INTERSECTION PRODUCT ON THE PICARD GROUP OF A SURFACE

- X will be nensingular projective Sucface over k= E
- · A curve will mean an effective divisor
- · GOAL: Define and Calculate the intersection number

 $C.D \in \mathcal{X}$

fer any two divisors C, De Div X

 $(C,D)_{p} := \dim_{k} \begin{pmatrix} P,x/(f,g) \end{pmatrix}$ Where f,g are lecal equations for (,D Ksp. (, b) meet transversally at PeCaD if $(C,D)_p = 1$. b) To transversal to C if $(C,D)_p = 1$, $\forall PeCaD$.

Thus 1.1 (HA77, p.357) There is a unique pairing $\text{Div} X \times \text{Div} X \longrightarrow \mathbb{Z}$ (C, D) $\longmapsto \text{C.D}$

S. t.

(1) if (, D are newsingular curves
meeting transversally, then
(.D = #(CnD)
(2) it To Symmetric: C.D = D.C
(3) it To additive:
$$(C_1 + C_2)$$
. D = C_1 . D + C_2 . D
(4) it depends only on linear equivalence
Class: $(1 - C_2) = (1 - D) = C_2$. D

(2)

$$E_{X}: \text{ Intersection multiplicity} X = \mathbb{P}^{2}, C = k$$

$$[X_{0}X_{2} - X_{1}^{*} = 0] = C$$

$$[X_{2} = 0] = D$$

$$P = [1:0:0]$$

$$(C, D)_{p} = i$$

$$P \in \mathbb{P}^{2} \{X_{0} = 0\} \xrightarrow{\sim} \mathbb{A}^{2} \qquad \sum_{\substack{\{X_{0}, : X_{1} \} \to 0}} \left(\frac{X_{1}}{X_{0}}, \frac{X_{2}}{X_{0}}\right) = (X, y)$$

$$C \text{ has the local equation } y - x^{2}$$

$$around p$$

$$D \text{ has the local equation } y$$

$$C \text{ thas the local equation } y$$

(3)

 $\mathcal{O}_{(0,0)}, \mathcal{A}^{2}/(y, y-x^{2}) \cong \frac{\mathbb{C}x, y}{(y, x^{2})}$

Then we have the iso. cf vector spaces

(4)

 E_{X} : $X = P_{j}^{2}$ k = C

H. = { x. = 0] $H_{o} \qquad H_{i} \qquad H_{i}$ $H_{i} = [X_{i} = 0]$ $H_{z} = \left(X_{z} = 0 \right)$ Н, Н, H C, D E Div X, C, D are curves and non singular. $C.D^{2}$ Claim: C, O meet transversally $\sim (0 = \#(0 = 1))$ PTS only intersection point $p \in \mathbb{P}^2 \setminus H_2 \xrightarrow{\simeq} \left(\frac{X_0}{X_0}, \frac{X_1}{X_0}\right) = (X, y)$ c has the local equation y around p x accurd p $(C,D)_{p} = \dim_{\mathbb{C}} \left(\frac{\mathcal{O}_{p,X}}{(x,y)} \right) = \dim_{\mathbb{C}} \left(\frac{\mathbb{C}[x,y]_{(x,y)}}{(x,y)} \right)$ Where $O_{p,X} \cong O_{lo,0),A^2}$.

(5)

Befere proof: Lemma 1.2 (HA77, p. 358), let Ci,..., Cr be irr. Curves cn X, and let D be a very ample divisor. Then almest all curves D'ElOI are irr. hensingules and meet each of the Ci transver sully.

Lemma 1.3 (HA77, p.358) Let C be an icc. hensing ular curre on X and let D be any curre meeting C transversally. Then

$$\#(CnD) = deg_{C}(O_{X}(D) \otimes O_{C})$$

(6)

Pf: If time.

Pf cf Thm I.I: <u>Unique ness</u>: Let He Div X be comple. Given C, De Div X We want to find new S.t C+nH, D+nH, nH are all very ample.

Find $l \in \mathbb{N}$ s.t $l \neq T$ is very ample, then n = l + h. (7)

Lemma 1.2 gives

$$C' \in |C + nH|$$

 $D' \in |D + nH|$ transversal to C'
 $E' \in |nH|$ _____ p'
 $T' \in |nH|$ _____ p'
 $d' \in |nH|$ _____ p'
 $d' \in |nH|$ _____ p'
 $d' \in |nH|$ _____ p'

From property (1)-(4) cf the pairing:

$$(.D = \#(('_n D') - \#(('_n T')) - \#(E'_n D') + \#(E'_n T'))$$

This shews uniqueness.

.

Well-defined?

$$\mathcal{D}'' \in |\mathcal{D}|, \ \mathcal{D}'' \neq \mathcal{D}', \ \text{hensingalor and}$$

transversal to C'
From lemme 1.3
 $\# (C' \land \mathcal{D}') = cleg_c(\mathcal{O}_x(\mathcal{D}') \otimes \mathcal{O}_{c'})$
 $= cleg_c(\mathcal{O}_x(\mathcal{D}'') \otimes \mathcal{O}_{c'}) = \# (C' \land \mathcal{D}'').$
By symmetry, we have shewn well-defined-
ness.

This paining satisfies (1)-(4). (9)

Let
$$C, D \in Div X$$

 $(\sim C' - E', D \sim D' - T'$
Where $C', D', E', T' \in B$.
We define
 $C.D = C'.D' - C'.T' - E'.D' + E'.T'$

Well-defined?

$$C \sim C'' - E'' \quad \text{with} \quad C'', E'' \in \mathbb{B}$$

 $\longrightarrow \quad C' - E' \sim C'' - E''$
 $\longrightarrow \quad C'.D' - E'.D' = C''.D' - E''.D'$
Similar for $-F'$.

So
$$Div X \times Div X \rightarrow Z$$

(C, D) $\mapsto C.D$

TS Well-defined.

Div X × DivX → Z Satisfies (2)-(4) by construction. (1)? (, D nensingular meeting fransv. C.D = C'.D' - C'.F' - E'.D' + E'.F' $= dy \left(\mathcal{O}_{x}(\mathcal{O}') \otimes \mathcal{O}_{c} \right) - dy \left(\mathcal{O}_{x}(\mathcal{F}') \otimes \mathcal{O}_{c} \right)$ $-deg\left(\mathcal{O}_{\mathsf{X}}(\mathsf{D}')\otimes\mathcal{O}_{\mathsf{F}'}\right)+deg\left(\mathcal{O}_{\mathsf{X}}(\mathsf{F}')\otimes\mathcal{O}_{\mathsf{F}'}\right)$ $= \operatorname{cley}\left(\mathcal{O}_{\mathsf{x}}(\widetilde{\mathsf{D}'-\mathsf{F}'})\otimes\mathcal{O}_{\mathsf{c}'}\right) - \operatorname{cley}\left(\mathcal{O}_{\mathsf{x}}(\widetilde{\mathsf{D}'-\mathsf{F}'})\otimes\mathcal{O}_{\mathsf{c}'}\right)$ Chacse (', E' s.t (', E' meets D transv. using Lemma 1.2. $\sim der(\mathcal{O}_{\mathbf{x}}(\mathcal{D}) \otimes \mathcal{O}_{\mathbf{y}}) = \#(\mathcal{C}',\mathcal{D})$ $= deg(O_{x}(C') \otimes O_{y})$ $\sim deg(O_x(D) \otimes O_c) - deg(O_x(D) \otimes deg)$ $= deg(\mathcal{O}_{x}(c) \otimes \mathcal{O}_{y}) = \#(C_{n} \mathcal{O}).$

(ll)

Corollery X surface. Chensinguler irr. curve on X. De Div X. Then

 $C.O = deg_{c}(O_{x}(O) \otimes O_{c}).$

Pf: Consult the proof of Thm I.I.

(12)

Proposition 1.4 (HA77, p. 360) If (, D are curves on X having no common irr. Component, then

$$C.D = \sum_{p \in C_n D} (C.D)_p$$

Pf: (laim: The RHS TS independent of representatives.

 $O \rightarrow O_{x}(-D) \rightarrow O_{x} \rightarrow O_{p} \rightarrow O SES$ Tensoring with O_{c} preserves exactness

 $(x) \longrightarrow \mathcal{O}_{x}(-\infty) \otimes \mathcal{O}_{c} \longrightarrow \mathcal{O}_{c} \longrightarrow$

From (x) We get
(+)
$$\chi(\mathcal{O}_{c}) = \chi(\mathcal{O}_{c}) - \chi(\mathcal{O}_{x}(-0)\otimes\mathcal{O}_{c}).$$

 $\chi(\mathcal{O}_{c}) = \dim_{k} H^{\circ}(x, \mathcal{O}_{c})$
 $= \dim_{k} (\bigoplus_{p \in c} \mathcal{O}_{p,x}/(f_{p}, g_{p}))$
 $= \sum_{p \in c} ((.0)_{p})$
(+) Shows that RHS TS independent of
representative.

(hoose $C \cap C' - E'$, $D \sim D' - F'$ as in "Uniqueness" port.

 $\sum_{p \in CnD} ((D)_p = \sum_{p \in C} (C' - E', D' - F')_p = \frac{p \in CnD}{(c' - E')n(p' - E')}$

 $\sum_{p \in C' \cap O'} (C' : D')_{p} + \sum_{p \in \overline{E'} \cap \overline{F'}} (\overline{E'} : \overline{F'})_{p} - \sum_{p \in \overline{O'} \in \overline{E'}} (O' : \overline{E'})_{p} - (\sum_{p \in C' \cap \overline{F'}} (C' : \overline{F'})_{p} = (C : D)_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p} = (C : D)_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p} = (C : D)_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p \in C' \cap \overline{E'}} = (C : D)_{p \in C' \cap \overline{E'}} (C' : \overline{F'})_{p \in C' \cap \overline{E'}} (C' : \overline{$

Ex (Revisited) $C = 2H_{0}, O = H_{1} + 3H_{2}.$ X = P', k = C(PH, Both curves having no Ho Cemmon isc. component. $(n D = \{p, q\} = \{[0:0:1], [0; 1:0]\}$ Use prop 1.4 to calculate C.D. pEP21H2 ~ A2 $[X_0; X_1: X_1] \longmapsto \left(\frac{X_0}{X_2}, \frac{X_1}{X_2}\right) = (X, y)$ $q \in \mathbb{P}^2 \setminus H$, $\xrightarrow{\simeq} A^2$ $\begin{bmatrix} X_{\circ}, X_{1}, X_{2} \end{bmatrix} \longmapsto \begin{pmatrix} \frac{X_{\circ}}{X_{1}}, \frac{X_{2}}{X_{1}} \end{pmatrix} = (\tilde{X}, \tilde{Y})$ C has the lecal equation y' around p y' around q around p X \tilde{x}^3 accurd q

(/5)

$$(C.D)_{p} = \dim_{C} \left(\frac{Cx, y}{(x, y^{2})} \right) = 2$$

$$(C.D)_{q} = \dim_{C} \left(\frac{Cx, y}{(x, y^{2})} \right) = 6$$

(.0) = ((.0)) + ((.0)) = 8.

Ex (HA77, p. 36(, 1.4.2) Let $X = \mathbb{P}^2$. Recall $\operatorname{Pic} \mathbb{P}^2 \cong \mathbb{Z}$. Then the linear equivalence class Containing all the lines to a generater, denoted h. $h, h = \sum_{p \in H_o, H_i} (H_o, H_i) = 1$ This determines the intersection product by lineacity.

Ex (HA77, p. 361, 1.4.3) Let X be the nonsingular quadratic surface in \mathbb{P}^3 . $X \equiv \mathbb{P}' \times \mathbb{P}'$ Then Pic X = Z & R. Let l be of type (1,0) and m ____ (0,1). Want te argue that $l^{2}=0, m^{2}=0, l.m=1.$ PXP 1º m L'~L. l'= l.l'=0 end similarly form. l.m = (l.m)p = 1. This determines the intersection product cn X

(18)

Ex (HA77, p. 360, 1.4.1)

X surface, DeDivX Was 15 the self-intersection number D.D=:D

Cannot use prop. 1.4 If D D D a nonsingular irr. curve on X apply corollery $\sim D^2 = deg_D (O(D) \otimes O_D)$ $= deg_D (N_{C/X})$. Proposition (HA77, p.366, exercise 1.1) Let X be surface, $C, D \in Div X$. Then

 $C.D = \chi(O_{x}) - \chi(O_{x}(c)) - \chi(O_{x}(c)))$ $+ \chi \left(O_{\mathbf{x}}(c)^{-1} \otimes O_{\mathbf{x}}(D)^{-1} \right)$

Pf of Lemma 1.3

 $0 \rightarrow O(-0) \otimes O_{c} \rightarrow O_{c} \rightarrow O_{c} \rightarrow O SES$ $\mathcal{O}_{\mathbf{x}}(-\mathbf{n}) \otimes \mathcal{O}_{\mathbf{c}} = i^{*}(\mathcal{O}_{\mathbf{x}}(-\mathbf{n})), i: \mathbf{c} \longrightarrow \mathbf{X}$ i*(O((-D)) ideal sheaf of (aD C)C. $\sim i^*(\mathcal{O}_x(-\infty)) = \mathcal{O}_c(-((c_n \infty)))$ $\sim \mathcal{O}((n)) = i^*(\mathcal{O}_x(-D))^*$ $=i^{*}(\mathcal{O}_{x}(-\mathcal{O})))$ $=i^{*}(\mathcal{O}_{\mathbf{x}}(\mathbf{O}))$ $= \mathcal{O}_{\mathbf{x}}(\mathbf{D}) \otimes \mathcal{O}_{\mathbf{x}}$

 $\operatorname{deg}_{c}(\mathcal{O}_{x}(\mathcal{D})\otimes\mathcal{O}_{c}) = \operatorname{cley}_{c}(\mathcal{O}_{n}\mathcal{D}) - \#(\mathcal{O}_{n}\mathcal{D}),$ Since C, D meet transversally.

(21)

Calculations Ctult very ample? $\mathcal{O}_{\mathbf{x}}(\mathsf{C}+\mathsf{n}\mathsf{H})=\mathcal{O}_{\mathbf{x}}(\mathsf{C})\otimes\mathcal{O}_{\mathbf{x}}(\mathsf{n}\mathsf{H})$ $= \mathcal{O}_{\mathbf{x}}(\mathbf{C}) \otimes \mathcal{O}_{\mathbf{x}}(\mathbf{H})^{n} = \mathcal{O}_{\mathbf{x}}(\mathbf{C}) \otimes \mathcal{O}_{\mathbf{C}}(\mathbf{H})^{n} \otimes \mathcal{O}^{n}$ By · Ox(c) @ Ox(H) generated by global sections. By * $\mathcal{O}_{\mathbf{x}}(\mathbf{c}) \otimes \mathcal{O}(\mathbf{H})^{\mathcal{L}} \otimes \mathcal{O}(\mathbf{H})^{\mathcal{L}}$ very cmple Additivity of B×B→Z. WLCG: C, D, D' nonsinguler and D, D' transversal te C. $C_{\infty}(N+D') = \#(C_{n}(D+D')) = deg_{C}(O_{\infty}(D+D') \otimes O_{n})$ = $dy_{c}(O_{x}(n) \otimes O_{y}(n') \otimes O_{y})$ = $\operatorname{deg}_{c}(\mathcal{O}_{x}(\mathcal{D}) \otimes \mathcal{O}_{c}) + \operatorname{deg}_{c}(\mathcal{O}_{x}(\mathcal{D}') \otimes \mathcal{O}_{c})$ $= \# (C \land D) + \# (C \land D') = C \cdot D + C \cdot D'$

X smooth projective surface over $k = \overline{k}$ curve on X = effective divisor on X irreducible = prime divisor on X

 $\frac{Prop}{Pf} C, D \text{ curves on } X \text{ without common irr. components } \Rightarrow C.D \ge 0$ $\frac{Pf}{Pf} C \cdot D = \sum_{p \in CnD} (C.D)_p \ge 0. \square$

X surface .
$$p \in X$$
 point
 $\pi: \widetilde{X} \to X$ blow up of X at p
 $E = \pi^{-1}(p)$ is a smooth investucible curve on X
 $E \simeq \mathbb{P}^{-1}$
 $N_{E/\widetilde{X}} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-1)$
So $E^{2} = \deg_{E} N_{E/\widetilde{X}} = -1$.

Lemma
$$(A,m)$$
 local Cohen - Macaulay (e.g. regular) ring.
 $f,g \in m$.
If dim $A = 2$ and dim $A/(f,g) = 0$, then
 $A/(q) \stackrel{f}{\longrightarrow} A/(q)$ is injective.
PF See Theorem 17.4 (iii) in
Commutative Ring Theory

Prop X smooth surface, C and D curves on X with no common irreducible component.

$$\Rightarrow 0 \longrightarrow \mathcal{O}_{X}(-C)|_{D} \longrightarrow \mathcal{O}_{D} \longrightarrow \mathcal{O}_{CnD} \longrightarrow \mathcal{O} \text{ exact.}$$

 $\frac{Pf}{h} \quad \text{Consider} \quad 0 \to \mathcal{O}_{X}(-C) \to \mathcal{O}_{X} \to \mathcal{O}_{C} \to 0 \quad \text{and tensor}$

by
$$-\bigotimes_{X} O_{D}$$
, get
 $O_{X}(-C)|_{D} \rightarrow O_{D} \rightarrow O_{C} \bigotimes_{X} O_{D} = O_{CD} \rightarrow O$ (*)
We need to prove that it is left exact. Recall that O_{C} is
hot a flat O_{X} -module!

We examine the stalks of the sheaves in (*) at each point $p \in X$. Denote $A = O_{X,p}$. There are several works: