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Preliminary syllabus

The prerequisites are linear algebra, calculus in one variable, calculus in several variables, elementary topo-
logy. We will cover the following topics:

(1) Complex numbers, complex exponential and complex logarithm. Complex-differentiable or holomorphic
functions (in one variable), Cauchy–Riemann equations. Formal power series, convergent power series,
analytic functions in one complex variable. [Car95, I], [Lan93, I,II]

(2) Introduction to homotopy theory: homotopic maps, homotopy equivalence, (deformation) retracts, path
homotopies, fundamental group, covering spaces. [Man15, §10-12], [Hat02, §1]

(3) Differential 1-forms on open subsets of Rn: integration along paths, exact and closed forms, an element-
ary formulation of de Rham theorem. [1]

(4) 1-forms on open subsets of C, winding numbers, Cauchy’s theorem. Every holomorphic function is
analytic. Properties of holomorphic functions: Cauchy’s inequalities, Liouville’s theorem. Laurent
series and isolated singularities. Residues and evaluation of improper integrals in one real variable.
[Car95, II,III], [Lan93, III,VI]

I will mainly follow the books [Car95, Lan93, Man15, Hat02]. The book [Hat02] can be freely downloaded
at https://pi.math.cornell.edu/~hatcher/AT/ATpage.html. There exists an older version of [Car95] in
French: [Car61]. The topics (1) and (4) can be found in any text in complex analysis (Funktionentheorie),
such as [RKG13, BN10, FL80, FB09, FB93, Pri03]; some of these books are in German. An introduction
to the topics (1) and (4) with beautiful pictures can be found in [Nee97, Nee01, Weg12]. The topic (3) is
somehow between calculus and differential geometry: unfortunately I do not know a precise reference, because
all differential geometry books I know are too advanced; but I have written the note [1] which can be downloaded
at https://userpage.fu-berlin.de/petracci/2019Complex/Forms.pdf.

Lectures

8th April 2019. Definition of complex numbers. Sum and product of complex numbers. Norm, conjugate,
real part, imaginary part of complex numbers and their properties. C is a field extension of R with Galois
group {idC, ·}. Exponential of complex numbers: ex+iy := ex(cos y + i sin y). The exponential is a group
homomorphism C→ C∗. Polar form of complex numbers. Roots of unity. [Lan93, I, §1-2]

Definitions of topological space. Open and closed subsets in a topological space. The discrete and indiscrete
topologies. Definition of metric space. Definition of ball in a metric space. A metric space is naturally a
topological space. Definition of normed vector space. A normed vector space is naturally a metric space.
Equivalence of norms on Rn. Examples of balls in R2 with respect to some norms. Definition of interior part
and of closure of a subset in a topological space. Definition of neighbourhood of a point in a topological space.
The subspace topology. [0, 1] is not open in R, but is open in itself. [0, 1) is open in [0, 1].

Open balls in a metric space are open. Definition of continuous function. A function between topological
spaces is continuous iff the preimage of every open (resp. closed) subset is open (resp. closed). Composition of
continuous functions is continuous.

The product topology. The product topology on R× · · · ×R coincides with the euclidean topology on Rn. If
X and Y are topological spaces, then the projections prX : X × Y → X and prY : X × Y → Y are continuous.
If X,Y, Z are topological spaces, then a function f : Z → X × Y is continuous iff prX ◦ f and prY ◦ f are
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continuous. If V is a normed vector space, then the sum V × V → V and the scalar multiplication R× V → V
are continuous. If X is a topological space and V is a normed vector space, then the set of continuous functions
X → V is an R-vector space. If X is a topological space, then the set of continuous functions X → R (resp.
X → C) is an R-algebra (resp. C-algebra).

Definition of homeomorphism. An example of a bijective continuous function which is not a homeomorphism:
the identity from the discrete topology to the indiscrete topology. The exponential gives a homeomorphism
between R and (0,+∞).

Definition of Hausdorff topological space. Metric spaces are Hausdorff. Definition of connected topological
space. A subspace of R is connected iff it is an interval (without proof). Product and images (via continu-
ous functions) of connected topological spaces are connected (without proof). Definition of open covers and
refinements. Definition of compact topological space. Rn is not compact. Product and images (via continuous
functions) of compact topological spaces are compact (without proof). A subset of Rn is compact iff it is open
and closed in Rn (without proof). [0, 1] is not homeomorphic to [0, 1). [0, 1) is not homeomorphic to (0, 1).
Definition of the n-sphere and of the n-disk. The stereographic projection is a homeomorphism between Rn
and Sn minus a point. [Man15, §3-4]

9th April 2019. Definition of basis of a topological space. The open rectangles form a basis for the product
topology. Definition of local basis (fundamental system of neighbourhoods) at a point. In a metric space the
balls centred at a point form a local basis. Definition of first-countable and second-countable topological space.
A metric space is first-countable.

Sequences in a topological space: convergence, limit (accumulation) points, uniqueness of the limit in a
Hausdorff space, existence of a subsequence converging to a limit point. Definition of a sequentially compact
topological space. In a compact topological space, every sequence has some limit points (without proof). A
second-countable sequentially compact topological space is compact (without proof).

Sequences in metric spaces. Definition of Cauchy sequence, of complete metric space, of totally bounded
metric space. Characterisation of compact a metric spaces: a metric space is compact iff it is sequentially
compact iff it is complete and totally bounded (without proof). [Man15, §6]

Sequences of functions from a set to a metric space: definition pointwise convergence, of uniform convergence,
of being Cauchy uniform. Uniform convergence implies pointwise convergence and being Cauchy uniform. If
the metric space is complete, then being Cauchy uniform implies uniform convergence.

If X is a topological space, Y is a metric space, and (fn : X → Y )n is a sequence of continuous functions
which uniformly converges to f : X → Y , then f is continuous.

Series of functions from a set to a normed vector space: definition of total convergence. If X is a set, Y is
a normed vector space, and fn : X → Y is a sequence of functions such that the series of functions

∑
n≥0 fn

converges totally, then the sequence of partial sums is Cauchy uniform.
If X is a topological space, Y is a Banach space (i.e. a complete normed vector space), and (fn : X → Y )n is

a sequence of continuous functions whose series converges totally (i.e.
∑+∞
n=0 supx∈X ‖fn(x)‖ < +∞), then the

series
∑+∞
n=0 fn uniformly converges to a continuous function X → Y .

15th April 2019. Definition of holomorphic functions and of complex derivative. Examples and non-
examples of holomorphic functions. The set of holomorphic functions O(U) on an open subset U ⊆ C is a
C-algebra. Composition and quotient of holomorphic functions are holomorphic. Recap on partial derivatives
and differentiability for maps from an open subset of Rn to Rm. Cauchy–Riemann equations. Definition of
biholomorphism between open subsets of C. [Lan93, I, §5-6] [Car95, II.2.1-2]

Formal power series with coefficient in a field K. K[[T ]] is a K-algebra and is an extension of K[T ]. The
geometric series

∑
n≥0 T

n is the multiplicative inverse of 1 − T . A power series has a multiplicative inverse if

and only if its constant term is non-zero. Definition of order of a power series. Properties of ord: ord(fg) =
ord(f) + ord(g); ord(f + g) ≥ min{ord(f), ord(g)}; if ord(f) 6= ord(g) then ord(f + g) = min{ord(f), ord(g)}.
The ring K[[T ]] is an integral domain. Definition of formal derivative of a power series and properties with
respect to the sum and the product. If char(K) = 0 and f ∈ K[[T ]], then f ′ = 0 if and only if f ∈ K. [Lan93,
II, §1] [Car95, I.1.1-3, I.1.5-6]

The radius of convergence of a power series
∑
n≥0 anT

n ∈ C[[T ]] is 1/ lim supn
n
√
|an|. If (an) is a sequence

of positive real numbers such that limn
an+1

an
= L ∈ [0,+∞], then limn

n
√
|an| = L. A power series converges

absolutely on the ball of convergence and does not converge in the interior part of the complement of the ball
of convergence. The function defined on the ball of convergence by a power series is continuous. If f, g ∈ C[[T ]]
have convergence radii ≥ r, then f + g (resp. fg) has convergence radius ≥ r and the function defined by f + g
on Br(0) is the sum (resp. product) of the functions defined by f and g. The set C{T} of power series with
positive radius convergence is a subring of C[[T ]]. The formal derivative of a power series f ∈ C[[T ]] has the same
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convergence radius of f . If f ∈ C[[T ]] has convergence radius R > 0, then the function BR(0)→ C defined by f
is holomorphic and has complex derivative equal to the function defined by f ′ (beginning of the proof). [Lan93,
II, §2-3] [Car95, I.2.3-4, I.2.7]

16th April 2019 (Übung). Solution of Problem 1c. Description of each set of Problem 2 as preimage of easy
open or closed subsets of R via continuous functions. Solution of Problem 4. Certain subgroups of GL2(R); the
conformal 2× 2 real matrices form a group between O2(R) and GL2(R). Biholomorphisms of open subsets of C
preserve the orientation and the angles. All open intervals of R are homeomorphic to each other. The interval
[0, 1] is not homeomorphic to S1.

23rd April 2019. Conclusion of the proof from last week. The function defined by a convergent power series
on the convergence ball is infinitely many times C-differentiable.

Definition of analytic function. An analytic function is holomorphic and infinitely many times C-differentiable.
Uniqueness of power series expansion: relation between the coefficients of the power series expansion and the
formal derivatives. The set of analytic functions on an open subset of C is a C-algebra. The function defined
by a convergent power series on the convergence ball is analytic.

Principle of analytic continuation: an analytic function on a connected open subset of C is zero iff the set of
zeroes is not discrete iff there is a point where all the derivatives vanish. The ring of analytic functions on a
connected open subset of C is an integral domain. [Lan93, II, §4-5] [Car95, I.4.1-4]

29th April 2019. Paths in topological spaces: reparametrisation, constant paths, inverse path, concatenation
of paths. Being joined by a path is an equivalence relation on a topological space; definition of path-connected
topological space and of path-connected components of a topological space. The image of a path-connected
topological space via a continuous function is path-connected. The functor π0 from the category of topological
spaces with continuous functions to the category of sets. A path-connected topological space is connected.
Every two points in a connected open subset of Rn are the endpoints of a piecewise affine path with segments
parallel to the coordinate axes; every connected open subset of Rn is path-connected.

Definition of homotopic maps (with respect to a subset). If Y ⊆ Rn is convex subset, then all continuous
maps from a topological space to Y are homotopic to each other. Being homotopic with respect to a subset
is an equivalence relation. Definition of homotopy equivalence. Definition of homotopy equivalent topological
spaces. Definition of contractible topological space. Definition of retraction and deformation retraction. Sn−1 is
a deformation retract of Rnr {0}. If A is a deformation retract of X, then the inclusion A ↪→ X is a homotopy
equivalence.

Definition of path-homotopy. Two paths in a convex subset of Rn are path-homotopic. Properties of being
path-homotopic with respect to concatenation, inverse, constant paths. Definition of fundamental group. The
fundamental group of a convex subset of Rn is trivial. The fundamental group of S1 at 1 is isomorphic to Z
(without proof). The fundamental group is a functor from the category of pointed topological spaces to the
category of groups. Dependence of the fundamental group on the base point. Definition of simply connected
topological space. A convex subset of Rn is simply connected. [Man15, §10 and §11.1-2] [Hat02, §1.1]

30th April 2019 (Übung). Solution of Problems 6, 7, 11. The limit limn
|an|
|an+1| might not exist, whereas

lim supn
n
√
|an| always exists and is equal to the inverse of the convergence radius of

∑
n anT

n. Solution of

Problem 11. The function f : R → R defined by f(0) = 0 and f(x) = e−1/x2

for x 6= 0 is C∞, but is not
real-analytic, because its Taylor series at the origin is zero. Solution of Problem 9. Quick solution of Problem
12.

6th May 2019. Lebesgue’s number lemma. [Man15, Theorem 11.23]
The map p : R→ S1 given by t 7→ e2πit is a covering space and a group homomorphism. Lifting of loops with

respect to p. Lifting of path-homotopies with respect to p. The fundamental group of S1 is isomorphic to Z.
[Hat02, §1.1]

The fundamental group of the product of two topological spaces is the product of the fundamental groups
(without proof). Homotopy equivalences induce group isomorphisms on the fundamental groups (without
proof). If A is a retract (resp. deformation retract) of X, then the inclusion of A into X induces an injection
(resp. isomorphism) on the fundamental groups. [Man15, §11.3]
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6th May 2019 (Übung). Solutions of Problem 13 and 14. π0 is a functor from the category (HTop) of
topological spaces up to homotopy to the category of sets. π1 is a functor from the category (HTop∗) of pointed
topological spaces up to homotopy to the category of groups.

Discussion about Problem 15. Relationship among the following properties: convex, star-shaped, deformation-
retractable onto a point, contractible, simply connected. If A is a deformation retract of X and i : A ↪→ X is the
inclusion, then for every point a0 ∈ A the homomorphism π1(i, a0) : π1(A, a0)→ π1(X, a0) is an isomorphism.

Quick solution of Problem 16. The fundamental group of R2 r {n points} is the free group on n generators
(without proof).

7th May 2019. Definition of derived subgroup and of abelianisation of a group. The universal property of
the abelianisation of a group. The abelianisation of the free group with n generators is Zn, which is the free
abelian group with n generators.

The isomorphism between the abelianisation of π1(X,x0) and the abelianisation of π1(X,x1) does not depend
on the choice of the path from x0 to x1. Definition of 1st homology group of a path-connected topological space
as the abelianisation of the fundamental group. H1(−;Z) is a functor from the category of topological spaces
and continuous maps to the category of abelian groups. Two loops in a topological space are called homologous
if their homology classes are the same. Examples of path-homotopic and homologous loops in R2 r {2 points}.
Definition of winding number of a loop around a point in C. Two loops are homologous in C r {z1, . . . , zn} if
and only if they have the same winding number at each of z1, . . . , zn.

Definition of 1-forms on open subsets of Rn. Exact/locally exact/closed 1-forms. Definition of the 1st de
Rham cohomology group. Existence and uniqueness (up to an additive constant) of the primitive of a locally
exact 1-form along a path. Definition of the integral of 1-form along a path. [1]

13th May 2019. The integral of a 1-form along a path does not depend on reparametrisations of the path.
Physical interpretation of exact/closed 1-forms and their integrals in terms of conservative/irrotational vector
fields and their work along a trajectory. Bilinearity of the integral of a 1-form along a path. A closed 1-form on
a star-shaped open subset of Rn is exact. A 1-form is closed if and only if it is C1 and locally exact. A 1-form
is exact if and only its integral along every loop vanishes. The form (−y dx+ x dy)/(x2 + y2) on R2 r {(0, 0)}
is closed, locally exact, non-exact. Homotopy invariance of the integral of locally exact forms. [1]

13th May 2019 (Übung). Solution of Problem 18. Definition of complex logarithm on an open subset of C∗.
A complex logarithm is holomorphic (without proof) and its derivative is 1

z . Three solutions of Problem 17:
there is no complex logarithm defined on C∗. Solution of Problem 19. If on an open subset U ⊆ C∗ there is a
complex logarithm, then on U there is also an nth root for each n ∈ Z. Examples of open subsets of C∗ where
a complex logarithm exists or does not exist.

Solution of Problem 20: the topological space X deformation retracts onto a torus; so X is homotopy
equivalent to S1 × S1. Discussion about the direct product and the free product of two groups.

14th May 2019. Homology invariance of the integral of locally exact forms. A 1-form on an open subset U
of Rn is exact if and only if it is locally exact and its integrals along a set of generators of H1(U ;Z) vanishes. A
locally exact 1-form on a simply connected open subset of Rn is exact. The integration of 1-forms along loops
gives an injective R-linear map from the 1st de Rham cohomology to the R-dual of the 1st homology. A 1-form
on an open subset U of R2 is locally exact if and only if its integral is zero along the boundary of every rectangle
contained in U . [1]

C-valued 1-forms on open subsets of C. The operators ∂
∂z and ∂

∂z̄ . The 1-forms dz and dz̄. The formula

df = ∂f
∂z dz + ∂f

∂z̄ dz̄. A function f is holomorphic if and only if it is R-differentiable and ∂f
∂z̄ = 0. If f is

holomorphic, then f ′ = ∂f
∂z . If g is continuous, then the 1-form g(z)dz is exact if and only if there exists a

holomorphic function f such that f ′ = g. If f is holomorphic and C1, then the 1-form f(z)dz is closed (left as
an exercise). The 1-form dz

z on C∗. A complex logarithm is a primitive of dz
z . [Car95, II.2.3]

20th May 2019. Goursat’s theorem: if f is holomorphic then the 1-form f(z)dz is locally exact. A
holomorphic function defined on a simply connected open subset of C has a primitive. Slight generalisation of
Goursat’s theorem: if U ⊆ C is open, L ⊆ C is a horizontal real line and f : U → C is continuous and such
that f |UrL is holomorphic, then the 1-form f(z)dz is locally exact on U . If U ⊆ C is open and f : U → C is
continuous such that f |Ur{z0} is holomorphic for some z0 ∈ U , then f(z)dz is locally exact on U . [Car95, II.2.4]
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Cauchy’s integral formula: if U ⊆ C is open, z0 ∈ U , f ∈ O(U), γ is a loop in U r {z0} which is null-

homologous in U , then W (γ, z0) · f(z0) = 1
2πi

∫
γ
f(z)
z−z0 dz. [Car95, II.2.5]

Mean value property: if U ⊆ C is open, z0 ∈ U , f ∈ O(U), r > 0 is such that Br(z0) ⊂ U , then f(z0) =
1

2π

∫ 2π

0
f(z0 + reit)dt. [Car95, III.2.1]

Cauchy’s inequality: if U ⊆ C is open, z0 ∈ U , f ∈ O(U), r > 0 is such that Br(z0) ⊂ U , then |f(z0)| ≤
max∂Br(z0) |f |.

20th May 2019 (Übung). Solution of Problem 24. Solution of Problem 23, with an extra solution of i) without
using partitions. Solution of Problem 21. For every abelian group G, HomZ(Zn, G) is naturally isomorphic to
Gn. Solution of Problem 22.

21st May 2019. A holomorphic function on an open ball has a power series expansion on that ball. A
function on an open subset of C is holomorphic if and only if it is analytic. A holomorphic function is C∞.
Integral formula for the coefficients of the power series expansion of a holomorphic function at a point. Cauchy
inequalities. The convergence radius of the power series expansion of a holomorphic function f ∈ O(U) at the
point z0 ∈ U is at least the radius of the biggest open ball centred in z0 and contained in U . Morera’s theorem:
if f is a continuous function such that f(z)dz is locally exact, then f is holomorphic. [Car95, II.2.6-7, III.1.1]
[Lan93, III-IV]

Relation between the Fourier series and power series expansion of holomorphic functions on the unitary disk.
Definition of entire function. Liouville’s theorem: a bounded entire function is constant. An entire function

whose real part is bounded above is constant. A proof of the fundamental theorem of algebra. [Car95, III.1.2]

27th May 2019. Maximum modulus principle for functions which satisfy the mean value property on spheres.
A function with the mean value property on spheres attains its maximum at the boundary of the bounded open
set where it is defined. This last result may be false if the open set is unbounded. [Car95, III.2.2]

Laurent series. Laurent series form a C-vector space, but not a ring. The ring C((T )) of Laurent series with
finitely many non-zero coefficients of negative degree. C[[T ]] is a C-subalgebra of C((T )). Convergence of Laurent
series: a Laurent series induces a holomorphic function on the anulus of convergence. [Car95, III.4.1]

27th May 2019 (Übung). Solution of Problems 25 and 26. Proof of the equality
∫ +∞
−∞

x+3
(x2−2x+2)(x2+1)dx = 7

5π,

along the lines of Problem 27.

28th May 2019. Laurent expansion of holomorphic functions on anuli. Expression of the coefficients of
the Laurent expansion as the integral along a circle. Cauchy’s inequalities for the coefficients of the Laurent
expansion. The Laurent expansion depends on the anulus: the two Laurent expansions of 1

1−z on the anuli

{|z| < 1} and {|z| > 1}. [Car95, III.4.2-3]
Classification of isolated singularities: removable, pole, essential. The inverse of a non constantly zero

holomorphic function is either holomorphic or has a pole. An isolated singularity is removable if and only if the
function is bounded in a punctured neighbourhood. An isolated singularity is a pole if and only if the modulus
of the function tends to +∞. [Car95, III.4.4]

3rd June 2019. Casorati–Weierstrass theorem: the image of every punctured neihbourhood of an essential
singularity is dense in C. Picard’s theorem (without proof). [Car95, III.4.4]

Definition of residues. Practical calculation of residues: simple and multiple poles. The residue of the
logarithmic derivative. [Car95, III.5.2-4]

Definition of meromorphic function on an open subset of C. The set M(U) of meromorphic functions on an
open subset U ⊆ C is a C-algebra. The injective C-algebra homomorphism O(U) ↪→M(U). Comparison among
O(C),O(C∗),M(C),M(C∗): 1

z ∈ O(C∗) ∩M(C), exp( 1
z ) ∈ O(C∗) rM(C). If f ∈M(U), then f ′ ∈M(U). If

U ⊆ C is open and connected, then M(U) is the fraction field of O(U): proof only of the fact that M(U) is a
field which contains O(U).

Residue theorem.
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3rd June 2019 (Übung). Solution of Problem 29. Solution of Problem 30: definition of harmonic conjugate.
Solution of Problem 32. Quick solution of Problem 31.

4th June 2019. Residue theorem with respect to a compact set with non-empty interior part and piecewise
C1 boundary, for a meromorphic function and for the logarithmic derivative of a meromorphic function. Rouché
theorem. Example of application of Rouché: all the zeroes of z5 + z4 + 6z + 1 are in B2(0), and only one is in
B1(0). [Car95, Exercise III.19]

Evaluation of definite integrals with the method of residues. Evaluation of
∫ 2π

0
R(cos t, sin t)dt where R(x, y)

is a rational function without poles on {(x, y) ∈ R2 | x2 + y2 = 1}. Example
∫ 2π

0
dt

2+cos t = 2π√
3
. Evaluation of∫ +∞

−∞
P (x)
Q(x)dx, where P,Q ∈ R[x] are polynomials such that degQ ≥ degP + 2 and Q does not have real zeroes.

[Car95, III.6]

11th June 2019 (Übung). Solution of problems 33 and 35. Solution of Problem 36a,b,c,d.

17th June 2019. Other methods to evaluate real integrals with the method of residues:
∫ +∞
−∞ f(x)eixdx where

f is a holomorphic function on the closed upper half-plane with the exception of finitely many points in the open

upper half-plane.
∫ +∞

0
xα P (x)

Q(x)dx where P,Q are polynomials and α ∈ R such that −1 < α < −1+degQ−degP .

[Car95, III.6]
If a holomorphic function f is such that f ′(z0) 6= 0, then there exists an open neighbourhood of z0 where the

restriction of f is a biholomorphism onto an open neighbourhood of f(z0) [Lan93, Theorem VI.1.7]. Examples
of local biholomorphisms: exp: C→ C∗ and C∗ → C∗, z 7→ zn. [Car95, VI.1.1]

C and B1(0) are homeomorphic but not biholomorphic [Car95, VI.2.1]. B1(0) and H are biholomorphic
[Lan93, Theorem VII.3.1].

17th June 2019 (Übung). Solution of Problem 38, 40, 39, 37-2. If K = R or K = C, then the projective space
Pn(K) is compact and path-connected. Playing with homogeneous coordinates: intuition of points at infinity
in P2(R); P1(R) is homeomorphic to S1; P1(C) is homeomorphic to S2.

24th June 2019. Local behaviour of a non-constant holomorphic map. A non-constant holomorphic map
from a connected open subset of C to C is open. A holomorphic map is a biholomorphism onto its image if and
only if it is injective. [Car95, VI.1.2-3] [Lan93, II, §6]

Definition of charts, atlases, complex structure, Riemann surfaces. Every open subset of C is a Riemann
surface. The Riemann sphere P1(C) = C ∪ {∞} is a compact connected Riemann surface. Definition of
holomorphic map between Riemann surfaces. Definition of holomorphic/meromorphic function on a Riemann
surface. Every holomorphic function on the Riemann sphere is constant. [Car95, VI.4.1-5, VI.5.1]

If F,G ∈ C[x0, x1]d are homogeneous polynomials of degree d ≥ 1 such that for every (λ0, λ1) ∈ C2 r
{0} we have either F (λ0, λ1) 6= 0 or G(λ0, λ1) 6= 0, then the map P1(C) → P1(C) defined by [x0 : x1] 7→
[F (x0, x1) : G(x0, x1)] is holomorphic. Definition of Möbius transformations of the Riemann sphere (also called
homographies or fractional linear transformations).s Möbius transformations are self-biholomorphisms of the
Riemann sphere and form a group under composition (without proof). Möbius transformations send Möbius
lines to Möbius lines (without proof). [Lan93, VII, §5]

24th June 2019 (Übung). Solution of Problems 41.2-4, 42, 43, 44.

1st July 2019. Projective transformations of Pn(K), where K is an arbitrary field. The group PGLn+1(K)
is the quotient of GLn+1(K) by K∗. Affine transformations of Kn are exactly the projective transformations of
Pn(K) which leave the hyperplane at infinity invariant. The group PGL2(K) is generated by Aff(K) and the
involution inv : z 7→ z−1. [FFP16, 1.2, 1.3]

Möbius transformations are exactly the elements of PGL2(C). The complex affine transformations Aff(C)
are exactly the real affine transformations Aff(R) whose linear part preserves the orientation and the angles.
The geometry of transformations in Aff(C). Möbius transformations send Möbius lines to Möbius lines [Lan93,
Theorem VII.5.2].
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Behaviour at ∞ of a holomorphic function defined on an anulus {z ∈ C | |z| > r} for some r > 0. The
meromorphic functions on the Riemann sphere P1(C) are exactly the rational functions: M(P1(C)) = C(z).

Definition of the automorphism group Aut(X) of a Riemann surface X. The biholomorphisms C→ C are of
the form z 7→ az + b with a ∈ C∗ and b ∈ C; Aut(C) = Aff(C) [Car95, VI.2.3].

1st July 2019 (Übung). Solution of Problem 45. Statement of the Riemann uniformization theorem. Solutions
of Problems 48. Solution of Problem 46b and review of the principle of analytic continuation. Solution of
Problem 46c and 47a.

2nd July 2019. The biholomorphisms P1(C)→ P1(C) are exactly the Möbius transformations: Aut(P1(C)) =
PGL2(C). [Car95, VI.2.4]

Recap on de Rham cohomology. If U is an open subset of Rn such that H1(U ;Z) is a finite group, then every
locally exact 1-form on U is exact, i.e. H1

dR(U) = 0.
If n ≥ 2, then the fundamental group and the 1st homology group of Pn(R) are isomorphic to Z/2Z. The

space P1(R) (resp. P1(C)) is the one-point-compactification (also called Alexandrov compactification) of R
(resp. C), so it is homeomorphic to S1 (resp. S2). Study of points at infinity in P2(R): P2(R) is R2 plus a point
for every non-oriented direction. Projective closure of lines and conics in R2. All non-singular conics in P2(R)
are projectively equivalent. [FFP16, Man15]

Definition of genus of a compact connected Riemann surface. If X is a compact connected Riemann surface
of genus g, then H1(X;Z) ' Z2g. If F ∈ C[x0, x1, x2]d is a homogeneous polynomial of degree d ≥ 1 such
that for every (a0, a1, a2) ∈ C3 r {(0, 0, 0)} at least one among ∂F

∂x0
(a0, a1, a2), ∂F

∂x1
(a0, a1, a2), ∂F

∂x2
(a0, a1, a2) is

non zero, then X = {[x0 : x1 : x2] ∈ P2(C) | F (x0, x1, x2) = 0} is a compact connected Riemann surface of
genus (d − 1)(d − 2)/2. Definition of Mg, the moduli space of compact connected Riemann surfaces of genus
g. Riemann uniformisation implies that M0 is just a point. M1 has complex dimension 1. If g ≥ 2, Mg has
complex dimension 3g − 3.
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Problem 1. a) Write the following complex numbers in the polar form: − 1
2 +

√
3

2 i, 1 + i,
√

3 + i.

b) Write the following complex numbers in the form x+ iy with x, y ∈ R: (1 + i)/(1− i), (1 + i)100.

c) Set ζ = e2πi/5 and α = ζ + ζ̄. Prove that α = (
√

5− 1)/2 and deduce that cos(2π/5) = (
√

5− 1)/4.

Problem 2. Draw the following subsets of C and say if they are open, closed, bounded, connected, compact.

• A = {z ∈ C | Im z ≥ 0}
• B = {z ∈ C | Re z > 0}
• C = {z ∈ C | 0 < |z| < 1}
• D = {z ∈ C | |Re z|+ |Im z| < 1}
• E = {z ∈ C | |z − i| < 1}
• F = {z ∈ C | |z − 1| = |z + 1|}
• G = {z ∈ C | |z − i| ≥ |z − 1|}
• H = {z ∈ C | |z|3 ≥ |z|}
• I = {z ∈ C | ez = i}
• J =

{
z ∈ C

∣∣∣ ∣∣∣ 1
z+1

∣∣∣ < 1
}

Problem 3. a) Let (X, d) be a metric space. Show that for all x0 ∈ X and r > 0 the ball Br(x0) is an open
subset.

b) Let (X, dX) and (Y, dY ) be two metric spaces and let f : X → Y be a map. Let (rn)n∈N be a sequence of
positive real numbers such that infn rn = 0. Prove that the following statements are equivalent:

(i) f is continuous,
(ii) ∀x0 ∈ X,∀ε > 0,∃δ > 0 : ∀x ∈ Bδ(x0), f(x) ∈ Bε(f(x0)),
(iii) ∀x0 ∈ X,∀ε > 0,∃δ > 0 : Bδ(x0) ⊆ f−1(Bε(f(x0))),
(iv) ∀x0 ∈ X,∀n ∈ N,∃δ > 0 : Bδ(x0) ⊆ f−1(Brn(f(x0))),
(v) ∀x0 ∈ X,∀ε > 0, the set f−1(Bε(f(x0))) is open in X,

(vi) ∀U ⊆ Y open, f−1(U) is open in X,
(vii) ∀C ⊆ Y closed, f−1(C) is closed in X.

Problem 4. (a) The complex field C is a 2-dimensional vector space over R with basis {1, i}. Let α = a+ib ∈ C
with a, b ∈ R. Consider the map mα : C→ C defined by z 7→ α · z. It is a linear endomorphism of the R-vector
space C. What is the matrix associated to mα with respect to the basis {1, i}? What is the determinant of mα?

(b) Let R2 be equipped with the standard scalar product. Fix A ∈ GL2(R) and consider the linear map
LA : R2 → R2 defined by LA(v) = Av. Prove that the following conditions are equivalent:

(i) LA preserves angles, i.e. for all v1, v2 ∈ R2r{0} the (non-oriented) angle between Av1 and Av2 is equal
to the (non-oriented) angle between v1 and v2;

(ii) LA preserves perpendicularity, i.e. whenever v1 ∈ R2 is orthogonal to v2 ∈ R2 then Av1 is orthogonal
to Av2;

(iii) Ae1 is orthogonal to Ae2 and A(e1−e2) is orthogonal to A(e1 +e2), where {e1, e2} is the standard basis
of R2;

(iv) there exist a, b ∈ R, with a2 + b2 6= 0, such that

either A =

(
a −b
b a

)
or A =

(
a b
b −a

)
.

(c) Identifying C with R2 with the basis {1, i}, prove that mα preserves angles for each α ∈ Cr {0}.
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Problem 5. For each of the following functions f : C = R2 → C = R2, determine the set on which f is
holomorphic and find the derivative of f at all holomorphic points.

a) ez b) x2y + ixy2 c) x2 − y2 + 2ixy

d) z̄ e) |z|2

Problem 6. Let U ⊆ C be an open subset and let f : U → C be a holomorphic function.
a) Let V ⊆ C be an open subset. If f(U) ⊆ V and g : V → C is a holomorphic function, show that

g ◦ f : U → C is holomorphic and compute its derivative.

b) If g : U → C r {0} is a holomorphic function, show that z 7→ f(z)
g(z) is a holomorphic function on U with

derivative f ′g−fg′
g2 .

Problem 7. a) Let (Fn) be the Fibonacci sequence, i.e. the sequence of natural numbers defined by
F0 = 0

F1 = 1

Fn+1 = Fn + Fn−1 ∀n ≥ 1.

Consider the power series g =
∑
n≥0 Fn+1T

n. Explicitly find the multiplicative inverse of g in C[[T ]].

b) Consider the following two formal power series

cosT :=
∑
n≥0

(−1)n

(2n)!
T 2n and sinT :=

∑
n≥0

(−1)n

(2n+ 1)!
T 2n+1.

Prove that the equality (cosT )2 + (sinT )2 = 1 holds in C[[T ]]. [Hint: avoid long calculations!]

Problem 8. Find the radius of convergence of the following power series.

a)
∑
n≥0

(−i)n

n!
Tn b)

∑
n≥0

(n+ 2n)Tn

c)
∑
n≥0

n!

nn
Tn d)

∑
n≥0

nmcnT
n for m ∈ N in terms of the radius of convergence R of

∑
n≥0

cnT
n

e)
∑
n≥1

nlognTn
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Problem 9. Let A ⊆ R be an open subset; a function ϕ : A→ R is called real-analytic if for every point x0 ∈ A
the following condition is satisfied: there exist a real number ε > 0 and a power series

∑
n≥0 anT

n ∈ R[[T ]] with
real coefficients such that

• the convergence radius of
∑
n≥0 anT

n is ≥ ε,
• (x0 − ε, x0 + ε) ⊆ A,
• ∀x ∈ (x0 − ε, x0 + ε), ϕ(x) =

∑
n≥0 an(x− x0)n.

a) Let U ⊆ C be an open subset and f : U → C be an analytic function such that f(U ∩ R) ⊆ R. Prove
that the power series expansion of f at each point of U ∩R has real coefficients and that f |U∩R : U ∩R→ R is
real-analytic.

b) Let A ⊆ R be an open subset and let ϕ : A → R be a real-analytic function. Prove that there exist an
open subset U ⊆ C and an analytic function f : U → C such that U ∩ R = A and f |A = ϕ.

Problem 10. Consider the real number ϕ = (1 +
√

5)/2 and the function r : B1/ϕ(0)→ C defined by

∀z ∈ B1/ϕ(0), r(z) =
z

1− z − z2
.

Prove that r is analytic and compute the power series expansion of r at the origin. [Hint: consider the Fibonacci
sequence (Fn), i.e. the sequence of natural numbers defined by

F0 = 0

F1 = 1

Fn+1 = Fn + Fn−1 ∀n ≥ 1.

You can assume that the equality limn
Fn+1

Fn
= ϕ is well known and you do not need to prove this.]

Problem 11. Fix a ∈ C and consider the function f : C r {a} → C defined by f(z) = 1
z−a . For each point

z0 ∈ C r {a}, explicitly find a power series expansion of f around z0 and compute its convergence radius.
Deduce that f is analytic.

Problem 12. a) Exhibit an explicit homeomorphism between the topological spaces C∗ = Cr{0} and R×S1.
b) Let 0 ≤ k < n be integers and let A be a k-dimensional affine subspace of Rn. Prove that Rn r A is

homeomorphic to Rk+1 × Sn−k−1.
c) Consider the sans-serif capital alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ. Think of each letter as a

compact connected subspace of R2 which is the union of finitely many C∞ curves. Which letters are homeo-
morphic to each other? Present the partition of the alphabet into homeomorphism classes. [For this part you
do not need to give proofs. Just give the results.]
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Problem 13. Let X and Y be topological spaces and let f : X → Y be a map. Let {Aλ}λ∈Λ be a collection
of subsets of X such that

⋃
λ∈ΛAλ = X. Assume that, for every λ ∈ Λ, the restriction f |Aλ : Aλ → Y is

continuous.
a) If Aλ is open in X for every λ ∈ Λ, show that f is continuous.
b) If Λ is finite and Aλ is closed in X for every λ ∈ Λ, show that f is continuous.
c) Give an example where f is not continuous and Aλ is closed in X for every λ ∈ Λ.

Problem 14. a) Let X,Y, Z be three topological spaces and let A ⊆ X be a subset. Consider four continuous
maps f0 : X → Y , f1 : X → Y , g0 : Y → Z and g1 : Y → Z. If f0, f1 are homotopic with respect to A and g0, g1

are homotopic with respect to f0(A), then prove that g0 ◦ f0 and g1 ◦ f1 are homotopic with respect to A.
b) Let X,Y be two topological spaces and let f0 : X → Y and f1 : X → Y be two continuous map which are

homotopic. Prove that π0(f0) = π0(f1) : π0(X) → π0(Y ). [This implies that π0 is a functor from the category
of topological spaces up to homotopy to the category of sets.]

Problem 15. a) Let X be a topological space. Consider the following three conditions:

(i) X is contractible,
(ii) idX : X → X is homotopic to a constant map X → X,
(iii) there exists a point x0 ∈ X such that {x0} is a deformation retract of X.

Prove the following implications: (iii)⇒(i)⇔(ii). [Unfortunately there exist topological spaces which are con-
tractible but such that there is no point onto which they deformation retract. See [Hat02, Chapter 0, Exercises
6 and 7].]

b) A subset X ⊆ Rn is called star-shaped if there exists a point x0 ∈ X such that for all x ∈ X the segment
with endpoints x0 and x is contained in X. Prove that every star-shaped subset of Rn is contractible and simply
connected. Give an example of a contractible subset of R2 which is not star-shaped.

Problem 16. a) Consider the sans-serif capital alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ. Think of each
letter as a compact connected subspace of R2 which is the union of finitely many C∞ curves. Which letters are
homotopy equivalent to each other? Present the partition of the alphabet into homotopy equivalence classes.
[For this part you do not need to give proofs. Just give the results.]

b) Fix integers 0 ≤ k < n. Let A be a k-dimensional affine subspace of Rn. Prove that X = Rn r A is
homotopy equivalent to Sn−k−1.

c) Make a drawing in order convince yourself and me that R2 r {2 points} is homotopy equivalent to the
topological space {z ∈ C | (|z − 1| − 1)(|z + 1| − 1) = 0}. What about S2 r {3 points}?
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Problem 17. Prove that there is no continuous function f : C∗ → C such that ∀z ∈ C∗, ef(z) = z.

Problem 18. i) Consider the open subset U = {z ∈ C | Re z > 0}. Explicitly exhibit a holomorphic function
f : U → C such that ∀z ∈ U, ef(z) = z.

ii) Consider the open subset V = Cr {x ∈ R | x ≤ 0}. Explicitly exhibit a holomorphic function f : V → C
such that ∀z ∈ V, ef(z) = z.

Problem 19. Fix an integer n ∈ Z r {−1, 0, 1}.
a) What is the group homomorphism π1(C∗, 1)→ π1(C∗, 1) induced by the continuous map C∗ → C∗ defined

by z 7→ zn?
b) Prove that there is no continuous function g : C∗ → C∗ such that ∀z ∈ C∗, g(z)n = z.
c) Consider the open subset V = C r {x ∈ R | x ≤ 0} ⊆ C. Prove that there exists a holomorphic function

g : V → C such that ∀z ∈ V, g(z)n = z.

Problem 20. Consider the topological space X = R3 r (C ∪ L), where C = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and
L = {(0, 0, z) ∈ R3 | z ∈ R}. Compute the fundamental group of X. Make a picture of X where you draw a
set of generators of π1(X,x0), where x0 is your favourite point in X. [Hint: show that X is homeomorphic to
S1 ×

(
((0,+∞)× R) r {(1, 0)}

)
.]
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Problem 21. Consider the open subset U = R3 r (C ∪L) of R3, where C = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and
L = {(0, 0, z) ∈ R3 | z ∈ R}. Consider the following two 1-forms on U

ω =
−y dx+ xdy

r2
and η = − z

(r − 1)2 + z2

xdx+ y dy

r
+

r − 1

(r − 1)2 + z2
dz

where r : U → R is defined by r(x, y, z) =
√
x2 + y2. Consider the following two loops γ and β in U defined by

γ(t) = (cos t, sin t, 1) t ∈ [0, 2π],

β(t) =

(
1 +

1

2
cos t, 0,

1

2
sin t

)
t ∈ [0, 2π].

a) Prove that ω and η are locally exact.
b) Compute

∫
γ
ω,
∫
β
ω,
∫
γ
η,
∫
β
η.

c) Prove that the R-vector space H1
dR(U) has dimension 2.

Problem 22. Consider the open subset U = R2 r {(0, 0)} of R2.
a) Let ϕ : (0,+∞) → R be a C1 function. Consider the 1-form η = ϕ(x2 + y2) · (x dx + y dy) on U . Prove

that η is closed. Is η exact?
b) Let C1(U) be the set of C1 functions U → R. For each u ∈ C1(U), we consider the 1-form

ωu = u(x, y) dx+
y3

x2 + y4
dy

on U . For which u ∈ C1(U) is the 1-form ωu locally exact? For which u ∈ C1(U) is the 1-form ωu exact?

Problem 23. i) Let a, b ∈ R such that a < b and let f : [a, b]→ C be a continuous function. We define∫ b

a

f(t)dt :=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt,

where u : [a, b]→ R and v : [a, b]→ R are such that f = u+ iv. Prove the following inequality:∣∣∣∣∣
∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|dt.

Hint: you need to remember the definition of integrals of real continuous functions in one variable, as follows.
Let g : [a, b]→ R be a continuous function. Consider P the set of finite partitions of [a, b], i.e. finite sequences
σ = (t0, t1, . . . , tn) such that n ≥ 1 and a = t0 < t1 < · · · < tn = b. For every σ = (t0, t1, . . . , tn) ∈ P we define
I(σ, g) :=

∑n
j=1(tj − tj−1)g(tj) and δ(σ) := sup1≤j≤n(tj − tj−1). Then∫ b

a

g(t)dt := lim
δ(σ)→0

I(σ, g).

ii) Let U ⊆ C be an open subset and f : U → C be a continuous function. If γ : [a, b]→ U is a piecewise C1

path in U , prove the inequality ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ L(γ) · max
γ([a,b])

|f |,

where L(γ) =
∫ b
a
|γ′(t)|dt is the length of γ.

Problem 24. i) Let U ⊆ C be an open subset and f : U → C be a C1 holomorphic function. Prove that the
1-form f(z)dz on U is closed.

ii) Fix m ∈ Z and r ∈ R>0. Consider the loop γ : [0, 2π] → C∗ defined by γ(t) = reit for every t ∈ [0, 2π].
Evaluate the integral

∫
γ
zmdz.

https://userpage.fu-berlin.de/petracci/2019Complex


iii) Fix z0 ∈ C and a loop γ in C r {z0}. Let W (γ, z0) be the winding number of γ around z0. Prove the
formula

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
.

[Hint: recall that the winding number of γ around z0 is the unique integer W (γ, z0) ∈ Z such that the equality
[γ] = W (γ, z0) · [α] holds in H1(Cr {z0};Z), where [α] is the homology class of the loop α : [0, 2π]→ Cr {z0}
defined by α(t) = z0 + reit and r is any positive real number.]
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Problem 25. Let U ⊆ C∗ be an open connected subset. Consider the inclusion i : U ↪→ C∗. Fix an integer
n ∈ Z r {−1, 0, 1} and a point z0 ∈ U . Prove that the following statements are equivalent:

(1) there exists a holomorphic function f : U → C such that ∀z ∈ U, ef(z) = z,
(2) there exists a continuous function f : U → C such that ∀z ∈ U, ef(z) = z,
(3) the homomorphism π1(i, z0) : π1(U, z0)→ π1(C∗, z0) is zero,
(4) the homomorphism H1(i) : H1(U ;Z)→ H1(C∗;Z) is zero,
(5) the 1-form dz

z is exact on U ,
(6) there exists a holomorphic function g : U → C∗ such that ∀z ∈ U, g(z)n = z,
(7) there exists a continuous function g : U → C∗ such that ∀z ∈ U, g(z)n = z,
(8) the image of H1(i) : H1(U ;Z) → H1(C∗;Z) is contained in the subgroup {nc | c ∈ H1(C∗;Z)} of

H1(C∗;Z).

[The implication (8)⇒(4) is true, but you can assume it for granted and you do not need to prove it. I would
suggest you to prove (4)⇒(5) and (5)⇒(1) among the many possible implications.]

Problem 26. Consider the following open subsets of C: U = C r {i,−i}, V = C r {iy | −1 ≤ y ≤ 1}, and
A = Cr {iy | y ≤ 1}. For every a, b ∈ C consider the 1-form ω = az+b

z2+1dz on U .

i) For which a, b ∈ C is the form ω|A exact on A?
ii) For which a, b ∈ C is the form ω exact on U?
iii) For which a, b ∈ C is the form ω|V exact on V ?
[Hint: find c, d ∈ C such that az+b

z2+1 = c
z+i + d

z−i and use Problem 24iii (or Cauchy’s integral formula) for

appropriate generators of the 1st homology groups.]

Problem 27. In this exercise you have to pretend that you do not know the values of any primitive of the
real function x 7→ 1

x2+1 . In other words you cannot use the values of the function arctan, nor the fact that

limx→±∞ arctan(x) = ±π2 .
For every real number r > 0 consider the two paths in C given by

αr : [−r, r]→ R t 7→ t,

βr : [0, π]→ C t 7→ reit.

Consider the 1-form ω = dz
z2+1 on Cr {±i}.

a) For every r ∈ (0, 1) ∪ (1,+∞), evaluate the integral∫
αr∗βr

ω.

[Hint: write ω = a
z−idz + b

z+idz for some a, b ∈ C.]

b) Prove that for every r > 1 ∣∣∣∣∫
βr

ω

∣∣∣∣ ≤ πr

r2 − 1
.

c) Evaluate ∫ +∞

−∞

dx

x2 + 1
= lim
r→+∞

∫
αr

ω.

Problem 28. Consider the 1-form

ω =
e−z

(z + 2)3
dz

on C r {−2}. For each r > 0, consider the rectangle Rr = {x + iy ∈ C | |x| ≤ r, |y| ≤ 1} and the loop
γr : [0, 2]→ C defined by γr(t) = r(cos(2πt2) + i sin(2πt2)) for every t ∈ [0, 2]. Evaluate the integrals∫

∂Br(0)

ω,

∫
∂Rr

ω, and

∫
γr

ω

for every r ∈ (0, 2) ∪ (2,+∞).
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Problem 29. Let f : C→ C be a holomorphic function. Prove the following statements.

a) Let p be a non-negative integer. If there exist real numbers C,R > 0 such that ∀z ∈ CrBR(0), |f(z)| ≤
C|z|p, then f is a polynomial of degree ≤ p.

b) If there exists C ∈ R such that ∀z ∈ C, Re f(z) ≥ C, then f is constant.
c) If there exists C ∈ R such that ∀z ∈ C, Im f(z) ≤ C, then f is constant.
d) If there exists C ∈ R such that ∀z ∈ C, Im f(z) ≥ C, then f is constant.
e) If supz∈C |f(z)2 + 1| < +∞, then f is constant.

Problem 30. Let U ⊆ R2 be an open subset. A function u : U → R is called harmonic if it is C2 and ∆u = 0,

where ∆ := ∂2

∂x2 + ∂2

∂y2 is the laplacian operator. Prove the following statements.

a) If f : U → C is holomorphic, then Re f and Im f are harmonic.
b) If u : U → R is harmonic, then the 1-form −∂u∂ydx+ ∂u

∂xdy on U is closed.

c) If u : U → R is harmonic and U is simply connected, then there exists a harmonic function v : U → R
such that u+ iv : U → C is holomorphic.

d) Exhibit an open connected subset U ⊆ R2 and a harmonic function u : U → R such that there is no
holomorphic function f : U → C such that u = Re f .

e) If u : U → R is harmonic, then u is C∞.
f) If u : U → R is harmonic, then ∂u

∂x − i∂u∂y : U → C is holomorphic.

g) If u : R2 → R is harmonic and non-constant, then u(R2) = R.

Problem 31. Consider the holomorphic function f : Cr {−1, 3} → C given by

f(z) =
−4

(z + 1)(z − 3)
.

Explicitly exhibit the Laurent expansions of f around 0 ∈ C in the following three anuli: A0,1(0) = {z ∈ C |
0 < |z| < 1}, A1,3(0) = {z ∈ C | 1 < |z| < 3} and A3,+∞(0) = {z ∈ C | |z| > 3}. For each positive real number
r 6= 1, 3, evaluate the integral ∫

∂Br(0)

f(z)dz.

Problem 32. There exists a real number ε > 0 such that the following functions are holomorphic on the anulus
{z ∈ C | 0 < |z| < ε}:

a)
1

1− z2
b) e1/z

c)
e−z

z(z + 1)
d)

sin z

z

e)
z

sin z
f) z sin

(
1

z

)
where sin z := 1

2i (e
iz−e−iz). For each of these functions, compute the coefficients an for |n| ≤ 2 of their Laurent

expansion around 0 in the anulus {z ∈ C | 0 < |z| < ε}.
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Problem 33. Evaluate all non-trivial residues of the following meromorphic functions on C:

f(z) :=
1

(z2 + 1)(z − i)3
and g(z) :=

1

exp(z) + 1
.

Problem 34. Using the method of residues, evaluate the integral∫ +∞

−∞

x

(x2 + 1)(x2 − 2x+ 2)
dx.

Problem 35. Fix an integer n ≥ 2. For each 0 < ε < 1 consider the open subset

Uε =
{
reiθ | r > 0, −ε

2
< θ < 2π − ε

2

}
of C∗, the holomorphic functions gε, fε ∈ O(Uε) defined by

gε
(
reiθ

)
= n
√
rei θn ∀r > 0, θ ∈

(
−ε

2
, 2π − ε

2

)
fε(z) =

gε(z)

(z2 + 1)2
∀z ∈ Uε,

and the paths αε, βε, γε, δε in Uε defined by:

αε :
[
ε, ε−1

]
→ Uε t 7→ t

βε : [0, 2π − ε]→ Uε t 7→ ε−1eit

γε :
[
ε, ε−1

]
→ Uε t 7→ te−iε

δε : [0, 2π − ε]→ Uε t 7→ εeit.

Set ζ = e
πi
2n and

I =

∫ +∞

0

n
√
x

(x2 + 1)2
dx.

a) For each 0 < ε < 1, prove that

g′ε(z) =
gε(z)

nz
for all z ∈ Uε.

b) For each 0 < ε < 1, evaluate the residue of fε at i and at −i.
c) For each 0 < ε < 1, prove the equality∫

αε∗βε∗i(γε)∗i(δε)
fε(z)dz =

π

2

n− 1

n

(
ζ − ζ3

)
.

d) Prove

lim
ε→0+

∫
αε

fε(z)dz = I lim
ε→0+

∫
βε

fε(z)dz = 0

lim
ε→0+

∫
γε

fε(z)dz = ζ4I lim
ε→0+

∫
δε

fε(z)dz = 0.

e) For every ϕ ∈ Rr (1 + 2Z)π2 , set w = eiϕ and prove the equalities:

1

1 + w2
=

1

2

(
1− sinϕ

cosϕ
i

)
w

1 + w2
=

1

2 cosϕ
.

f) Prove the equality

I =
π

4

n− 1

n

1

cos π
2n

.
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Problem 36. Let K be a field and let n ≥ 1 be an integer. On the set Kn+1 r {0} consider the equivalence
relation ∼ defined by: v ∼ w if and only if there exists λ ∈ K∗ such that v = λw. Let Pn(K) denote the quotient
set (Kn+1 r {0})/∼ and let π : Kn+1 r {0} → Pn(K) be the quotient map. The set Pn(K) is called the standard
n-dimensional projective space over K. We denote by [v] = [x0 : · · · : xn] ∈ Pn(K) the equivalence class of the
vector v = (x0, . . . , xn) ∈ Kn+1 r {0}.

For every integer 0 ≤ i ≤ n consider the subset Ui = {[x0 : · · · : xn] ∈ Pn(K) | xi 6= 0} and the map
ji : Kn → Ui given by ji(y1, . . . , yn) = [y1 : · · · , yi−1 : 1 : yi : · · · : yn].

If K = R or K = C we equip Pn(K) with the topology {A ⊆ Pn(K) | π−1(A) is open in Kn+1 r {0}}.
a) Prove that ji : Kn → Ui is bijective for each i = 0, . . . , n.
b) If K = R or K = C, prove that Ui is an open subset of Pn(K) and that ji : Kn → Ui is a homeomorphism

for every i = 0, . . . , n.
c) If n = 1, consider U01 = U0 ∩ U1 and write down the explicit formulae of the map

j−1
1 ◦ j0|j−1

0 (U01) : j−1
0 (U01) −→ j−1

1 (U01).

d) Fix integers 0 ≤ i < k ≤ n and consider Uik = Ui ∩ Uk. Write down the explicit formulae of the map

j−1
k ◦ ji|j−1

i (Uik) : j−1
i (Uik) −→ j−1

k (Uik).

[In order to ease the notation, you can assume i = 0 and that k is your favourite integer in {1, . . . , n}.]
e) If K = R or K = C, prove that Pn(K) is a path-connected compact topological space. [Hint: consider

the restriction of π to the unitary sphere in Kn+1.]
f) If K = R or K = C, prove that Pn(K) is Hausdorff.
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Problem 37. 1) By using the method of residues, prove the equality∫ +∞

0

dx

xn + 1
=

π
n

sin
(
π
n

)
for each integer n ≥ 2. [Hint: consider the boundary of the compact set Kr = {ρeiθ | 0 ≤ ρ ≤ r, 0 ≤ θ ≤ 2π

n }
for r > 0.]

2) By using the method of residues, evaluate∫ +∞

0

4
√
x

x2 + 2x+ 4
dx.

Problem 38. i) Does there exist a holomorphic function f : C → C such that f(100) = 1 and f( 1
n ) = 1

n3 for
every integer n ≥ 1? If yes, exhibit an explicit example. If no, prove that such an f cannot exist.

ii) Explicitly exhibit an open subset U ⊆ C and a holomorphic function f : U → C such that f(100) = 1 and
f( 1

n ) = 1
n3 for every integer n ≥ 1.

iii) Does there exist a holomorphic function f : C → C such that ∀z ∈ S1, f(z) = 2z̄? If yes, exhibit an
explicit example. If no, prove that such an f cannot exist.

iv) Does there exist a holomorphic function f : C→ C such that ∀t ∈ [0, 1], f(1 + ti) = 1−ti
1+t2 ? If yes, exhibit

an explicit example. If no, prove that such an f cannot exist.

Problem 39. For all p, q, r, s ∈ C, consider the 1-form

ω = 4z3 pz
3 + qz2 + rz + s

z4 − 1
dz

on A = {z ∈ C | z4 6= 1}. Consider the following open subsets of A:

B = Cr ({±1} ∪ {iy | y ∈ R, |y| ≤ 1}) ,

C = Cr
({√

3i + 2eiθ | −π
3
≤ θ ≤ 4π

3

}
∪ {iy | y ∈ R, |y| ≤ 1}

)
,

D = {z ∈ C | |z| > 1}.
a) For which p, q, r, s ∈ C is the 1-form ω exact?
b) For which p, q, r, s ∈ C is the 1-form ω|B exact?
c) For which p, q, r, s ∈ C is the 1-form ω|C exact?
d) For which p, q, r, s ∈ C is the 1-form ω|D exact?

Problem 40. Consider the meromorphic function f ∈M(C) given by:

f(z) = z(z3 − 4) + ez/2 +
1

4z − 6
.

Compute the number of zeroes, counted with their multiplicities, of f which are contained in each of the following
sets: B2(0), B1(0) and B2(0) rB1(0).
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Problem 41. Use the method of residues to evaluate the following integrals:

(1) ∫ ∞
−∞

cosx

x2 + 2x+ 2
dx,

(2) ∫ ∞
−∞

sinx

x2 + 2x+ 2
dx,

(3) ∫ 2π

0

cos t

2 + cos2 t
dt,

(4) ∫ +∞

0

n
√
x

x2 + 1
dx for every integer n ≥ 2.

Problem 42. Consider the following open subsets of C: U = {z ∈ C | |z| > 1} and V = {z ∈ C | 0 < |z| < 1}.
Prove the following facts:

i) U and V are biholomorphic.
ii) C∗ and U are homeomorphic.
iii) C∗ and U are not biholomorphic.

Problem 43. Consider the following subsets of C:

U = {z ∈ C | 0 < |z| < 1},
V = {z ∈ C | 2 < |z| < 3},
A = {z ∈ C | 2 ≤ |z| ≤ 3}.

i) If f ∈ O(U) is holomorphic and such that f(U) ⊆ A, then show that the homomorphism

H1(f) : H1(U ;Z) −→ H1(A;Z)

is zero.
ii) Prove that U and V are not biholomorphic.

iii) Prove that U and V are homeomorphic.

Problem 44. Let U ⊆ C be an open connected subset and let h : U → C∗ be a holomorphic function. Let S
be an infinite set of positive integers. Fix a point z0 ∈ U . Prove that the following statements are equivalent:

(1) there exists a holomorphic function f : U → C such that ∀z ∈ U, ef(z) = h(z),
(2) there exists a continuous function f : U → C such that ∀z ∈ U, ef(z) = h(z),
(3) the homomorphism π1(h, z0) : π1(U, z0)→ π1(C∗, z0) is zero,
(4) the homomorphism H1(h) : H1(U ;Z)→ H1(C∗;Z) is zero,

(5) the 1-form h′(z)
h(z) dz is exact on U ,

(6) for every integer n ≥ 2, there exists a holomorphic function gn : U → C∗ such that ∀z ∈ U, gn(z)n =
h(z),

(7) for every n ∈ S, there exists a continuous function gn : U → C∗ such that ∀z ∈ U, gn(z)n = h(z).
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Problem 45. a) Consider the Möbius transformation f defined by

f(z) =
z − 1

i(z + 1)
.

Write the formula for the inverse of f . Determine the images under f of the points 0, 1,−1, i,−i ∈ C and of the
following subsets of C:

R = {z ∈ C | Im z = 0},
iR = {z ∈ C | Re z = 0},
S1 = {z ∈ C | |z| = 1},

B1(0) = {z ∈ C | |z| < 1},
U = {z ∈ C | |z| < 1, Im z > 0},
V = {z ∈ C | |z| < 1,Re z > 0}.

[Hint: use the fact that Möbius transformations send Möbius lines to Möbius lines.]
b) Show that all the following open subsets of C are biholomorphic:

U = {z ∈ C | |z| < 1, Im z > 0},
V = {z ∈ C | |z| < 1,Re z > 0},
A = {z ∈ C | Re z > 0, Im z > 0},
H = {z ∈ C | Im z > 0},

B1(0) = {z ∈ C | |z| < 1},
C = {z ∈ C | |z| < 1}r {x ∈ R | x ≥ 0},
D = {x+ iy ∈ C | x, y ∈ R, x < 0, 0 < y < π},
E = {z ∈ C | 1 < Re z < 2, Im z > 0}.

[You can use the results of a).]

Problem 46. a) Let X be a topological space, let {Uλ}λ∈Λ be an open cover of X, and let A ⊆ X be a subset.
Show that A is open in X if and only if A ∩ Uλ is open in Uλ for every λ ∈ Λ. Show that A is closed in X if
and only if A ∩ Uλ is closed in Uλ for every λ ∈ Λ.

b) Let f : X → Y be a holomorphic map between two Riemann surfaces. Fix y ∈ Y . Show that the set

Ay := {x ∈ X | ∃ open subset V ⊆ X such that x ∈ V and f(V ) = {y}}

is both open and closed in X. For every x ∈ X, show that x ∈ Ay if and only if x is a non-isolated point of
f−1(y).

c) Let f : X → Y be a holomorphic map between two Riemann surfaces. Assume that X is connected. Prove
that the following statements are equivalent:

i) f is open, i.e. for every open subset V of X the image f(V ) is open in Y ;
ii) f(X) is an open subset of Y ;
iii) f is non-constant;
iv) for every y ∈ Y , the set

Ay := {x ∈ X | ∃ open subset V ⊆ X such that x ∈ V and f(V ) = {y}}

is empty;
v) for every y ∈ Y , f−1(y) is discrete;
vi) for every non-empty open subset V of X, f |V is non-constant.

[Hint: among the many implications I would suggest you to prove iii)⇒iv), iv)⇔v), iv)⇔vi), vi)⇒i).]

Problem 47. a) Let X be a compact connected Riemann surface. Show that every holomorphic function
f : X → C is constant. [Hint: use the maximum modulus principle and Problem 46c.]
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b) Let f : X → Y be a non-constant holomorphic map between two connected Riemann surfaces. Assume
that X is compact. Show that f is surjective and that Y is compact. [You can use the following fact: if S is a
compact subspace of a Hausdorff topological space T , then S is closed in T .]

c) Let f : X → Y be a non-constant holomorphic map between two connected compact Riemann surfaces.
For every y ∈ Y , show that f−1(y) is finite.

Problem 48. For each of the following holomorphic functions defined on C∗, answer the following questions:

• can it be extended to a holomorphic function on C?
• can it be extended to a meromorphic function on C?
• can it be extended to a holomorphic function on the Riemann sphere?
• can it be extended to a meromorphic function on the Riemann sphere?

a(z) = −3,

b(z) = z2 + 5,

c(z) =
1

z
+ 1,

d(z) = e
1
z ,

e(z) = ez.



Exam 08.07.2019

Problem 1. Consider the power series f(T ) =
∑
n≥0(n+ 1)Tn ∈ C[[T ]].

a) Compute the radius of convergence R of f .
b) Compute the multiplicative inverse of f in the ring C[[T ]].
c) Exhibit a meromorphic function g on C such that ∀z ∈ BR(0), g(z) = f(z).

Problem 2. Let f : C→ C be a holomorphic function. Assume that there exist real numbers C > 0 and R > 1
such that

∀z ∈ CrBR(0), |f(z)| ≤ C log |z|.
Prove that f is constant.

Problem 3. Use the method of residues to evaluate the integral

I =

∫ +∞

−∞

dx

(x2 + 4)(x2 − 2x+ 2)
.

Problem 4. For all p, q ∈ C, consider the 1-form

ω =
pz + qeπz

z2 + 1
dz

on the open subset A = {z ∈ C | z2 + 1 6= 0} of C. Consider the following open subsets of A:

B = {z ∈ C | |z| > 1} and C = {z ∈ C | Im z > 1}.
a) For which p, q ∈ C is the 1-form ω exact on A?
b) For which p, q ∈ C is the 1-form ω|B exact on B?
c) For which p, q ∈ C is the 1-form ω|C exact on C?

Problem 5. Consider the polynomial f(z) = z5 + 7z2 − 3 ∈ C[z]. Determine the number of zeroes (counted
with multiplicity) of f which are contained in the anulus {z ∈ C | 1 < |z| < 2}.

Problem 6. Consider the following open subsets of C:

A = {z ∈ C | 1 < |z| < 2},
U = {z ∈ C | 5 < |z − i| < 10},
V = {z ∈ C | |Re z| < 1, Im z > 0}.

Are A and U homeomorphic or biholomorphic? Are A and V homeomorphic or biholomorphic? Are U and V
homeomorphic or biholomorphic?

Problem 7. a) Give an example of an open subset U ⊆ C and of a non-constant holomorphic function
f : U → C such that f(U) is not open in C.

b) Does there exist a holomorphic function f : C→ C such that f(iy) = 1
y for every rational number y > 1?



Exam 07.10.2019

Problem 1. Consider the power series f(T ) =
∑
n≥0(1 + (−1)n)Tn ∈ C[[T ]].

a) What is the radius of convergence R of f?
b) What is the multiplicative inverse of f in the ring C[[T ]]?
c) Exhibit a meromorphic function g on C such that ∀z ∈ BR(0), g(z) = f(z).

Problem 2. Let f : C→ C and g : C→ C be two holomorphic functions. Assume that g is non-constant and
that g ◦ f is bounded on C. Prove that f is constant. [Hint: what kind of topological space is g−1(c) for any
c ∈ C?]

Problem 3. Use the method of residues to evaluate the integral∫ +∞

−∞

x2

(x2 + 1)(x2 + 4)
dx.

Problem 4. For all p, q, r ∈ C, consider the 1-form

ω =
pz2 + qz + r

z(z2 − 1)
dz

on the open subset A = Cr {0, 1,−1} of C. Consider the following open subsets of A:

B = Cr ({−1} ∪ {x ∈ R | 0 ≤ x ≤ 1}) and C = {z ∈ C | |z| > 1}.
a) For which p, q, r ∈ C is the 1-form ω exact on A?
b) For which p, q, r ∈ C is the 1-form ω|B exact on B?
c) For which p, q, r ∈ C is the 1-form ω|C exact on C?

Problem 5. Consider the polynomial f(z) = z4 + 8z − 5i ∈ C[z]. Determine the number of zeroes (counted
with multiplicity) of f which are contained in the anulus {z ∈ C | 1 < |z| < 3}.

Problem 6. Consider the following open subsets of C:

U = {z ∈ C | |Re z| < 1, |Im z| < 1} and V = {z ∈ C | 0 < Re z < 4, 0 < Im z < 4}.
a) Is U biholomorphic to V ? If yes, explicitly write down a biholomorphism U → V .
b) Is U biholomorphic to Cr {5i}? If yes, explicitly write down a biholomorphism U → Cr {5i}.
c) Is U biholomorphic to C? If yes, explicitly write down a biholomorphism U → C.

Problem 7. Let U be a connected open subset of C and let f : U → C be a holomorphic function. Let
u : U → R be the real part of f and let v : U → R be the imaginary part of f .

a) If u is constant, then show that f is constant.
b) If u+ v is constant, then show that f is constant.
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