1, 0) = f(1, 1) and f(0, 0) = f(0, 1). �

Corollary 17 (Homology invariance of the integral of locally exact forms). Let U ⊆ Rn be a connected open
subset and let γ1 and γ2 two loops in U which are homologous. If ω is a locally exact 1-form on U , then∫
γ1
ω =

∫
γ2
ω.

Proof. Choose a path γ ∈ Ω(U, γ1(0), γ2(0)). Consider the loop γ̃ := γ1 ∗ γ ∗ ι(γ2) ∗ ι(γ). Since γ1 and γ2

are homologous, the path-homotopy class [γ̃] lies in the derived subgroup of π1(X, γ1(0)). There exist loops
α1, β1, . . . , αr, βr ∈ Ω(X, γ1(0), γ1(0)) such that γ̃ is path-homotopic to (α1 ∗ β1 ∗ ι(α1) ∗ ι(β1)) ∗ · · · ∗ (αr ∗ βr ∗
ι(αr) ∗ ι(βr)). By Theorem 16 and Proposition 13,∫

γ1

ω −
∫
γ2

ω =

∫
γ̃

ω =

r∑
i=1

∫
αi∗βi∗ι(αi)∗ι(βi)

ω = 0. �

If x and y are two points in an open subset U of Rn, we denote by Ω(U, x, y)C1 (resp. Ω(U, x, y)aff) the set of
paths in U from x to y which are piecewise C1 (resp. piecewise affine with segments parallel to the coordinate
axes).
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The following theorem gives a criterion for testing whether a locally exact 1-form is exact.

Theorem 18 (Characterisation of exact forms). Let ω be a 1-form on a connected open subset U ⊆ Rn. Let
x̄ ∈ U be a point. Let F be a collection of loops in U such that their homology classes form a set a generators
of the group H1(U ;Z). Then the following statements are equivalent:

(1) ω is exact;
(2) ω is locally exact and ∀x ∈ U,∀γ ∈ Ω(U, x, x),

∫
γ
ω = 0;

(2’) ∀x ∈ U,∀γ ∈ Ω(U, x, x)C1 ,
∫
γ
ω = 0;

(2”) ∀x ∈ U,∀γ ∈ Ω(U, x, x)aff ,
∫
γ
ω = 0;

(3) ω is locally exact and ∀γ ∈ Ω(U, x̄, x̄),
∫
γ
ω = 0;

(3’) ∀γ ∈ Ω(U, x̄, x̄)C1 ,
∫
γ
ω = 0;

(3”) ∀γ ∈ Ω(U, x̄, x̄)aff ,
∫
γ
ω = 0;

(4) ω is locally exact and ∀x, y ∈ U,∀γ1, γ2 ∈ Ω(U, x, y),
∫
γ1
ω =

∫
γ2
ω;

(4’) ∀x, y ∈ U,∀γ1, γ2 ∈ Ω(U, x, y)C1 ,
∫
γ1
ω =

∫
γ2
ω;

(4”) ∀x, y ∈ U,∀γ1, γ2 ∈ Ω(U, x, y)aff ,
∫
γ1
ω =

∫
γ2
ω;

(5) ω is locally exact and for every γ ∈ F we have
∫
γ
ω = 0.

Proof. The implications (2) ⇒ (2’) ⇒ (2”), (3) ⇒ (3’) ⇒ (3”), (4) ⇒ (4’) ⇒ (4”), (2) ⇒ (3), (2’) ⇒ (3’), (2”)
⇒ (3”), and (2) ⇒ (5) are obvious.

(2)⇒ (4): let x, y ∈ U and γ1, γ2 ∈ Ω(U, x, y). Then γ1∗ι(γ2) ∈ Ω(U, x, x); then 0 =
∫
γ1∗ι(γ2)

ω =
∫
γ1
ω−
∫
γ2
ω.

(4) ⇒ (2): let x ∈ U and γ ∈ Ω(U, x, x); let cx be the constant path at x. Therefore 0 =
∫
cx
ω =

∫
γ
ω.

(2’) ⇔ (4’), (2”) ⇔ (4”): same proofs.
(3)⇒ (2): let x ∈ U and γ ∈ Ω(U, x, x). Since U is connected, there exists β ∈ Ω(U, x̄, x). Then β ∗γ ∗ ι(β) ∈

Ω(U, x̄, x̄). Therefore 0 =
∫
β∗γ∗ι(β)

ω =
∫
β
ω +

∫
γ
ω −

∫
β
ω =

∫
γ
ω.

(3’) ⇒ (2’), (3”) ⇒ (2”): same proof.
(1) ⇒ (2): let F ∈ C1(U) such that ω = dF . Fix a loop γ : [0, 1] → U based at an arbitrary point x ∈ U .

Then F ◦ γ is a primitive of ω along γ. Therefore
∫
γ
ω = F (γ(1))− F (γ(0)) = F (x)− F (x) = 0.

(5)⇒ (2): without loss of generality, up to enlarge F , we assume that whenever a loop is in F also its inverse
is in F . Let γ ∈ Ω(U, x, x). Then there exist γ1, . . . , γr ∈ F such that the equality [γ] = [γ1] + · · ·+ [γr] holds
in the group H1(U ;Z). This implies that there exist αi ∈ Ω(U, x, γi(0)) such that the path-homotopy class of
the loop

β := ι(γ) ∗ α1 ∗ γ1 ∗ ι(α1) ∗ · · · ∗ αr ∗ γ1 ∗ ι(αr) ∈ Ω(U, x, x)

lies in the derived subgroup of π1(U, x̄)′, i.e. [β] ∈ π1(U, x̄)′. By Corollary 17 we have

0 =

∫
β

ω =

∫
ι(γ)∗α1∗γ1∗ι(α1)∗···∗αr∗γr∗ι(αr)

ω = −
∫
γ

ω +

∫
γ1

ω + · · ·+
∫
γr

ω = −
∫
γ

ω.

(4”) ⇒ (1): we define the function F : U → R as F (x) =
∫
γx
ω, where γx ∈ Ω(U, x̄, x)aff . The function F is

well defined because of (4”). We will show that, in every point of U , the partial derivatives of F are equal to
the components of ω.

Fix x ∈ U and 1 ≤ k ≤ n. Choose h ∈ Rr {0} such that the closed ball B|h|(x) is contained in U . Consider

the path γ : [0, 1] → U defined by t 7→ x + thek. So γx ∗ γ ∈ Ω(U, x̄, x)aff . Therefore F (x + hek) =
∫
γx∗γ ω =∫

γx
ω+
∫
γ
ω and then F (x+hek)−F (x) =

∫
γx
ω =

∫ 1

0
ωk(x+thek)hdt =

∫ h
0
ωk(x+sek)ds. Since ωk is continuous,

there exists ξ ∈ R between 0 and h such that 1
h [F (x + hek) − F (x)] = 1

h

∫ h
0
ωk(x + sek)ds = ωk(x + ξek). As

h→ 0 we have that also ξ → 0, and then x+ ξek → x. So by the continuity of ωk we get ∂F
∂xk

(x) = ωk(x). �

If G and H are abelian groups, we denote by HomZ(G,H) the abelian group whose elements are the group
homomorphisms from G to H. For every abelian group G, the abelian group HomZ(G,R) has a natural structure
of vector space over R.

Theorem 19 (de Rham). If U ⊆ Rn is a connected open subset, then the integration of 1-forms along paths
gives an injective R-linear map H1

dR(U) ↪→ HomZ(H1(U ;Z),R).

Remark 20. Actually the R-linear map H1
dR(U) ↪→ HomZ(H1(U ;Z),R) is bijective, but we will not prove this.

This is the de Rham theorem for 1-forms on open subsets of Rn; it can be generalised to p-forms on smooth
manifolds.

Proof of Theorem 19. Fix x̄ ∈ U . We consider the map

{locally exact 1-forms on U} × Ω(U, x̄, x̄) −→ R
given by (ω, γ) 7→

∫
γ
ω. By Theorem 16 we get a map

{locally exact 1-forms on U} × π1(U, x̄) −→ R.
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By Corollary 17 we get a bilinear map

{locally exact 1-forms on U} ×H1(U ;Z) −→ R.
By Theorem 18(1)⇒(3) we get a bilinear map

H1
dR(U ;R)×H1(U ;Z) −→ R.

This gives a R-linear map H1
dR(U) → HomZ (H1(U ;Z),R), which is injective by the implication (5)⇒(1) of

Theorem 18. �

Corollary 21. Let U ⊆ Rn be a connected open subset. If the abelianisation of the fundamental group of U is
a finite group (e.g. if U is simply connected), then every locally exact 1-form on U is exact.

A (compact) rectangle in R2 is a subset R = [a, b] × [c, d] for some a, b, c, d ∈ R such that a < b and c < d.
We denote by ∂R the loop which covers the boundary of R, more precisely ∂R is the map [0, 4]→ R2 given by

t 7→


(b, (1− t)c+ td) if 0 ≤ t ≤ 1,

((2− t)b+ (t− 1)a, d) if 1 ≤ t ≤ 2,

(a, (3− t)d+ (t− 2)c) if 2 ≤ t ≤ 3,

((4− t)a+ (t− 3)b, c) if 3 ≤ t ≤ 4.

Proposition 22. Let ω be a 1-form on an open subset U ⊆ R2. Then: ω is locally exact if and only if
∫
∂R
ω = 0

for every rectangle R ⊂ U .

Proof. ⇒) Fix a rectangle R ⊂ U . We can find an open rectangle V such that R ⊂ V ⊆ U . The form ω|V is
locally exact. As V is simply connected, ω|V is exact. Then

∫
∂R
ω =

∫
∂R
ω|V = 0 by Theorem 18(1)⇒(2”).

⇐) Fix an open ball B ⊆ U . We want to show that ω|B is exact. Let γ be a loop in B which is piecewise
affine and all the segments are parallel to the coordinate axes. Since B is a ball, it is possible to find a finite
number of rectangles R1, . . . , Rr such that

∫
γ
ω =

∑r
j=1

∫
∂Rj

ω. By the assumption we get that
∫
γ
ω. As γ was

arbitrary, we get that ω|B is exact by Theorem 18(2”)⇒(1). �

Another proof under an additional assumption. Let us assume that ω is C1. Write ω = Pdx+Qdy, where P,Q
are two real C1 functions on U . By Green’s theorem we get that∫

∂R

ω =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy

for every rectangle R ⊂ U .
⇒) Since ω is locally exact and C1, we have that ω is closed, i.e. ∂Q

∂x = ∂P
∂y on U . By the formula above we

get that
∫
∂R
ω = 0 for every rectangle R ⊂ U .

⇐) Assume by contradiction that ω is not closed. Then there exists a point p ∈ U such that ∂Q
∂x (p)−∂P∂y (p) > 0.

(The case ∂Q
∂x (p)− ∂P

∂y (p) < 0 is completely analogous.) By continuity of ∂Q∂x −
∂P
∂y , we can find a small rectangle

R around p such that ∂Q
∂x −

∂P
∂y > 0 on R. By the formula above we get

∫
∂R
ω > 0, which is absurd. �
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