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Plan

Plan for today:

1. Technical preliminaries

2. Define ruled and geometrically ruled surfaces

3. Prove the Noether-Enriques theorem

4. Classify Minimal Models for C ◊ P1 where C is an irrational smooth

curve
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Conventions

surface := smooth projective surface over C

curve := projective curve over C

point := closed point

k is an algebraically closed field

If S is a surface, C a curve an p : S � C a surjective morphism. We

always consider fibres with multiplicites i.e. as pull-back of divisors (or

scheme-theoretically).
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Non-Abelian Čech Cohomology

X topological space,

G a sheaf of (not necessarily abelian) groups on X ,

U = (Ui )i�I an open cover of X .

A Čech 1-cocycle of G on U is a tuple

(gij)i,j�I , where gij ⇥ ⇤(Ui ⇤ Uj ,G )

that satisfies the cocycle condition

gkjgji = gki for all i , j , k ⇥ I

wherever defined.
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Non-Abelian Čech Cohomology

Two Čech 1-cocycles (gij) and (g ⇥ij) are called cohomologically equivalent

if there is (hi )i�I where hi ⇥ ⇤(Ui ,G ) such that

higij = g
⇥
ijhj

for all i , j ⇥ I wherever defined.

This is an equivalence relation,

Ȟ
1(U ,G ) := {Čech 1-cocycles for G on U}/cohomological equivalence

first Čech cohomology of G on U .

It is a pointed set with distinguished element being the cohomology class

of the Čech 1-cocycle given by gij = 1 for all i , j .
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Non-Abelian Čech Cohomology

Another open cover V = (Vj)j�J is a refinement of U there is a map

� : J � I such that Vj ⌅ U�(j) for all j ⇥ J.

We get a well-defined map (does not depend on the choice of �)

�⇤ : Ȟ1(U ,G )� Ȟ
1(V ,G )

(gii �) ⇧� (g�(j)�(j�)
��
Vj⌅Vj�

)

U and V are equivalent if both are refinements of each other

U and V equivalent =⌃ �⇤ is an isomorphism
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Non-Abelian Čech Cohomology

The first Čech cohomology of G on X is

Ȟ
1(X ,G ) := lim⌥�

U

Ȟ
1(U ,G ),

where the direct limit is taken over equivalence classes of covers.

If G is a sheaf of abelian groups on X , we have an isomorphism

Ȟ
1(X ,G ) �= H

1(X ,G ).
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Vector Bundles and Projective Bundles

Now X and F are varieties over k ,

G an algebraic group over k with action on F which is regular and

e⌅ective i.e,

G ◊ F � F is a morphism and if gf = f for all f ⇥ F then g = 1.

Denote by Gr the sheaf of groups on X given by

⇤(U,Gr ) = {morphisms U � G}.

7



Vector Bundles and Projective Bundles

An algebraic fibre bundle over X with structure group G and fibre F is a

pair (W ,⇥) where W is a variety and ⇥ : W � X is a morphism such

that there exist

i. an open cover U = (Ui )i�I of X and morphisms

⇤i : ⇥⇧1(Ui )� Ui ◊ F such that the diagram

⇥⇧1(Ui ) Ui ◊ F

Ui

⇥i

⇤ pr1

commutes,

ii. for each pair (i , j) ⇥ I ◊ I a section gij ⇥ ⇤(Ui ⇤Uj ,Gr ) such that for

all x ⇥ Ui ⇤ Uj and all f ⇥ F we have

⇤i⇤
⇧1
j (x , f ) = (x , gij(x)f ).
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Vector Bundles and Projective Bundles

Notice that since we assumed the action to be e⌅ective, the sections gij
satisfy the coycle conditions.

Example

1. F = Ar , G = GL(r , k) � rank r vector bundle over X .

2. F = Pr , G = PGL(r +1, k), we speak of a Pr -bundle over X .

3. If E is a rank r + 1 vector bundle we can simply replace each

fibre by Pr and replace the sections gij by their classes in

PGL(n + 1, k). This is now a Pr -bundle.

We denote this bundle by PX (E). It is called the

projectivization of E .
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Vector Bundles and Projective Bundles

Sending

[(⇤i⇤
⇧1
j

���
Ui⌅Uj

)i,j ] ⇧� [(gij)ij ]

gives an isomorphism of isomorphism classes of fibre bundles with

structure group G , fibre F over X that are trivialised by U and Ȟ
1(U ,G ).

� isomorphism of isomorphism classes of fibre bundles with structure

group G , fibre F over X and Ȟ
1(X ,G ). The distinguished element on

the left hand side is the trivial bundle X ◊ F .

This gives several important identifications for a variety X :

1. Ȟ
1(X ,O⇤

X )
�= Pic(X ),

2. Ȟ
1(X ,GL(r ,OX )) �=

{iso. classes of rank r vector bundles on X},

3. Ȟ
1(X ,PGL(r + 1,OX )) �= {iso. classes of Pr -bundles on X}.
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GAGA Theorems

Let X be a smooth quasi-projective variety over C. We can view X as a

subset of some CPn and endow the set X with the subspace topology,

� X
an the analytification of X .

It is a complex manifold in a natural way and if X is projective then X
an

is compact.

The analytic topology is finer than the Zariski topology and every regular

function is holomorphic, hence we have a morphism of ringed spaces

(X an,OX an)� (X ,OX ).
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GAGA Theorems

A coherent sheaf on X
an is a coherent analytic sheaf. To any coherent

sheaf F on X we can assign a coherent analytic sheaf by

F ⇧� i
⇧1

F  i⇥1OX
OX an = i

⇤
F =: Fan

called the analytification of F .

Notice that this maps locally free sheaves to locally free sheaves and

O
an
X = OX an .

It is a non-trivial theorem of Oka that OX an is indeed a coherent

analytic sheaf.
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GAGA Theorems

Theorem (Serre ’56)
Let X be a smooth projective variety over C, then

1. For every coherent sheaf F on X and every q ⌦ 0, there is an

isomorphism

H
q(X ,F)� H

q(X an,Fan).

2. There is a bijection

HomOX (F ,G)� HomOXan (F
an,Gan).

3. For every coherent analytic sheaf G on X
an

there is a coherent sheaf

F on X unique up to unique isomorphism such that F
an = G.

Furthermore, if G is locally free, so is F .
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The Exponential Sequence for a Surface

In particular:

H
q(X ,OX ) �= H

q(X an,OX an) for all q ⌦ 0 and Pic(X ) �= Pic(X an)

Now let S be a smooth projective surface we have the exponential

sequence

0 ZSan OSan O
⇤
San 0f ⌃⌥e2�if

from which we obtain the exact sequence

H
1(San,OSan) ⌥� H

1(San,O⇤
San) ⌥� H

2(San,ZSan) ⌥� H
2(San,OSan)
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The Exponential Sequence for a Surface

We have an isomorphism Pic(S) �= H
1(San,O⇤

San). Since S
an is locally

contractible we have H
2(San,ZSan) �= H

2(San,Z).

The exponential sequence gives the first Chern class map

c1 : Pic(S)� H
2(San,Z), OS(D) ⇧� c1(OS(D))

which preserves the intersection product

D.D ⇥ = c1(OS(D)) ↵ c1(OS(D
⇥))

(because the intersection product is Poincaré dual to the cup product).
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Rational Varieties

A variety X over k is called rational if X is birational to Pn
k for some n.

This is equivalent to saying that K (X ) �= k(x1, . . . , xn).

An example of a rational surface is P1
◊ P1. It is birational to P2.

An example of a variety that is not rational is the curve given by

V (Y 2
Z ⌥ X

3 ⌥ XZ
2), it has genus one while P1 has genus zero.
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Two Useful Facts

1. Let f : S � C be a surjective morphism from a surface to a smooth

curve. Then for any fibre F of f we have F
2 = 0:

Let F = f
⇧1(x), then NF/S = f

⇤
Nx/C = f

⇤
Ox = OF since any line

bundle over a point is trivial. Thus F 2 = degF (NF/S) = degF OF = 0.

2. Let S be a surface, D an e⌅ective divisor on S and C an irreducible

curve on S with C
2 ⌦ 0. Then D.C ⌦ 0:

We write D = D
⇥ + nC where D

⇥ does not contain C and n ⌦ 0 because

D is e⌅ective. Then D.C = D
⇥.C + nC

2 ⌦ 0.
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Ruled and Geometrically Ruled Surfaces

Definition
A surface S is called ruled if there is a smooth curve C and a

birational map S C ◊ P1.

Definition
Let C be a smooth curve. A geometrically ruled surface over C is

a pair (S , p) consisting of a surface S and a smooth morphism

p : S � C whose fibres are isomorphic to P1.

In particular the smooth morphism p is surjective. Most of the time we

suppress the morphism p and say: “Let S be a geometrically ruled

surface over C”.
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Ruled and Geometrically Ruled Surfaces
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Ruled and Geometrically Ruled Surfaces

Warning: Some authors (e.g. Harthorne) use the word ruled for

what we call geometrically ruled and use birationally ruled for what

we call ruled.
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Ruled and Geometrically Ruled Surfaces

Let C be a smooth curve.

Example

1. The surface C ◊ P1 is a ruled surface and a geometrically

ruled over C .

2. Let E be a rank 2 vector bundle over C , then the associated

projective bundle PC (E) is a ruled surface (since it is locally

trivial) and via the bundle projection ⇥ : PC (E)� C it

becomes a geometrically ruled surface over C .

3. Every rational surface is ruled.
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Not Every Ruled Surface is Geometrically Ruled

The surface P2 is not a geometrically ruled surface over any curve C :

Suppose p : P2 � C is a smooth morphism to a smooth projective curve

C . Let F be a fibre of p, then F
2 = 0.

Since F is a non-zero e⌅ective divisor on P2 we have F � dH for some

d > 0 and some line H in P2. We find F
2 = (dH)2 = d

2 > 0 which is a

contradiction.
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Noether-Enriques Theorem

Are there examples of surfaces that are geometrically ruled over

some curve but are not ruled?
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The Noether-Enriques Theorem

Theorem (Noether-Enriques)
Let S be a surface and p : S � C a morphism to a smooth curve C.

Suppose that there exists x ⇥ C such that p is smooth over x and

p
⇧1(x) �= P1

. Then there is an open neighbourhood U of x and an

isomorphism ⇤ : p⇧1(U)� U ◊ P1
such that the diagram

p
⇧1(U) U ◊ P1

U

⇥

p pr1

commutes. In particular S is ruled.
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The Noether-Enriques Theorem

From the Noether-Enriques Theorem we immediately see that any

geometrically ruled surface is ruled, we can choose an point of C and

apply the theorem.

Denote the fibre of the point from the theorem by F = p
⇧1(x). We will

proceed in three steps:

1. Prove that H2(S ,OS) = 0.

2. Use the previous fact to construct a divisor H of S with H.F = 1.

3. Use this H to construct the isomorphism.
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Proof of the Noether-Enriques Theorem: Step 1

Proof.

Since F is a fibre we have . The genus formula reads

=⌃ F .K = ⌥2

Suppose now that , by Serre duality

so there is with (because |K | �= �).

Then but also because D is e⌅ective,

F is irreducible with F
2 ⌦ 0, a contradiction, so
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Proof of the Noether-Enriques Theorem: Step 2

Recall the homomorphism c1 : Pic(S) �= Pic(San)� H
2(San,Z) satisfies

Serre’s GAGA Theorem 1 and step 1, give

=⌃ c1 is surjective.

Let f = c1(OS(F )) it su⇧ces to show that there is

(because we can choose any preimage to obtain the desired H).
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Proof of the Noether-Enriques Theorem: Step 2

The cup product is bilinear

=⌃ I =

is an ideal in Z. So there is a d ⇥ Z with I = dZ.

We want to show that

Consider the Z-linear map

H
2(San,Z)� Z, a ⇧� 1

d
(a ↵ f )

By Poincaré duality

.
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Proof of the Noether-Enriques Theorem: Step 2

=⌃ there is f ⇥ ⇥ H
2(San,Z) with

for all a ⇥ H
2(San,Z)

for all a ⇥ H
2(San,Z) and thus

⇥ H
2(San,Z)/torsion

since the cup product is a perfect pairing on H
2(San,Z)/torsion.

Let then

Let C ⇥ be an irreducible curve on S , write c1(OS(C ⇥)) = c
⇥, then

c
⇥ ↵ c

⇥ + c
⇥ ↵ k is even since
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Proof of the Noether-Enriques Theorem: Step 2

If D =
⇥

i niC
⇥
i is any divisor on S and c

⇥
i = c1(OS(C ⇥

i )). We compute

⇤⌅

i

nic
⇥
i

⇧
↵
⇤⌅

i

nic
⇥
i

⇧
+

⇤⌅

i

nic
⇥
i

⇧
↵ k

=
⌅

i �=j

ninj(c
⇥
i ↵ c

⇥
j ) +

⌅

i

n
2
i (c

⇥
i ↵ c

⇥
i ) +

⌅

i

ni (c
⇥
i ↵ k)

�
⌅

i

ni (c
⇥
i ↵ c

⇥
i + c

⇥
i ↵ k) � 0mod 2.
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Proof of the Noether-Enriques Theorem: Step 2

We have and

=⌃ and

=⌃ f
⇥ ↵ f

⇥ + f
⇥ ↵ k = ⌥ 2

d
.

But f ⇥ ↵ f
⇥ + f

⇥ ↵ k has to be an even number, so .
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Proof of the Noether-Enriques Theorem: Step 3

Let H be a divisor of S with H.F = 1. Since

for all r ⇥ Z we have an exact sequence

0 OS(H + (r ⌥ 1)F ) OS(H + rF ) OF (1) 0

which induces an exact sequence of C-vector spaces

H
0(S ,OS(H + rF )) H

0(F ,OF (1))

H
1(S ,OS(H + (r ⌥ 1)F )) H

1(S ,OS(H + rF )) 0

ar

cr

br
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Proof of the Noether-Enriques Theorem: Step 3

OS(H + rF ) is coherent for every r ⇥ Z, so

hr = .

br is surjective for every r ⇥ Z we obtain a decreasing sequence

· · · ⌦ hr⇧1 ⌦ hr ⌦ · · ·

which must stabilise.

=⌃ there is an r ⇥ Z such that br is an isomorphism.

By exactness we have

im ar = ker cr and im cr = ker br = 0

=⌃ im ar = H
0(F ,OF (1)).
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Proof of the Noether-Enriques Theorem: Step 3

Choose s0, s1 ⇥ H
0(S ,OS(H + rF )) with

let V = span(s0, s1), V = P(V ) and let P the corresponding linear

system.

=⌃ (BsV) ⇤ F =

Let ⇤ be an irreducible component in BsV, then
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Proof of the Noether-Enriques Theorem: Step 3

Claim: ⇤ is contained in a fibre.
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Proof of the Noether-Enriques Theorem: Step 3
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Proof of the Noether-Enriques Theorem: Step 3

Suppose ⇤1, . . . , ⇤k are the irreducible fixed components of P and ⇤ is

contained in Fi = p
⇧1(xi ) distinct from F .

Every element of P is of the form

n1⇤1 + · · ·+ nk⇤k + D
⇥ with ni ⇥ Z>0

where D
⇥ moves in a 1-dimensional linear system without fixed points

contained in fibres Fk+1 = p
⇧1(xk+1), . . . ,Fl = p

⇧1(xl) distinct from F .
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Proof of the Noether-Enriques Theorem: Step 3

Let xl+1, . . . , xm be the points of X with reducible or non-reduced fibre

and set
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Proof of the Noether-Enriques Theorem: Step 3

P
⇥ = the restriction of P to p

⇧1(U),

=⌃ P
⇥

Let D ⇥ V then

so

=⌃ D intersects every fibre.

If F ⇥ is a fibre such that F ⇥ and D have no common irreducible

component

=⌃ F
⇥ and D meet transversally in one point.
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Proof of the Noether-Enriques Theorem: Step 3

Claim: D is the union of a section and fibres.
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Proof of the Noether-Enriques Theorem: Step 3
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Proof of the Noether-Enriques Theorem: Step 3

Claim: Every element in P
⇥ is a section of p.
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Proof of the Noether-Enriques Theorem: Step 3

Let

where Ct is the unique element in P
⇥ passing through y

Let

,

then for

is one point hence h is an isomorphism.
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Every Geometrically Ruled Surface is a P1-bundle

Proposition
Let C be a smooth curve and S a geometrically ruled surface over C.

Then there is a rank 2 vector bundle E over C and an isomorphism

⇤ : S � PC (E) such that the diagram

S PC (E)

C

⇥

p ⇤

commutes. Furthermore two P1
-bundles PC (E) and PC (E ⇥) are

isomorphic (as bundles over C) if and only if there is a line bundle L on

C with E
⇥ �= E  L.
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Every Geometrically Ruled Surface is a P1-bundle

Proof.

By the Noether-Enriques Theorem there is an open cover {Ui}i�I of C

and isomorphism ⇤i : p⇧1(Ui )� Ui ◊ P1 such that the diagram

p
⇧1(Ui ) Ui ◊ P

Ui

⇥i

commutes, so S is a P1-bundle over C .

We have to show that every P1-bundle over C is the projectivization of a

rank two vector bundle on C .

Recall the identifications of Ȟ1(C ,GL(2,OC )) and Ȟ
1(C ,PGL(2,OC ))

with the isomorphism classes of rank two vector bundles and P1-bundles

on C respectively.
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Every Geometrically Ruled Surface is a P1-bundle

From the exact sequence of sheaves of groups

1 O
⇤
C GL(2,OC ) PGL(2,OC ) 1

we obtain an exact sequence of pointed sets

Ȟ
1(C ,O⇤

C ) ⌥� Ȟ
1(C ,GL(2,OC )) ⌥� Ȟ

1(C ,PGL(2,OC )) ⌥� Ȟ
2(C ,O⇤

C )

By a theorem of Serre we have Ȟ
2(C ,O⇤

C ) = H
2(C ,O⇤

C ) = 0

=⌃ every P1-bundle on C is the projectivization of a rank two vector

bundle on C .

The first map is given by the tensor product action of Pic(C ) on

Ȟ
1(C ,GL(2,OC )). By exactness we yield the second claim.
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Minimal Models of C ◊ P1 for C Smooth Irrational

We want to classify the minimal models of surfaces birational to C ◊ P1

where C is a smooth irrational curve.

Lemma
Let C be a smooth curve and p : S � C a surjective morphism with

connected fibres. Let F =
⇥

i niCi be a reducible fibre, where the Ci ’s

are distinct and irreducible. Then C
2
i < 0.

Proof.

We have ni ⌦ 0 for all i . Notice that

niC
2
i = Ci .(F ⌥

⌅

i �=j

njCj).

Since F is a fibre we have Ci .F = 0 and furthermore Ci .Cj ⌦ 0 for all

i �= j . Finally there must be at least one j with Ci ⇤ Cj �= � because F is

connected.
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Minimal Models of C ◊ P1 for C Smooth Irrational

Lemma
Let S be a minimal surface, C a smooth curve and p : S � C a surjective

morphism with general fibre isomorphic to P1
. Then S is geometrically

ruled by p.

Proof.

Let F be a general fibre of p, then F
2 = 0

=⌃ by the genus formula.

Since all fibres are algebraically equivalent
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Minimal Models of C ◊ P1 for C Smooth Irrational

Case 1: F is an irreducible fibre.

Let F be irreducible and suppose with n > 1

Also

So F
⇥2 + F

⇥.K = ⌥1 but we know F
⇥2 + F

⇥.K has to be even thus .

The genus formula then gives
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Minimal Models of C ◊ P1 for C Smooth Irrational

Case 2: F is a reducible fibre.

Let F =
⇥

i niCi be reducible. By the previous lemma for all i .

The genus formula gives

thus

But then Ci is a (⌥1)-curve on S , contradicting the minimality of S .
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Minimal Models of C ◊ P1 for C Smooth Irrational

Therefore and hence which contradicts .

We have shown that there can’t be any reducible fibres, so we are done.
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Minimal Models of C ◊ P1 for C Smooth Irrational

Theorem
Let C be a smooth irrational curve. The minimal models of C ◊ P1

are

exactly the geometrically ruled surfaces over C , i.e. the projective

bundles PC (E) for some rank two vector bundle E on C.

Proof.

Let p : S � C be a geometrically ruled surface.

Suppose S contains an exceptional curve E . Since E
2 = ⌥1, the curve E

cannot be a fibre of p.

Thus p(E ) = C which is impossible since C is irrational =⌃ S is a

minimal surface.
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Minimal Models of C ◊ P1 for C Smooth Irrational

Now let S be a minimal surface, ⇤ : S ⇥⇥⇤ C ◊ P1 a birational map and

q : C ◊ P1 � C the projection onto the first factor.

By composing, we obtain a rational map q ✏ ⇤ : S ⇥⇥⇤ C .

By elimination of indeterminacy there is a surface S
⇥, a morphism

⌅ : S ⇥ � S obtained from a finite number of blow-ups ⇧1, . . . , ⇧n and a

morphism f : S ⇥ � C such that the diagram

S
⇥

S C

⌅ f

q ⇥

commutes.
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Minimal Models of C ◊ P1 for C Smooth Irrational

Suppose n > 1 is the minimal number of blow-ups needed for such a

diagram to exist.

Let E be the exceptional curve of ⇧n, it is impossible that f (E ) = C ,

because C is irrational

=⌃ E is mapped to a point, so f = f
⇥ ✏ ⇧n which contradicts the

minimality of n

=⌃ n = 1 and q ✏ ⇤ is a morphism with general fibre isomorphic to P1.

Now apply the previous lemma to conclude.
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Summary

To sum up today’s results:

1. Every geometrically ruled surface is ruled.

2. Every geometrically ruled surface is isomorphic to the

projectivization of a rank two vector bundle over a smooth

curve.

3. Every geometrically ruled surface over an irrational curve is

minimal.

4. If C is an irrational curve, the minimal models of C ◊ P1 are

exactly the geometrically ruled surfaces over C .
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Questions?
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✗→ Speck proper scheme of finite type such
that

FLIK field extension and XL :=X¥L =P}
T
isone . of
L- schemes

It is enough to take - L=E algebraic closure ,
or

L a finite Galois extension of K .

Example : . ✗ = IPE

• K=lR
,
✗ = Pnoj Rko >

✗ i. xz] / ( ✗Stx? + ✗E)
✗
¢
= Proj QEXO , ✗i.✗ a ] / (xEt✗? +✗E) = PI

but ✗ =/ IPFR ✗ ( 1121--0



trop ✗ BS - variety over K of olim 1 .

1) ✗ is a comic in IPL : 3- qe
f- Exo , × , ,✗z ] z

s -

t
.

✗= Png Kao ,
✗
i.
✗e) / (g)

Qing Liu2) ✗ e PE ⇐> ✗ (K) =/ $ .

Algebraic Geometry

and arithmetic curves

PI 1) WE anti canonical line bundle . Oxford

deg WE = 2 ⇒ WE very ample

h9w) =3 =) the map
associated to 0¥ is

✗↳ BE
2) =) ) obvious .

⇐) by 1 you
know that ✗ ↳ PL.pe ✗ ( K ) .

Projection from p : IPE - {pl → IPE
,
restrict to ✗ . ☐



Theorem (Tsen) k algebraically closed field
-

C smooth pwj . curve
over k

FAK
= KCC) function field of C

⇒ every Brauer
- Sweri variety over K of

olive 1 is isoue
.

to PE .

-

• Brauer - Seoery varieties
• central simple algebras
• Brower group


	Appendix
	References


