Castelnuovo's Contractibility Criterion

Castelmovo's Contractibility Criterion

Theorem Let S be a smooth projective surface and let E S be a proj curve isomolph. to P1 st. E²=-1. Then Eis an exceptional curve on S Proof: Assume $S \subseteq P^d$ and let Π be a hyperplane ΠP^d Let $H := S \cap \Pi \subseteq S$ a hyperplane section on S. Assume this is a curve H is a very ample drisor on S.

Let HSS be a hyperplane section such that $H^{1}(S, O_{S}(H)) = 0$

For every hyp. sect. Ho there exists m Ed st. (Hn 7 mo) H¹(S, O_S(n H()) = O ^(Serre's vanishing L)

Pepha k=H.E +t' = +t + kE

Rule: Let X beasmooth proj. surface C = X · is a smooth projective culve D is a divisor on X

D.C = deg (D)

is a coherent sheaf of Now, $S(t)|_E$ 05 - modules an É. It is also svertible since E SP¹, invert sheap ou E are determined by their degree. $\deg_{E} \mathcal{O}_{S} (\mathcal{H})|_{E} = \mathcal{H} \cdot E = k \Rightarrow \mathcal{O}_{S} (\mathcal{H})|_{E} \cong \mathcal{O}_{E} (k)$ $deg_E \mathcal{Q}_E(E)|_E = E \cdot E = -1 \Rightarrow \mathcal{Q}_E(E)|_E \stackrel{c}{=} \mathcal{Q}_E(-1)$ $d_{ag_{E}} O_{s}(f_{1})|_{F} = (H + k \cdot E) \cdot E = 0 \rightarrow O_{s}(f_{1})|_{E} = 0 = 0$ $s \in H^{\circ}(S, \mathcal{O}_{s}(E))$ which defines E choope by $div_{o}(s) = E$

 $O \longrightarrow \mathcal{J}_E \longrightarrow \mathcal{O}_S \longrightarrow \mathcal{O}_E$ -> 0 s.c.s of sheares $O_{S}(-E)$ (ideal sheaf of E)

For every sisk consider thtiE with the

associated sheaf Og(HtiE) invertible and in part. flat (as an Oz -module)

 $\begin{array}{c} 0 \rightarrow 0_{S}(-E) \otimes \underbrace{O_{S}(H+iE)}_{IIS} \longrightarrow \underbrace{O_{S} \otimes \underbrace{O_{S}(H+iE)}_{IIS} \rightarrow \underbrace{O_{E} \otimes \underbrace{O_{S}(H+iE)}_{IIS}}_{IIS} \rightarrow \underbrace{O_{S} \otimes \underbrace{O_{S}(H+iE)}_{IIS} \rightarrow \underbrace{O_{S}($

 $(+(+iE) \cdot E = k - c$

dong exact sequence in cohomology induced by se.s. O>H°(S, Og 1+(+(i-1)E)) > H°(S, Og (+(+;E) > H°(E, Og (k-i)) -> $+l^{1}(S, O_{S}(+(+(i-1)E)) \rightarrow t(^{1}(S, O_{S}(+(t)E)) \rightarrow +l^{1}(E, O_{E}(k-i)) \rightarrow \cdots$ $= H^{1}(\mathbb{P}^{1}, \mathbb{O}_{\mathbb{P}^{1}}(k-i)) = 0$ $\mathcal{P} \mathcal{H}^{\circ}(S, \mathcal{Q}_{S}(\mathcal{H}(\mathcal{H}(\mathcal{H}(\mathcal{H}))))) \rightarrow \mathcal{H}^{\circ}(S, \mathcal{Q}(\mathcal{H}(\mathcal{H}))) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{Q}(\mathcal{H}))) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{Q}(\mathcal{H}(\mathcal{H}))) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{Q}(\mathcal{H})) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H})) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H}) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H})) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H}) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H})) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H}) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H})) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{H}))$ +1¹(S,Q(+(+(+(i-1)E)) → +(¹(S,Os(+(+iE)) → O Luma: H1(S, Os(f(tiE))=0 for all Osisk Proof By nduction on i Base: $H^{1}(S, O_{S}(H)) = 0$ by assumption Step: Conclude by looking at long cract sequence.

 $\mathcal{H}^{\circ}(S, \mathcal{G}_{S}(\mathcal{H} + (i-1)E)) \rightarrow \mathcal{H}^{\circ}(S, \mathcal{G}_{S}(\mathcal{H} + iE) \rightarrow \mathcal{H}^{\circ}(E, \mathcal{G}_{S}(\mathcal{G} - i)) \rightarrow O$ Choose: so,..., Sn basis of H. (OS(+1)) For all 15i5k choose $\{a_{i,0}, a_{i,1}, \dots, a_{i,k-i}\} \in \mathcal{H}^{O}(S, O_{S}(\mathcal{H} + \mathcal{E}))$ st. Restriction map VTi maps them to Opt (k-i) (IP1) Ils a Basis of the (E, Ofla-il) homog, polynomials of deg k-i m 2 variables. A basis is given by homog, monomials of deg k-i x^{k-i} , $x^{k-i-1}y_{j-1} - - , y^{k-i}$ k-i+1, hence ai,or-, ai,k-i,

 $\begin{cases} s^{k} s_{0}, \dots, s^{k} s_{n} & \text{Reminder} \\ s^{k-1} a_{n_{i}v_{i}} s_{i-1} & s_{0, \frac{1}{2}-1} \\ a_{n_{i}v_{i}} s_{i-1} & a_{n_{i}k-1} \\ a_{n_{i}v_{i}} \in H^{O}(S, O_{S}(H+iE)), O_{S}(Sk-i) \\ a_{n_{i}v_{i}} \in$ $Sa_{u-n,o}$, $Sa_{u-n,n}$, $a_{u,o} \in H^{o}(S,O_{S}(H'))$ a nonzero constant $a_{u,o}$, $Sa_{u-n,n}$, $a_{u,o} \in H^{o}(E,O_{S}(H'))_{E}$) $\cong H^{o}(E,O_{E}) \cong G^{o}(E,O_{E}) \cong G^{o}(E,O_{E})$ Q_{k-cije} H^o(S, O_S(H+(k-i)E)) sⁱ ∈ H^o(S, O_S(iE)) Qⁱ S → IP defined by His linear system The map [So^o - - : S n]: S → IP is an embedding (H is very ample divisor) Look at 4 | sie it is an embedding Q maps E to the point p:= [0: ... ! o : n] ep

Denote by E: S -> S' := Q(S) the rests of Q Remains' Prove that S' is smooth! It suffices to prove smoothness at p So Consider the open set U2E given by $a_{k,0} \pm 0 \wedge [a_{k-1,0} \neq 0 \vee a_{k-1,1} \neq 0]$ Choose global sections of OS(-E) given by $\chi = \frac{Q_{R-n}}{Q_{R,0}}$ $y = \frac{q_{k-1,7}}{a_{k,0}}$ These define rational maps by $h_2: \mathcal{U} \to \mathbb{P}^1$ given by $C_x: y_j$ section of $h_1: \mathcal{U} \to \mathbb{A}^2$ given by $(S_x: S_y) \to \mathcal{B}^2$

 $h' := (b_{a}, h_{2})' (\mathcal{U} \rightarrow \mathcal{R}^{2} \times \mathcal{P}^{2} \xrightarrow{\mathcal{R}^{2}} He blowup of \mathcal{R}^{at0}$ In fact $h(\mathcal{U}) \subseteq \widehat{\mathcal{R}^{2}}$ Coordinates $(u, v, \mathcal{U}, \mathcal{U})$ since Tt is given by $u\mathcal{U} - v\mathcal{U} = 0$ blowup h = (sx, sy; x'; y) and this fulfills? Property 1: L'induces an somosphism hle E -> the exceptional divisos of iAZ $h(u) = (0:0j \times (u):g(u))$ Proof: on E we have which is an isomorphism linearly Mdependent

Property 2', For all 2 EEEU, h is étale m a neighborhood of 2 mour case: locally there is a system of local coordinates of h(g) which pulls back to a local system of coordinates at 200 S Take (u,v;U:V) natural coordinates on M2x P Remnder: A? is given by aV-ul=0 Let's suppose that r(g) = 0 and y(g)=1 h(g) has coords: $(0,0;0:n) \in \widehat{R^2}$ h = (sr, sy;r:y)

Choose local coordmates at h(g):

v and U/T

1.* (v) = voh - s.y vanishes with order 1 on E $L^*(Y_V) = Y_Y$ when restricted to E a local coordinate of E at 2

sig and ^X are local coordinates on Sat 2 which we were looking for.

To prove the theorem $s \xrightarrow{h} \widehat{A^2}$ we'll show : $\frac{\mathcal{E}}{\mathcal{E}(S)} \xrightarrow{h} (\mathcal{A}^{2})$ There is a nerghborhood U of E and U of the erre. curve m A2 hlu U >>> V such that hly: U -> V is an $\mathcal{E}\left[\begin{array}{c} 1\\ \mu\end{array}\right] = \frac{1}{h}\left[\begin{array}{c} 1\\ \mu\end{array}\right] = \frac{1}{h}$ tomosphism In analytic sense (biholomorphism)

We now prove of hele is botholomorphism $\varepsilon(S)$ is smooth at p E M To do this, we show E(S) in AZ $\mathcal{E}(u) \xrightarrow{h_{\mathcal{E}(u)}} \mathcal{Y}(v)$ is brolomophism U lug V G AP2 which mplies E(4) as smooth. $\frac{\mathcal{E}\left(\mathcal{U}\right)}{\mathcal{E}(\mathcal{U})} \frac{\mathcal{I}_{|\mathcal{E}|\mathcal{U}\rangle}}{\mathcal{N}(\mathcal{U})} \frac{\mathcal{I}_{|\mathcal{E}|\mathcal{U}\rangle}}{\mathcal{N}(\mathcal{U})}$ Bue = with assumption of hly is biholomorphism n l'contracted to forut IA 2 $\mathcal{E} \circ h_{\mu}^{1}: V \longrightarrow \mathcal{E}(u)$

Lemma (Reverse Universal Property)

Let E'S -> 5 be a blowup

Let f: S - X be a map contracting the creeptional driso? to a point.

(m analytic category)

U lug V G AP2 $\mathcal{E} \circ \mathcal{U}|_{\mathcal{U}}^{-1} : \mathcal{T} \to \mathcal{E}(\mathcal{U})$ $\frac{\mathcal{E}\left(\prod_{\substack{k \in \mathbb{N} \\ m \in \mathbb{N}}} \frac{1}{m} \right)}{\mathcal{E}(u)} \frac{1}{m} \frac{1$ factors through M and a map n Br $M(0) \rightarrow E(G)$ which is the nocker of elecu) Meaning that Ilean) is a boliolousephion Consequently Erais smooth.

Lemma: Let I: X > / be a continuous map of Hausdorff topological spaces. Let K IX be a compact subset. Suppose that (i) f(K : K > f(K) is a homeomorphism, (ii) (tk = 1) I is a local homeomorphism atk Then there is a neighborhood U of K and an open set VSY such that fly: U > V is a homeomorphism.

In our case June and Jun PIEES => Eis compact Property 1' hl_: E rept, div. of Ac is biblomorphism, in particular EJ M homeomorphism; Property Z' (tgEE) h is étale ma E(S) i) AZ neighborhood of g. => for every DEE 11.8 >> for every geE there exist $U_{2} \xrightarrow{3} g$ open neighborhood and $V_{2} \xrightarrow{3} h(g)$ open neighborhood such that $h_{1} \underbrace{V_{2} \xrightarrow{3} V_{2}}_{z}$ is a local biholomorphism, in particular a local homeomorph. > The assumption of the lemma are satisfied

Lemma mplies the existence of $U \ge \tilde{E}_{\alpha u}$ au open neighbood and $V \ge except$, dir. of \tilde{A}^{\ge} such that $h_{U}: U \rightarrow V$ is homeomorphism

S smooth, A² smooth hly is holomorphice My is homeomorphism) => hly is biholomorphism

ロ

As explained, this finishes the proof.

 $C = V(y^2 - x^3) \subset A^2$ TI normalisation

 $\pi \colon A^{T} \longrightarrow C$ $t \longmapsto (t^2, t^3)$ TT alogebroic map both w.n.t. Zoniski hops logy and analytic topology TT homeomorphism TT is hot an nor in holomorph. category neither in alg. categor isomorphism

X smooth proj. surface over k=k. CCX irred. curve. is CONTRACTIBLE ; f 3X T Xo proper We say that C $\pi(C) = p \text{ point}, X \sim C \xrightarrow{\pi L} X \sim \{p\}$ isomorphism birational s.t. Castelnuovo C contractible with Xo smooth, projective $C \simeq \mathbb{P}^1 C' = -1$ every proper C is a(-1)-curve birerional morphism Exercise V.S.7 in Hertshorne is a blow up $\stackrel{\checkmark}{\Rightarrow}$ c²<0 C contractible with $C \simeq \mathbb{P}^1 C^2 < 0 \implies$ Xo projective, not necessarily mooth [[Gravert, Actin] adapt the C contractuble with first part of Xo possibly singular, possibly non-algebraic the proof of Castelnuovo's theorem