1-FORMS ON OPEN SUBSETS OF R"

This note has been written by Andrea Petracci (andrea.petracci@fu-berlin.de) for some lectures of the course
Complex Analysis (Funktionentheorie), which is taught at Freie Universitdt Berlin in the Summer Semester
2019.

If G is a group, the derived subgroup of G is the subgroup G’ C G generated by the commutators ghg='h™1, as
g,h € G. One can easily show that G’ is a normal subgroup of G. The quotient G/G’ is called the abelianisation
of G and is denoted by G?P. It is easy to see that G?P is an abelian group. If G is an abelian group, then the de-
rived subgroup G’ is trivial and the quotient projection G — G®P is an isomorphism. Thanks to the homomorph-
ism theorem, for every abelian group H there is a natural bijection between {G — H group homomorphism}
and {G®" — H group homomorphism}.

Definition 1. Let X be a path-connected topological space. The 1st singular homology group with coefficients
in Z of X is the abelianisation of the fundamental group of X: Hy(X;Z) := m (X, z0)*" for some xy € X.

Remark 2. We need to show that this group does not depend on the point xy. Let’s pick another point z; € X.
Since X is path-connected, there exists a path v € Q(X, 2o, x1). We consider the group isomorphism

v m(X, o) = m (X, z1)
given by [a] — [t() * @ *v]. This induces the isomorphism
Y : (X, xo)ab — 7r1(X,9€1)ab
given by [a]m1 (X, zo) — [e(y) * a*y]m (X, 21)". If we pick another path ¥ € Q(X, zg, z1), we need to prove
that v, = 4. We need to show that for every o € Q(X, g, z0)
[t(7) * @ x (X, 21)" = [1(F) * o * i (X, 21)
i.e. the derived subgroup m (X, 21)" C m (X, 21) contains

[1(7) * ax A][u(3) o % 3] 7 = [u(7) oy () % (@) % 3] = [e(y) * ax A][u(F) +[e(y) * x4 T (F) %]

which is a commutator.
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Clearly, if X is simply connected then H;(X;Z) = 0.

Definition 3. Let X be a path-connected topological space. A loop in X is a path a: [0,1] — X such that
a(0) = a(l). Two loops o and & in X are called homologous if they induce the same element of H;(X;Z),
i.e. for some/every path v € Q(X, a(0),&(0)) the path-homotopy class of o % v * (&) * ¢(7y) lies in the derived
subgroup of 7 (X, a(0)).

If o and 8 are path-homotopic paths in a path-connected topological space X, then o« and S are homologous.

We denote by (R™)Y the dual of the vector space R™. Let dz1,...,dz, be the dual of the standard basis of
R™.

Definition 4. A I-form on an open subset U C R" is a continuous map w: U — (R™)V.

We can write a 1-form uniquely as w = Z?’:l w;dz;, where wy, ...,w, are continuous functions on U. We say
that w is C* if the functions w1, ..., w, are C*.
If F: U — Ris a C! function, then its differential dF := > | %dmi is a 1-form on U.

Definition 5. A 1-form w on an open subset U C R" is called:
e czact if there exists a C! function F': U — R such that w = dF’; (such an F is called a primitive of w)
e locally exact if there exists an open cover {Uy}, of U such that, for each A, the restriction w|y, is an
exact form on Uy;

o closed if w is C' and for all 1 < i,j < n we have the following equality of functions on U:

8(.«)1' o 8Wj

8l‘j N asr:i '
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If U C R™ is a connected open subset and w is an exact 1-form on U, then the primitive of w is unique up
to an additive constant.

Obviously an exact 1-form is locally exact. In Proposition we will see that being closed is the same as
being locally exact and C'. So, for a C'!' 1-form it is very easy to understand if it is locally exact: it is enough to
compute some partial derivatives. The discrepancy between being exact and being locally exact depends only
on the topology of the open subset U C R™, as we will see below.

It is clear that, fixed an open subset U C R"™, the sets of 1-forms, exact 1-forms, locally exact 1-forms, closed
1-forms on U are real vector spaces of infinite dimension.

Definition 6. The 1st de Rham cohomology group of an open subset U C R” is the following real vector space:

locally exact 1-forms on U
Hip(U) = | }

{exact 1-forms on U}

Given an open subset U C R", we have that Hi (U) = 0 if and only if every locally exact 1-form on U is
exact.

Definition 7. Let w be a locally exact 1-form on the open subset U C R™ and let «y: [a,b] — U be a path. A
primitive of w along «y is a continuous function f: [a,b] — R such that: for every 7 € [a, b], there exists an open
neighbourhood V' of 7(7) in U such that w|y is exact, F': V' — R is a primitive of w|y and Foy|y-1(y) = fly-1(v)-

Proposition 8. Let w be a locally exact 1-form on the open subset U C R™ and let v: [a,b] — U be a path.
Then a primitive of w along v exists and is unique up to an additive constant.

Proof. See [Car95l Theorem 1, p. 57] or [Lan93, ITI, §4].

Existence: we know that w is locally exact, so there exists an open cover {Uy}x of U such that w|y, is exact
for each A. Since [a, b] is compact and «: [a,b] — U is continuous, by the Lebesgue number there exists a finite
sequence of points a =ty < t; < -+ < t, < tr41 = b such that, for each integer i = 0,...,7, Y([t;,t;11]) C U,
for some A;. Let F; be a primitive of w|y, . We notice that y(ti+1) € Uy, N Uy,,,, for each i = 0,...,r. Up
to adding a constant to Fj, we can assume that Fy(y(t1)) = Fi(y(¢1)). Up to adding a constant to F», we
can assume that Fi(v(t2)) = Fa(v(t2)). And so on until F,._1(y(¢.)) = F.(y(¢t,)). Now define f: [a,b] — R by
f(t) = Fi(~(¢)) if t € [t;,ti41], for each i = 0,...,r. It is obvious that f is continuous and that f is a primitive
of w along ~.

Uniqueness: let f; and fa be two primitives of w along 7. Fix 7 € [a, b]. Then by the definition, we can find
an open neighbourhood of 7 in [a, b] where fi; — fo is constant, thanks to the uniqueness of the primitive of a
1-form. We have proved that f; — fo is locally constant. As [a,b] is connected and f; — fy is continuous, we
have that f; — fo is constant. O

Now we want to define the integral of a 1-form along a path.
Definition 9. Let w be a 1-form on the open subset U C R™ and let 7: [a,b] — U be a path. The integral of
w along ~y is the real number, denoted by f,y w, defined in the following two (overlapping) cases.

e Assume that v is piecewise C'. Then

/ wie / W) )t = |3 wilv(e) b,

@ =1
This definition makes sense because v’ is not defined in at most finitely many points in [a, b].
e Assume that w is locally exact. Then

Aw:f@—f@

where f: [a,b] — R is a primitive of w along ~. This definition makes sense by Proposition

Proposition 10. The two definitions of f,yw n Deﬁm’tionlg are compatible.

Proof. Assume that w is locally exact and that 7: [a,b] — U is piecewise C1. As in the proof of Proposition
there exist open subsets Uy, ...,U, C U such that w|y,,...,w|y, are exact and there exists a finite sequence
of points a = tg < t1 < -+ < t,. < tp41 = b such that, for each integer i = 0,...,7, y([t;, ti+1]) € U;. Let
F;: U; — R be a primitive of w|y, and assume that F;(y(ti41)) = Fit1(y(tix1)), for all ¢ = 0,...,r. Consider
the primitive f of w along v given by f(t) = F;(y(t)) if t € [¢;,ti+1]. Then

n n

"o ’ g Pit / 4 tit1 8Fi ’
[ witomoa=3 [ Y wawmma=3 [ 3 0@ o -
@ =1 i=0 vt i—0 Jti ; J

=1 Jj=1

T

- Z/ m(Fi o) (t)dt = (f(tiy1) — f(t:)) = F(b) — f(a). -
i=0 Yt

=0
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Proposition 11. Let w be a 1-form on the open subset U C R™ and let «y: [a,b] — U be a path. Assume either
that v is piecewise C' or that w is locally exact. Then fﬁ/w does not depend on reparametrizations of y.

Proof. Let ¢: [a1,b1] — [a,b] be an increasing homeomorphism.
Assume that ~ is piecewise C' and that ¢ is piecewise C*. Then

by N

/ w = / ! sz(V(W(S))) . (%‘ o (p)/(s)ds = / Zwi(V(W(S)))’YZ{(W(S))W(S)CIZS _

1 4=1 1 4=1

-
3A;?mwmww=Lw

Assume that w is locally exact. If f is a primitive of w along 7, then f o ¢ is a primitive of w along 7y o .
Therefore

/'wszm»—ﬂmm»:ﬂw—ﬂ@=/w

~

Thanks to the proposition above we will often assume that paths are defined over [0, 1].
Remark 12. Let w = Zle w;dx; be a 1-form on an open subset U C R3. Consider the vector field F =
(w1, w2, ws3): U — R3.

e wis exact if and only if F is conservative. A primitive of w is exactly a potential of F, i.e. a C'' function
V:U — R such that VV = F.
o Assume that w is C'. Recall that the curl of F is the vector field

UxF. (8 0w Qun Ows Owy  Owy
o 8%2 81'37 81‘3 8371 ’ 8.%’1 8$2 '

Therefore w is closed if and only if F is irrotational, i.e. its curl V x F vanishes.

If v: [a,b] — U is the (piecewise C!) trajectory of a point in U and F is a force field, then

[Y“’ - /ab F(y(t)) o 4(t)dt

(where o denotes the scalar product) is the work done by the force F along the path ~.

Proposition 13 (Bilinearity of the integral). Let U C R™ be an open subset. Assume that all the integrals
below are defined.

o Let w be a 1-form on U and let v1,72: [0,1] — U be two paths such that v1(1) = v2(0). Consider the
concatenation 1 x yo: [0,1] = U. Then

/ w:/ w+/ w.
Y1*72 Y1 Y2

o Let w be a 1-form on U and let : [0,1] — U be a path. Consider the inverse t(y): [0,1] — U of ~.

Then
/ W= — / w.
() v

e Let w and n be two 1-forms on U and let v: [0,1] = U be a path. Then

AW+W‘A“+L”

o Letw be a I-form on U, let X € R, and let v: [0,1] = U be a path. Then

/)\w:)\/w.
Y v

Proof. Left to the reader. O
Proposition 14. Let U C R"™ be a star-shaped open subset and let w be a closed 1-form on U. Then w is exact.

Proof. Assume that U is star-shaped with respect to the point z € U. For each point x € U consider the
segment v, : [0,1] — U defined by ¢t — Z + t(x — Z). Consider the function F': U — R defined by

Fla) :waz/oliwi(a:—i—t(x—x))-(xi—xi)dt.
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We want to show that F' is a primitive of w. Fix 1 < k < n and z € U. Counsider the function G(t) =
wi (T + t(x — z)) on [0,1]. By the chain rule we have

awk 6w1 —
Zaxl t(x—x)) - (x; — ;) Z(’?xk T4tlx — 7)) (x; — T;),

where we have used that w is closed. Thus

= |, Zaxk i (2 4+ to = 2) - (@ — )] de

- [ {Z ¥ w:(ﬂt(w—@)}~<xi—@>+wk<f+t<x—f>>}dt

ox
=1 k

- /1 G/ ()t + G(t)] dt = /01 L‘;(G(t)t)] dt = G(1) = wi(2). m

0

Proposition 15 (Closed = locally exact + C'). Let w be a 1-form on an open subset U C R™ . Then w is
closed if and only if it is C* and locally exact.

Proof. =) Assume that w is closed. Since every open ball is star-shaped, by Proposition [14] we have that the
restriction of w to each open ball contained in U is exact. Conclude by choosing an open cover of U made up
of open balls.

<) Assume that w is C'! and locally exact. Let {Uy} be an open cover of U such that w|y, is exact for each
A. Let Fy: Uy — R be a primitive of w|y,, i.e. dF\/0x; = w;|y,. Since Fy is C?, we have

awi - 82F)\ - aQF)\ - &uj
81‘]‘ B 8%83:1 n 6@83:] n 61‘1
on U,. Conclude because U = U/\ Us. O

Theorem 16 (Homotopy invariance of the integral of locally exact forms). If w is a locally exact 1-form on an
open subset U C R™ and let vo,71: [0,1] = U be two paths which are path-homotopic, then

Yo 71

Proof. See [Car95| 11.1.6] or [Lan93, III, §5]. Let §: [0,1] x [0,1] — U be the homotopy between 7o and 71, i.e.
a continuous map such that 6(-,0) = vp, §(-, 1) = 71 and §(0, s) = 70(0) = v1(0), 6(1,s) = v(1) = y1(1) for all
s €0,1].

In a similar way to Propositionwe want to construct “a primitive of w along 6”. Let {Uy}x be an open cover
such that w|y, is exact for each A. Since [0, 1] x [0, 1] is compact and ¢ is continuous, by Lebesgue number we
can find two finite sequences of points 0 =ty <t; <--- <t, <ty =land 0 =59 <51 < -+ < 8§p < Spp1 =1
such that, for all 0 < 4,5 <7, 0([ts, tig1] X [s5,5541]) C Uy, ,; for some A; ;. Let Fj;: Uy, , — R be a primitive
of w‘U*i,j .

Keep j fixed. We can add a constant to F; ; in such a way that F; jod|,, (sj,8541] = Fit1,5 O5|{ti+1}x[sj,sj+1]~
We construct the continuous function f;: [a,b] X [s;,s;41] — R given by f;(t,s) = F; ;(0(t, s)) for t € [t;, ti11].
It is clear that for each s € [s;, s;41] the function f(-,s) is a primitive of w along d(-, s).

If we add some constants to the f;s, we can assume that for each j = 0,...,7 we have f;(-,s;+1) = f; (-, 85)-
We can glue all these f;s to a continuous function f: [0, 1] x [0,1] — R, such that for each s € [0,1] f(-,s) is a
primitive of (-, s). Therefore [ w = f(1,0) — £(0,0) and [ w = f(1,1) — f(0,1). But d(-,0) and d(-, 1) are
constant; therefore f(1,0) = f(1,1) and f(0,0) = £(0,1). O

Corollary 17 (Homology invariance of the integral of locally exact forms). Let U C R™ be a connected open
subset and let 1 and 2 two loops in U which are homologous. If w is a locally exact 1-form on U, then

w = w.
Y1 Y2

Proof. Choose a path v € Q(U,~1(0),v2(0)). Consider the loop 4 := 1 * v * ¢t(72) * ¢(7y). Since 71 and 72
are homologous, the path-homotopy class [] lies in the derived subgroup of 71(X,~1(0)). There exist loops
a1, By, Br € Q(X,7v1(0),71(0)) such that 7y is path-homotopic to (aq * 81 * t(1) * t(B1)) * - - - * (ay * B %
t(e) * L(B;)). By Theorem [16] and Proposition [I3

/ w—/ w —/ / w = 0. (Il
Y1 Y2 a;xBixe(a;)*(Bq)

If x and y are two points in an open subset U of R", we denote by Q(U, z,y)cr (resp. Q(U, x,y)an) the set of
paths in U from x to y which are piecewise C! (resp. piecewise affine with segments parallel to the coordinate
axes).
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The following theorem gives a criterion for testing whether a locally exact 1-form is exact.

Theorem 18 (Characterisation of exact forms). Let w be a 1-form on a connected open subset U C R™. Let
T € U be a point. Let F be a collection of loops in U such that their homology classes form a set a generators
of the group Hi(U;Z). Then the following statements are equivalent:

(1) w is exact;
(2) w is locally exact and Vx € U,Vy € Q(U,x,m),f,yw =0;
(2°) Yz € U,V € Q(U,x,x)cu,f,yw =0;
(2”) Nx € UNy € QU, z,x)as, fvw =0;
(8) w is locally exact and Vv € QU, &, &), f,yw =0;
(8°) Vv € Q(U,J’c,a’:)cl,f,yw =0;
(37) ¥y € Q(U,J’c,a’:)aff,f,yw =0;

(4) w is locally exact and Vz,y € U,¥y1,72 € Q(U,av,y),f,y1 w= [ w;
(4 }) vx??f € UaV’Yl7’72 S Q(Uam,y)claf.yl w = "2 wy
(47) Va,y € UV, 72 € U, %, y)ast, |, w= [ wi

(5) w is locally exact and for every v € F we have f,yw =0.

Pmof. The implications (2) = (2') = (27), 3) = (3") = (37), 4) = (4) = (47), (2) = (3), (2) = (3"), (27)
= (3”), and (2) = (5) are obvious.

(2) = (4): letz,y € Uand 71,72 € AU, z,y). Thenmixu(y2) € QU,z,2);then 0= [ w=[ w=[ w.

(4) = (2): let € U and v € Q(U, z,x); let ¢, be the constant path at z. Therefore 0 = [ w = fww.

(2)) & (4), (27) & (47): same proofs.

(3) = (2): let x € U and v € Q(U, x, x). Since U is connected, there exists 5 € Q(U, Z,x). Then Sxvy=*u(B) €
Q(U,z,7). Therefore 0= [, = o+ [ w- [jw= [ w

(3") = (2'), (3”) = (2”): same proof.

(1) = (2): let F € C*(U) such that w = dF. Fix a loop 7: [0,1] — U based at an arbitrary point = € U.
Then F o+ is a primitive of w along 7. Therefore fﬂ{ w=F(y(1)) = F(v(0)) = F(z) — F(z) = 0.

(5) = (2): without loss of generality, up to enlarge F, we assume that whenever a loop is in F also its inverse
is in F. Let v € Q(U,x,z). Then there exist v1,...,7. € F such that the equality [y] = [y1] + - -+ + [}+] holds
in the group H;(U;Z). This implies that there exist a; € Q(U, x,~;(0)) such that the path-homotopy class of
the loop

Bi=1u(y) xay xy *t(ar) x - xap kv % (a,) € QU, x, 1)
lies in the derived subgroup of m (U, z)’, i.e. [8] € m (U, z)". By Corollary [L7] we have

Oz/w:/ /w+/w+ / —/w.
(v) *al*fyl*L(al)*u-*ar*’yr*L(aT) Y1 Vi v

(47) = (1): we define the function F: U — R as F(x f w, where v, € Q(U,Z,x)ag. The function F is
well defined because of (4”). We will show that, in every pomt of U, the partial derivatives of F' are equal to
the components of w.

Fix 2 € U and 1 < k < n. Choose h € R~ {0} such that the closed ball By, (x) is contained in U. Consider
the path ~v: [0,1] — U defined by ¢ — x + theg. So v, * v € Q(U,Z, z)ag. Therefore F(x + hey) = f%*vw =
J,, wt [, wand then F(z+hey)—F(z) = [ w= fol wi (z+they)hdt = foh w(z+sex)ds. Since wy, is continuous,
there exists £ € R between 0 and h such that +[F(z + hey,) — F(z)] = %foh wi(z + seg)ds = wi(x + Eeg). As
h — 0 we have that also & — 0, and then x + e, — x. So by the continuity of wy we get g—i(x) =wg(z). O

If G and H are abelian groups, we denote by Homy (G, H) the abelian group whose elements are the group

homomorphisms from G to H. For every abelian group G, the abelian group Homy (G, R) has a natural structure
of vector space over R.

Theorem 19 (de Rham). If U C R™ is a connected open subset, then the integration of 1-forms along paths
gives an injective R-linear map Hip (U) — Homyz(H, (U;Z),R).

Remark 20. Actually the R-linear map H}} (U) < Homgz(H; (U;Z),R) is bijective, but we will not prove this.
This is the de Rham theorem for 1-forms on open subsets of R™; it can be generalised to p-forms on smooth
manifolds.

Proof of Theorem[I9 Fix & € U. We consider the map
{locally exact 1-forms on U} x Q(U,Z,z) — R
given by (w,v) — f,y w. By Theorem |16| we get a map

{locally exact 1-forms on U} x m1 (U, %) — R.
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By Corollary [17 we get a bilinear map
{locally exact 1-forms on U} x Hy(U;Z) — R.
By Theorem [I8|1)=>(3) we get a bilinear map
Hig(U;R) x Hy(U;Z) — R.
This gives a R-linear map H} (U) — Homg (H;(U;Z),R), which is injective by the implication (5)=-(1) of
Theorem O

Corollary 21. Let U C R”™ be a connected open subset. If the abelianisation of the fundamental group of U is
a finite group (e.g. if U is simply connected), then every locally exact 1-form on U is exact.

A (compact) rectangle in R? is a subset R = [a,b] X [¢, d] for some a,b,c,d € R such that a < b and ¢ < d.
We denote by OR the loop which covers the boundary of R, more precisely OR is the map [0, 4] — R? given by

(b, (1 — t)c + td) if0<t<l,
. J@=tp+ (- Dad) if1<t<2,
(a,(3 — t)d + (t — 2)c) if2<t<3,
((4—t)a+ (t—3)b,c) if3<t<4

Proposition 22. Let w be a 1-form on an open subset U C R?. Then: w is locally exact if and only if faRw =0
for every rectangle R C U.

Proof. =) Fix a rectangle R C U. We can find an open rectangle V such that R C V' C U. The form wl|y is
locally exact. As V is simply connected, wl|y is exact. Then faRw = [orwlv = 0 by Theorem |18} . =(27).
<) Fix an open ball B C U. We want to show that w|p is exact. Let v be a loop in B which is piecewise
affine and all the segments are parallel to the coordinate axes. Since B is a ball, it is possible to find a finite
number of rectangles Ry, ..., R, such that f7 w= Z;.:l Jog. w- By the assumption we get that fv w. As v was
J

arbitrary, we get that w|p is exact by Theorem 2”):>(1). |

Another proof under an additional assumption. Let us assume that w is C''. Write w = Pdx + Qdy, where P, Q
are two real C'! functions on U. By Green’s theorem we get that

IR AR I

for every rectangle R C U.
90Q _ 9P

=) Since w is locally exact and C', we have that w is closed, i.e. 55 = Gy on U. By the formula above we

get that [,,w = 0 for every rectangle R C U.
<) Assume by contradiction that w is not closed. Then there exists a pomt p € U such that Q =(p)— ap ;) > 0.

(The case g(j (p)— 301; ( ) < O is completely analogous.) By continuity of S — 8—1; we can ﬁnd a small rectangle
R around p such that 92 _ 9P ~ g on R. By the formula above we get f orw > 0, which is absurd. |
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