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Plan for today:

1. Technical preliminaries

2. Define ruled and geometrically ruled surfaces
3. Prove the Noether-Enriques theorem
4

. Classify Minimal Models for C x P! where C is an irrational smooth
curve



surface = smooth projective surface over C

curve = projective curve over C

point := closed point

k is an algebraically closed field

If Sis a surface, C a curve an p: S — C a surjective morphism. We

always consider fibres with multiplicites i.e. as pull-back of divisors (or
scheme-theoretically).



Non-Abelian Cech Cohomology

X topological space,
G a sheaf of (not necessarily abelian) groups on X,
U = (U;)ier an open cover of X.
A Cech 1-cocycle of G on U is a tuple
(gi)ijer, where gj € T(U;in U;, G)
that satisfies the cocycle condition

8kj8ji = 8ki for all i,j,k el

wherever defined.



Non-Abelian Cech Cohomology

Two Cech 1-cocycles (gj) and (g;;) are called cohomologically equivalent
if there is (h;)ic; where h; € T(U;, G) such that

higij = gjjhj
for all i, j € | wherever defined.
This is an equivalence relation,
ﬁl(u, G) = {Cech 1-cocycles for G on U} /cohomological equivalence

first Cech cohomology of G on U.

It is a pointed set with distinguished element being the cohomology class
of the Cech 1-cocycle given by gjj =1 for all /, /.



Non-Abelian Cech Cohomology

Another open cover V = (V})jcy is a refinement of U there is a map
7:J — I such that V; C U for all j € J.

We get a well-defined map (does not depend on the choice of 7)

™ H U, G) — H'(V, G)
(giir) — (gf(j)T(j/)

Vjﬂ\/jl)
U and V are equivalent if both are refinements of each other

U and V equivalent = 7 is an isomorphism



Non-Abelian Cech Cohomology

The first Cech cohomology of G on X is

(X, G) = %gﬁl(u, G),

where the direct limit is taken over equivalence classes of covers.

If G is a sheaf of abelian groups on X, we have an isomorphism

H(X, G) = HY(X, G).




Vector Bundles and Projective Bundles

Now X and F are varieties over k,

G an algebraic group over k with action on F which is regular and
effective i.e,

G x F — F is a morphism and if gf = f for all f € F then g = 1.
Denote by G, the sheaf of groups on X given by

MU, G,) = {morphisms U — G}.



Vector Bundles and Projective Bundles

An algebraic fibre bundle over X with structure group G and fibre F is a
pair (W, m) where W is a variety and 7: W — X is a morphism such
that there exist

i. an open cover U = (U;);e; of X and morphisms
¢i: 7 Y(U;) — U; x F such that the diagram

T ;%UXF

N,

commutes,

ii. for each pair (i,j) € I x I a section g € ['(U; N U}, G,) such that for
all x € U;N U; and all f € F we have

i (x, ) = (x, g;(x)f)-



Vector Bundles and Projective Bundles

Notice that since we assumed the action to be effective, the sections gj;

satisfy the coycle conditions.

Example

1. F=A", G = GL(r, k) ~ rank r vector bundle over X.

2. F=P", G =PGL(r+1,k), we speak of a P"-bundle over X.

3. If £ is a rank r 4 1 vector bundle we can simply replace each
fibre by IP" and replace the sections gj; by their classes in
PGL(n + 1, k). This is now a P"-bundle.
We denote this bundle by Px (). It is called the
projectivization of £.




Vector Bundles and Projective Bundles

Sending
ois| il gl

U,'ﬁUj
gives an isomorphism of isomorphism classes of fibre bundles with
structure group G, fibre F over X that are trivialised by &/ and HI(U, G).

~~ isomorphism of isomorphism classes of fibre bundles with structure
group G, fibre F over X and ﬁl(X, G). The distinguished element on

the left hand side is the trivial bundle X x F.

This gives several important identifications for a variety X:

1. HY(X, 0%) = Pic(X),
2. HY(X, GL(r, Ox)) =
{iso. classes of rank r vector bundles on X},
3. HY(X,PGL(r + 1,0x)) = {iso. classes of P"-bundles on X}.
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GAGA Theorems

Let X be a smooth quasi-projective variety over C. We can view X as a
subset of some CP"” and endow the set X with the subspace topology,

~ X" the analytification of X.

It is a complex manifold in a natural way and if X is projective then X"

is compact.

The analytic topology is finer than the Zariski topology and every regular
function is holomorphic, hence we have a morphism of ringed spaces
(Xan7 Oxan) = ()(7 OX)
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GAGA Theorems

A coherent sheaf on X2" is a coherent analytic sheaf. To any coherent
sheaf F on X we can assign a coherent analytic sheaf by

F s i F ®i-10, Oxon = i*F = F"

called the analytification of F.

Notice that this maps locally free sheaves to locally free sheaves and
O;n = Oxan.

It is a non-trivial theorem of Oka that Oxan is indeed a coherent
analytic sheaf.
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GAGA Theorems

Theorem (Serre '56)
Let X be a smooth projective variety over C, then

1. For every coherent sheaf F on X and every q > 0, there is an
isomorphism
HY(X,F) — HI(X", F").

2. There is a bijection
Homo, (F.G) — Homo,.,(F?",G").

3. For every coherent analytic sheaf G on X?" there is a coherent sheaf
F on X unique up to unique isomorphism such that Fo" = G.
Furthermore, if G is locally free, so is F.

13



The Exponential Sequence for a Surface

In particular:

HI(X,Ox) = HI(X?",Oxan) for all ¢ > 0 and Pic(X) = Pic(X")

Now let S be a smooth projective surface we have the exponential
sequence

27if

f
0 Zsan Osan i} O;an — 0

from which we obtain the exact sequence

HY(S™", Osan) — HY(S™, O%a) — H2(S?", Zgan) — H2(S?", Osan)
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The Exponential Sequence for a Surface

We have an isomorphism Pic(S) = H(5", O%..). Since S°" is locally
contractible we have H2(5%", Zs..) = H2(S", Z).

The exponential sequence gives the first Chern class map
a: Pic(S) — H3(S™,Z), Os(D) — c1(0s(D))
which preserves the intersection product
D.D' = ¢;(Os(D)) U c1(0Os(D"))

(because the intersection product is Poincaré dual to the cup product).
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Rational Varieties

A variety X over k is called rational if X is birational to P} for some n.
This is equivalent to saying that K(X) = k(xi, ..., Xp).
An example of a rational surface is P! x P!. It is birational to P2.

An example of a variety that is not rational is the curve given by
V(Y2Z — X3 — XZ?), it has genus one while P! has genus zero.
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Two Useful Facts

1. Let f: S — C be a surjective morphism from a surface to a smooth
curve. Then for any fibre F of f we have F? = 0:

Let F = f~1(x), then Np/s = f*N,,c = f*Ox = OF since any line
bundle over a point is trivial. Thus F? = degr(Ng/s) = dege OF = 0.

2. Let S be a surface, D an effective divisor on S and C an irreducible
curve on S with C2 > 0. Then D.C > 0:

We write D = D’ + nC where D’ does not contain C and n > 0 because
D is effective. Then D.C = D’.C + nC? > 0.
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Ruled and Geometrically Ruled Surfaces

Definition

A surface S is called ruled if there is a smooth curve C and a
birational map S ----- » C x PL.

Definition

Let C be a smooth curve. A geometrically ruled surface over C is
a pair (S, p) consisting of a surface S and a smooth morphism
p: S — C whose fibres are isomorphic to P*.

In particular the smooth morphism p is surjective. Most of the time we
suppress the morphism p and say: “Let S be a geometrically ruled

surface over C".
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Ruled and Geometrically Ruled Surfaces

Av/l €x MV/L a][ o acauL'o«lé/rraLd(Su]&‘L



Ruled and Geometrically Ruled Surfaces

Warning: Some authors (e.g. Harthorne) use the word ruled for
what we call geometrically ruled and use birationally ruled for what
we call ruled.
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Ruled and Geometrically Ruled Surfaces

Let C be a smooth curve.

Example
1. The surface C x P! is a ruled surface and a geometrically

ruled over C.

2. Let £ be a rank 2 vector bundle over C, then the associated
projective bundle P¢(€) is a ruled surface (since it is locally
trivial) and via the bundle projection 7: Pc(€) — C it
becomes a geometrically ruled surface over C.

3. Every rational surface is ruled.
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Not Every Ruled Surface is Geometrically Ruled

The surface P? is not a geometrically ruled surface over any curve C:
M- C

Suppose p: P2 — C is a’smooth morphism to a smooth projective curve

C. Let F be a fibre of p, then F2 =0.

Since F is a non-zero effective divisor on P2 we have F ~ dH for some

d > 0 and some line H in P2. We find F? = (dH)? = d? > 0 which is a
contradiction.
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Noether-Enriques Theorem

Are there examples of surfaces that are geometrically ruled over
some curve but are not ruled?
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The Noether-Enriques Theorem

Theorem (Noether-Enriques)
Let S be a surface and p: S — C a morphism to a smooth curve C.

Suppose that there exists x € C such that p is smooth over x and
p~t(x) = PL. Then there is an open neighbourhood U of x and an
isomorphism ¢: p~(U) — U x P! such that the diagram

pt(U) ————  Ux P!
commutes. In particular S is ruled.
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The Noether-Enriques Theorem

From the Noether-Enriques Theorem we immediately see that any
geometrically ruled surface is ruled, we can choose an point of C and
apply the theorem.

Denote the fibre of the point from the theorem byIF = p‘l(x)l We will
proceed in three steps:

1. Prove that H(S,0s) = 0.
2. Use the previous fact to construct a divisor H of S with H.F = 1.

3. Use this H to construct the isomorphism.
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Proof of the Noether-Enriques Theorem: Step 1

Proof. -
Since F is a fibre we have F =& . The genus formula reads

O =5 (F) = 1+£(F*FK)=T{EK
— F.K=-2

o
Suppose now that H%(S,&) & © | by Serre duality H /:S" w_;)
sothereis Dz © with DA K (because |K| # 0).

ThenF D=F K=-2 butalso 7~ 22 O because D is effective,

F is irreducible with F2 > 0, a contradiction, so

_zp__Ha(S/ G:) = O.
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Proof of the Noether-Enriques Theorem: Step 2

Recall the homomorphism ¢;: Pic(S) = Pic(5") — H?(S", Z) satisfies
D. D'= ¢/ (S (0N v ¢ (FC0Y

Serre's GAGA Theorem 1 and step 1, give

O ZKSQ)AH(S )

—> (1 Is surjective.

Let f = c1(Os(F)) it suffices to show that there is
oo HYs= @ whk Lo« A7

(because we can choose any preimage to obtain the desired H).
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Proof of the Noether-Enriques Theorem: Step 2

The cup product is bilinear
H*(5*, 2)
— = Z'a,u / a. € /
is an ideal in Z. So there is a d € Z with | = dZ.

We want to show that L =2 <

Consider the Z-linear map
1
H?(S*",Z) - Z, a+s g(au f)

By Poincaré duality

Homg, [ He(5%%),2) = Ho(s* 2)/ fesiom
= HZZSOA/Z)/-)L«G-‘M
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Proof of the Noether-Enriques Theorem: Step 2

= there is f’ € H?(5",Z) with

QUF;i(dU F] for all a € H?(S", 7Z)

for all a € H2(S",Z) and thus

OL[,= _() € H?(S", Z)/torsion

since the cup product is a perfect pairing on H?(S", Z)/torsion.
Let ﬁ_ =Cq [W_,) then

FUA‘ FK= 2.

Let C’ be an irreducible curve on S, write ¢;(Os(C’')) = ¢/, then
c"Uc’ + ¢ Uk is even since
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Proof of the Noether-Enriques Theorem: Step 2

clve+ c'vkh = ctirct k=2 [{’a (c') "7)

If D=73",n;iC/ is any divisor on S and ¢/ = c1(Os(C/)). We compute

(5w (S ne) + (S o

1

7Znnchc +Z (cfuch) Zn,-(c,-’uk)

i#j i
_Z cluc +c Uk)=0mod2.
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Proof of the Noether-Enriques Theorem: Step 2

we have fof= F2o O ama fo kb = FK="%
' [ 1[‘ A = 4 _(ul': —-'2—
:>va_,_._0and 2(./ ol <

— f’Uf’—}—f’Uk:—g.

But f" U f’" 4+ f' U k has to be an even number, so

— ok =%,
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Proof of the Noether-Enriques Theorem: Step 3

Let H be a divisor of S with H.F = 1. Since

ohes 5 B (Hlly =(HeeF) F="1
for all r € Z we have an exact sequence

0 —— Os(H+(r—1)F) —— Os(H+rF) —— Op(1) —— 0
which induces an exact sequence of C-vector spaces

HO(S,Os(H + rF)) ———— HO(F, Op(1)) U

Cr

[ﬁ HY(S,0s(H + (r — 1)F)) LN HY(S,0s(H+ rF)) —— 0
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Proof of the Noether-Enriques Theorem: Step 3

Os(H + rF) is coherent for every r € Z, so
b= img WS O F) <o
b, is surjective for every r € Z we obtain a decreasing sequence
o> h > h >

which must stabilise.
= there is an r € Z such that b, is an isomorphism.

By exactness we have
ima, = kerc, and imc, = kerb, =0

= ima, = H(F, Og(1)).
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Proof of the Noether-Enriques Theorem: Step 3

Choose sg, 51 € H(S,Os(H + rF)) with
0.(8) =% ad a. (SO=x
let V = span(sp,s1), ¥V =P(V) and let P the corresponding linear

system.

= (BsV)NF = ﬁ

Let [ be an irreducible component in BsV, then

. F=0&
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Proof of the Noether-Enriques Theorem: Step 3

Claim: T is contained in a fibre.
< e [ is met o in o {/,A By
ff 7[.'../( o f.ly« F’ :.J. PC«e/L F /(G,V'L

MO Ceowmii o |'M¢O‘L‘4-C:L’<~ Cm-famls

— FI"z 1
Cmir-\d(v‘cl'a, F_"_"’-D.

Wwe Com
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Proof of the Noether-Enriques Theorem: Step 3
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Proof of the Noether-Enriques Theorem: Step 3

Suppose 1, ...,k are the irreducible fixed components of P and I;is
contained in F; = p~1(x;) distinct from F.

Every element of P is of the form

I .
mly+ -+ nl g+ D" with n; € Z~g cwpmj's

where D' moves in a 1-dimensional linear system without fixed peifits
bo-Sa- Iocwj 07[ A oL:’ l< Fa.'é. = ém""?/'osj}'

contained in fibres Fxi1 = p~*(xk11), ..., F = p~1(x) distinct from F.

37



Proof of the Noether-Enriques Theorem: Step 3

Let x/41,...,Xn be the points of X with reducible or non-reduced fibre
and set
1t
o
o = C N\ Lx—pens oo o
</ MA‘S




Proof of the Noether-Enriques Theorem: Step 3

P’ = the restriction of P to p~1(

= P s ba_y__ Fo;tn‘l ‘(:"‘L

Let D € V then F

D’ZO, Df\_ H'l--(
D_F*(H*-v;:)- F"’ 7

= D intersects every fibre.

SO

If F/ is a fibre such that F’ and D have no common irreducible

component

= F’ and D meet transversally in one point.
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Proof of the Noether-Enriques Theorem: Step 3

Claim: D is the union of a section and fibres.

\n/l- Ka—vz
D =my C, 4---+¢«S-C_g.”‘;k€% y m
v qu__.., L, @< e i f
codacd n o (Lfc /E Aas wmo come
imveol. GMFW€ wtu o> {:LA
= 1= 0. Fom . FramtmsGFIEF
= E£. F
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Proof of the Noether-Enriques Theorem: Step 3

=2 & Im b 3‘—0{5 evsy” )[‘/r/\ ql-rams NN {5/ i
g~ Fo,\m -ﬁ va-oL— E ’s )'/M-GLAC:M_,

@’ g

T4:s Carned A*f/)”'
W’fg/{ the o esind secdre 1°>/
'o'q(x\ n&

X —> F&bﬂé ]
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Proof of the Noether-Enriques Theorem: Step 3

Claim: Every element in P’ is a section of p.

We A ave P"-\-—' /P4 So F"Zceléé‘[ﬂ}

amch :,'/ Cé’ C{_/é' F’ W;K C{, £ Cé,
l P.

74

&:.fff& Cé Canv(aé-g & fAK .,l,é,,,

. F=1 =2 LunFrd o GaCp# D

¢ )

= v o lase loccs of ‘05 L A/;f
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Proof of the Noether-Enriques Theorem: Step 3

Let 3:,6"”(6‘«) — P
> t
where C; is the unique element in P’ passing through y
—_— P 3—4(-0 = Cé
14
Lt K ,0_7((4.7-’—" & <P
> /F()’7/2(>«7) ’

then for (5(,4)6' o x P 1
L7 = pleang’d =F () Ce

is one point hence h is an isomorphism.
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Every Geometrically Ruled Surface is a P!-bundle

Proposition
Let C be a smooth curve and S a geometrically ruled surface over C.

Then there is a rank 2 vector bundle £ over C and an isomorphism
¢: S — Pc(€) such that the diagram

S—— 2% L P(E)

NoA

commutes. Furthermore two P-bundles Pc(€) and Pc(E') are
isomorphic (as bundles over C) if and only if there is a line bundle L on
CwithE 2ERL.
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Every Geometrically Ruled Surface is a P!-bundle

Proof.
By the Noether-Enriques Theorem there is an open cover {U;};c; of C
and isomorphism ¢;: p~1(U;) — U; x P! such that the diagram

pHU) —— P UixP

>,

commutes, so S is a P'-bundle over C.

We have to show that every Pl-bundle over C is the projectivization of a
rank two vector bundle on C.

Recall the identifications of FI*(C, GL(2,0¢)) and H'(C,PGL(2,O¢))
with the isomorphism classes of rank two vector bundles and P*-bundles
on C respectively.
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Every Geometrically Ruled Surface is a P!-bundle

From the exact sequence of sheaves of groups
1— 0f — GL(2,0¢c) —— PGL(2,0¢) —— 1
we obtain an exact sequence of pointed sets
HY(C,0%) — HY(C,GL(2,0¢)) — HY(C,PGL(2,0¢)) — H2(C,0%)

By a theorem of Serre we have H?(C,0%) = H*(C,0%) =0

— every Pl-bundle on C is the projectivization of a rank two vector
bundle on C.

The first map is given by the tensor product action of Pic(C) on
H'(C,GL(2,0¢)). By exactness we yield the second claim.
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Minimal Models of C x P! for C Smooth Irrational

We want to classify the minimal models of surfaces birational to C x P!
where C is a smooth irrational curve.

Lemma

Let C be a smooth curve and p: S — C a surjective morphism with
connected fibres. Let F =Y. n;C; be a reducible fibre, where the C;’s
are distinct and irreducible. Then C? < 0.

Proof.
We have n; > 0 for all i. Notice that

n,-C,-2 = C,(F — Z njCj).
i)
Since F is a fibre we have C;.F = 0 and furthermore C;.C; > 0 for all

i # j. Finally there must be at least one j with G; N C; # () because F is
connected.
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Minimal Models of C x P! for C Smooth Irrational

Lemma
Let S be a minimal surface, C a smooth curve and p: S — C a surjective

morphism with general fibre isomorphic to P*. Then S is geometrically
ruled by p.

Proof.
Let F be a general fibre of p, then F2 =0

— F k‘-‘ "2 by the genus formula.

Since all fibres are algebraically equivalent

b Bob4 eqatlrs Adok {a
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Minimal Models of C x P! for C Smooth Irrational

Case 1: F is an irreducible fibre.

Let F be irreducible and suppose = Fjwith n>1
= -2 =K. F=m(k.F)
(]
=7 M =Z ou.,z I(- F =-1
Also . 2 2
! 2
miF'= F2=0 = F =O
So F2 4+ F'.K = —1 but we know F’2 + F'.K has to be even thus #1=7.
The genus formula then gives F‘_ /F) =0

= =P
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Minimal Models of C x P! for C Smooth Irrational

Case 2: F is a reducible fibre.

2
Let F =), n;C; be reducible. By the previous Iemmaq <Ofor all /.
The genus formula gives

Co K> Z(pe (€C)-1) 32
thus
CL;-K ?/7 aﬂ( —;’-4
=F. (¢) =9
(=7 C¢L$‘7

But then C; is a (—1)-curve on S, contradicting the minimality of S.
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Minimal Models of C x P! for C Smooth Irrational

Therefore C:;.K?Oand hence FK?:’which contradicts FK'—' '.Z

We have shown that there can't be any reducible fibres, so we are done.
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Minimal Models of C x P! for C Smooth Irrational

Theorem
Let C be a smooth irrational curve. The minimal models of C x P! are

exactly the geometrically ruled surfaces over C, i.e. the projective
bundles Pc(E) for some rank two vector bundle € on C.

Proof.
Let p: S — C be a geometrically ruled surface.

Suppose S contains an exceptional curve E. Since E? = —1, the curve E
cannot be a fibre of p.

Thus p(E) = C which is impossible since C is irrational = S is a
minimal surface.
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Minimal Models of C x P! for C Smooth Irrational

Now let S be a minimal surface, ¢: S --» C x P! a birational map and
g : C x P! — C the projection onto the first factor.

By composing, we obtain a rational map go ¢: S --» C.
By elimination of indeterminacy there is a surface S’, a morphism

n: S’ — S obtained from a finite number of blow-ups 1, ...,¢, and a
morphism f: S’ — C such that the diagram

commutes.
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Minimal Models of C x P! for C Smooth Irrational

Suppose n > 1 is the minimal number of blow-ups needed for such a
diagram to exist.

Let E be the exceptional curve of &, it is impossible that f(E) = C,
because C is irrational

— E is mapped to a point, so f = f’ o &, which contradicts the
minimality of n

= n=1and go ¢ is a morphism with general fibre isomorphic to P.

Now apply the previous lemma to conclude.
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To sum up today's results:

1. Every geometrically ruled surface is ruled.

2. Every geometrically ruled surface is isomorphic to the
projectivization of a rank two vector bundle over a smooth
curve.

3. Every geometrically ruled surface over an irrational curve is
minimal.

4. If Cis an irrational curve, the minimal models of C x P! are
exactly the geometrically ruled surfaces over C.

55



Questions?
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