Invariants of surfaces and properties of Hirzebruch surfaces

Li Li

Humboldt-Universität zu Berlin

Berlin, 28 Jun 2021

1 Picard group of geometrically ruled surfaces

Properties of Hirzebruch surfaces

1 Picard group of geometrically ruled surfaces

Properties of Hirzebruch surfaces

B Hodge theory and invariants of surfaces

- Let C be a smooth projective curve and E a vector bundle over C of rank 2. Then S = P_C(E), p : S → C is a geometrically ruled surface over C.
- p^*E contains a line bundle N as a sub-bundle: above a point $s \in S$ corresponding to a line $D \subset E_{p(s)}$, we have $N_s = D$.
- The tautological bundle $\mathcal{O}_{S}(1)$ is defined by the exact sequence:

$$0 \longrightarrow N \longrightarrow p^*E \longrightarrow \mathcal{O}_S(1) \longrightarrow 0$$

- Assume that T is a variety and $f : T \rightarrow C$ a morphism.
- There is a one-to-one correspondence between the following two sets:

$$\{g: T \to S | pg = f\}$$

$$1:1$$

$$\{L \in \operatorname{Pic}(T) \text{ and surjective } v: f^*E \to L\}$$

where the map from upstairs to downstairs is given by taking $L = g^* \mathcal{O}_S(1)$ and $v = g^* u$, while the inverse is by $g : t \mapsto [\ker(v_t)]$.

• If we have shown this, by taking T = C and f = id, we see that giving a section $s: C \to S$ is equivalent to giving a rank 1 quotient of E.

- Given a C-morphism $g: T \to S$, let $L = g^* \mathcal{O}_S(1)$ and $v = g^* u$.
- For the exact sequence

$$0 \longrightarrow N \longrightarrow p^*E \xrightarrow{u} \mathcal{O}_S(1) \longrightarrow 0$$

taking fibers at g(t), we see that $ker(v_t) = N_{g(t)}$.

• Via the map from downstairs to upstairs, t is assigned to

 $[N_{g(t)}] = g(t)$ by the definition of N.

- Conversely, given a line bundle L and a surjective morphism $v: f^*E \to L$, we can immediately see that g(t) is corresponding to a subspace of $E_{f(t)}$, so it is on the fiber of f(t) along p, i.e. f = pg.
- Furthermore, L_t is the cokernel of the embedding $N_{g(t)} \subset E_{f(t)}$. So $L = g^* \mathcal{O}_{S}(1)$.

Remark

WLOG, let $s \in \mathbb{P}(E)$ corresponds to [1:0] of $\mathbb{P}(E_{p(s)})$. Then $\mathcal{O}(1)_s$ is generated by (0,1), or in other words, it is parametrized by $\frac{x_1}{x_0}$, whose vanishing degree is 1. This means that the restriction of $\mathcal{O}_S(1)$ at each fiber is equal to $\mathcal{O}_{\mathbb{P}^1}(1)$.

Proposition(III.18)

Let $S = \mathbb{P}_{C}(E)$ be a geometrically ruled surface over C, $p : S \to C$ the structure map. Write h for the class of $\mathcal{O}_{S}(1)$ in $\operatorname{Pic}(S)(\text{or in } H^{2}(S,\mathbb{Z}))$. Then:

(1)Pic(S) = p^* Pic(C) $\oplus \mathbb{Z}$; (2) $H^2(S,\mathbb{Z}) = \mathbb{Z}h \oplus \mathbb{Z}f$, where f is the class of a fiber; (3) $h^2 = \deg(E)$, where $\deg(E) = \deg(\det(E))$; (4) $[K] = -2h + (\deg(E) + 2g(C) - 2)f$ in $H^2(S,\mathbb{Z})$.

- We show that $\operatorname{Pic}(S) = p^*\operatorname{Pic}(C) \oplus \mathbb{Z}$.
- Let F be a fiber of p. Since $\mathcal{O}_{S}(1)|_{F} \cong \mathcal{O}_{\mathbb{P}^{1}}(1)$, h.F = 1
- Let $D \in Pic(S)$ such that D.F = m and D' := D mh. Then D'.F = 0.
- For any x ∈ C, we have p_{*}O(D')_x ⊗ k(x) ≅ H⁰(p⁻¹(x), O(D')_{p⁻¹(x)}) by Grauert's Theorem. The latter group is isomorphic to H⁰(P¹, O_{P¹}). So p_{*}O(D') is a line bundle.
- $\mathcal{O}(D') = p^* p_* \mathcal{O}(D')$
- We have a decomposition D = (D − mh) + mh with
 D − mh ∈ p*Pic(C), which is clearly unique. We proved (1).

For the claim H²(S, Z) = Zh ⊕ Zf, recall that H²(S, Z) is a quotient of Pic(S) by taking the induced long exact sequence of cohomology for the short exact sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_S \to \mathcal{O}_S^{\times} \to 0.$$

- Two points on C have the same cohomology class in $H^2(C,\mathbb{Z})\cong\mathbb{Z}$.
- Therefore $H^2(S, \mathbb{Z})$ is generated by f and h, which are linearly independent since $f^2 = 0$ and $f \cdot h = 1$.

To prove h² = deg(E), we use the following result: let E' be a vector bundle on a surface S with the exact sequence
 0 → L → E' → M → 0 with L, M ∈ Pic(S). Then

$$L.M = (-L).(-M)$$

= $\chi(\mathcal{O}_S) - \chi(L) - \chi(M) + \chi(L \otimes M)$
= $\chi(\mathcal{O}_S) - \chi(E') + \chi(\det E')$

- In particular, L.M is independent of the choice of L and M. Denote it by c₂(E').
- Whenever there is an exact sequence $0 \to L \to E \to M \to 0$, we have $c_2(p^*E) = p^*L.p^*M = 0$.

- Such an extension 0 → L → E → M → 0 exists, because p admits a section. As a result, c₂(p*E) = 0.
- Locally the morphism p looks like P¹_A → Spec(A) ⊂ C, so there is a section s : C --→ S. But every rational map starting from a curve is a morphism. So there is a section of p.
- On the other hand, the exact sequence $0 \to N \to p^*E \to \mathcal{O}_S(1) \to 0$ gives $h.N = c_2(p^*E) = 0$.
- $N = p^* \det E h \Rightarrow h^2 = h.p^* \det E = \deg(E).$

- To calculate [K], write [K] = ah + bf in $H^2(S, \mathbb{Z})$. Then $-2 = \deg(K_F) = K \cdot f + f^2 = a \Rightarrow a = -2.$
- Denote the class of the image of s in $Pic(S)(or in H^2(S, \mathbb{Z}))$ by [C].
- Since [C].f = 1, we write [C] = h + rf in $H^2(S, \mathbb{Z})$. Then 2g(C) 2 = ([K] + [C]).[C] gives $b = \deg(E) + 2g(C) 2$.

Picard group of geometrically ruled surfaces

Properties of Hirzebruch surfaces

B Hodge theory and invariants of surfaces

- Recall that every geometrically ruled surface over C is C-isomorphic to $\mathbb{P}_{C}(E)$ for some rank 2 vector bundle E.
- P_C(E) and ℙ_C(E') are C-isomorphic if and only if there exists a line bundle L on C such that E' ≅ E ⊗ L.
- (Birkhoff-Grothendieck)Every vector bundle on P¹ is decomposable
 i.e. in the form of O(e₁) ⊕ · · · ⊕ O(e_m).
- A Hirzebruch surface is a geometrically ruled surface over P¹. It is isomorphic to F_n := P(O ⊕ O(n)) for some n ≥ 0.

Proposition IV.1

(1)Pic(\mathbb{F}_n) = $\mathbb{Z}h \oplus \mathbb{Z}f$ with $f^2 = 0$, f.h = 1 and $h^2 = n$.

(2) If n > 0, there is a unique irreducible curve B on \mathbb{F}_n with negative self-intersection. If b is its class in $\operatorname{Pic}(\mathbb{F}_n)$, then b = h - nf, $b^2 = -n$. (3) \mathbb{F}_n and \mathbb{F}_m are not isomorphic unless m = n. \mathbb{F}_n is minimal except if n = 1. \mathbb{F}_1 is isomorphic to $\operatorname{Bl}_p \mathbb{P}^2$.

- Let s denote the section $\mathbb{P}^1 \to \mathbb{F}_n$ corresponding to $\mathcal{O}_{\mathbb{P}^1}$ as a quotient of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)$. Let b denote the class of s(C) in $\operatorname{Pic}(\mathbb{F}_n)$. We show that s(C) is the unique irreducible curve with negative self-intersection and calculate b.
- b = h + rf since b.f = 1.
- Recall that for the commutative diagram

we have $L = g^* \mathcal{O}_S(1)$ and the quotient $g^* u : f^* E \to L$. Replacing T by C, f by id and g by s, we find that $s^* \mathcal{O}_{\mathbb{F}_n}(1) = \mathcal{O}_{\mathbb{P}^1}$

• $h.b = \deg h|_b = \deg_C s^* h = 0$. So r = -n and $b^2 = (h - nf)^2 = -n$.

- We now prove the uniqueness.
- Let C' be an irreducible curve with negative self-intersection on \mathbb{F}_n other than s(C). Write $[C'] = \alpha h + \beta f$ in $\operatorname{Pic}(\mathbb{F}_n)$.
- Since f² = 0 and the intersection number of two different irreducible curves are non-negative, we have [C'].f ≥ 0 and [C'].b ≥ 0.

•
$$[C'].f = (\alpha h + \beta f).f = \alpha \ge 0$$
 and
 $[C'].b = (\alpha h + \beta f).(h - nf) = \alpha h^2 + (\beta - n\alpha)h.f = \beta \ge 0.$

• $[C']^2 = (\alpha h + \beta f)^2 \ge 0.$

- We are going to see that n is uniquely determined by 𝔽_n and to show that 𝔽_n is minimal except if n = 1.
- When n = 0, the total space over $U_0 := \{x_0 \neq 0\}$ is $\mathbb{P}^1_{U_0} = U_0 \times \mathbb{P}^1$, while that over $U_1 := \{x_1 \neq 0\}$ is $U_1 \times \mathbb{P}^1$. The total space over $U_0 \cap U_1 = \operatorname{Spec} k[x, \frac{1}{x}]$ is $(U_0 \cap U_1) \times \mathbb{P}^1$. So they glue to $\mathbb{P}^1 \times \mathbb{P}^1$, on which the self-intersections of all irreducible curves are non-negative.
- *n* is uniquely determined by \mathbb{F}_n , because it is determined by the self-intersection of the unique irreducible curve or it is 0.
- \mathbb{F}_n is minimal for $n \neq 1$ since the self-intersection of the exceptional divisor is -1.

- We are now to see \mathbb{F}_1 is $\mathrm{Bl}_p \mathbb{P}^2$.
- The blow-up of \mathbb{P}^2 at [1:0:0] is defined to be $M := \{([x_0:y_0:z_0], [y_1:z_1]) \in \mathbb{P}^2 \times \mathbb{P}^1 | y_0 z_1 = z_0 y_1\}.$
- Consider the map $M \to \mathbb{P}^1$ given by the projection onto the second component.
- The fiber at [y₁ : z₁] is given by the linear equation z₁y = y₁z, so it is isomorphic to ℙ¹.
- *M* is a geometrically ruled surface over ℙ¹, not minimal. So the only possibility is that it is isomorphic to 𝔽₁.

Picard group of geometrically ruled surfaces

2 Properties of Hirzebruch surfaces

- Let X be a complex manifold of dimension n. Let z_1, z_2, \dots, z_n be the local coordinates.
- There is a decomposition $\Omega_{X,\mathbb{C}} := \Omega_{X,\mathbb{R}} \otimes \mathbb{C} = \Omega_X^{1,0} \oplus \Omega_X^{0,1}$, where $\Omega_X^{1,0}$ is generated by dz_1, dz_2, \cdots, dz_n over \mathcal{C}_X^{∞} while $\Omega_X^{0,1}$ is generated by $d\overline{z_1}, d\overline{z_2}, \cdots, d\overline{z_n}$.
- This induces the decomposition of complex *k*-forms into forms of type (p,q) for p+q=k: $\bigwedge^{k} \Omega_{X,\mathbb{C}} = \bigoplus_{p+q=k} \Omega_{X}^{p,q}$, where $\Omega_{X}^{p,q} = \bigwedge^{p} \Omega_{X}^{1,0} \otimes \bigwedge^{q} \Omega_{X}^{0,1}$.

Hodge decomposition of Kähler manifolds

- A complex manifold is called Kähler manifold if the imaginary part of its Hermitian structure is a closed form.
- \mathbb{P}^n is a Kähler manifold.
- A projective complex manifold is a Kähler manifold as a submanifold of ℙⁿ.

• $H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)$, where $H^{p,q}(X) = H^q(X,\Omega_X^p)$.

• $H^{p,q} = \overline{H^{q,p}}$. If we write $h^{p,q} = \dim_{\mathbb{C}} H^{p,q}(X)$, then $h^{p,q} = h^{q,p}$.

- Let X be a complex *n*-dimensional manifold.
- $\Omega_X^p \cong \mathcal{H}om(\Omega_X^{n-p}, \omega_X) \cong (\Omega_X^{n-p})^{\vee} \otimes \omega_X$. Hence $(\Omega_X^p)^{\vee} \cong \Omega_X^{n-p} \otimes \omega_X^{\vee}$.
- By Serre's duality, $H^q(X, \Omega_X^p) = H^{n-q}(X, (\Omega_X^p)^{\vee} \otimes \omega_X)^* = H^{n-q}(X, \Omega_X^{n-p})^*.$
- $H^{p,q}$ is dual to $H^{n-p,n-q}$
- (Poincaré duality) H^{p+q}(X, ℂ) is dual to H^{2n-p-q}(X, ℂ) by Hodge decomposition.

- $h^{p,q} = h^{q,p}$
- $h^{p,q} = h^{n-p,n-q}$
- We have a Hodge diamond(take n = 4 as an example):

• Several numerical invariants on a complex projective surface S:

$$q(S) = h^{1}(S, \mathcal{O}_{S}) = h^{0}(S, \Omega_{S}^{1})$$
$$p_{g}(S) = h^{2}(S, \mathcal{O}_{S}) = h^{0}(S, K)$$
$$P_{n}(S) = h^{0}(S, nK), n \ge 1.$$

 P_n are called plurigenera of S, $p_g = P_1$ is the geometric genus and q is the irregularity of S. We have $\chi(\mathcal{O}_S) = 1 - q(S) + p_g(S)$.

• We also consider topological invariants:

$$b_i(S) = \dim_{\mathbb{C}} H^i(S, \mathbb{C}), \chi_{top}(S) = \sum_i (-1)^i b_i(S).$$

• We have $b_0 = b_4 = 1$ and $b_1 = b_3$ by Poincaré duality, so that $\chi_{top}(S) = 2 - 2b_1 + b_2$.

- We now show the relation $q(S) = \frac{1}{2}b_1(S)$.
- In fact, we have $H^1(S, \mathbb{C}) = H^{0,1}(S) \oplus H^{1,0}(S)$. Therefore $b_1 = h^{0,1} + h^{1,0}$.
- On the other hand, $h^{0,1} = h^{1,0}$, we know that $q = h^{0,1} = \frac{1}{2}b_1$.

The Hodge diamond of a complex projective surface is in the form:

$$\begin{array}{ccc} 1 \\ q & q \\ p_g & h^{1,1} & p_g \\ q & q \\ 1 \end{array}$$

Propositon(III.20)

The integers q, p_g and P_n are birational invariants.

- Let φ : S' → S be a birational map, corresponding to a morphism
 f : S' \ F → S with F finite.
- Let $\omega \in H^0(S, \Omega^1_S)$ be a 1-form. Then $f^*\omega$ defines a rational form on S', with poles lying in F.
- But the poles form a divisor, so $f^*\omega \in H^0(S, \Omega^1_S)$.
- We have a morphism $\phi^*: H^0(S, \Omega^1_S) \to H^0(S', \Omega^1_{S'}).$
- Since ϕ is birational, there is clearly an inverse of ϕ^* .
- The birational invariance of p_g and P_n is deduced similarly.

Theorem(Noether's formula)

 $\chi(\mathcal{O}_{\mathcal{S}}) = \frac{1}{12}(\chi_{top}(\mathcal{S}) + \mathcal{K}_{\mathcal{S}}^2)$

Proposition

Let S be a ruled surface over C. Then

$$q(S) = g(C), p_g(S) = 0, P_n(S) = 0, \forall n \ge 2.$$

If S is geometrically ruled, then

$$K_S^2 = 8(1 - g(C)), b_2(S) = 2$$

- First we calculate q, pg and Pn. Since we are calculating the birational invariants, we may assume that S = C × P¹.
- $H^0(S, \Omega_S^1) = H^0(C \times \mathbb{P}^1, \Omega_{C \times \mathbb{P}^1}^1) = H^0(C \times \mathbb{P}^1, p_1^* \omega_C \oplus p_2^* \omega_{\mathbb{P}^1}) = H^0(C, \omega_C) \oplus H^0(\mathbb{P}^1, \omega_{\mathbb{P}^1})$
- $q(S) = g(C) + g(\mathbb{P}^1) = g(C).$
- $\omega_{\mathcal{S}} = \det \Omega^1_{\mathcal{S}} = \det(p_1^* \omega_{\mathcal{C}} \oplus p_2^* \omega_{\mathbb{P}^1}) \cong p_1^* \omega_{\mathcal{C}} \otimes p_2^* \omega_{\mathbb{P}^1}$
- $H^0(S, \omega_S^{\otimes n}) \cong H^0(C \times \mathbb{P}^1, (p_1^* \omega_C)^{\otimes n} \otimes (p_2^* \omega_{\mathbb{P}^1})^{\otimes n}) \cong H^0(C \times \mathbb{P}^1, (p_1^* \omega_C^{\otimes n}) \otimes (p_2^* \omega_{\mathbb{P}^1}^{\otimes n}))$
- $P_n(S) = h^0(C, \omega_C^{\otimes n}) h^0(\mathbb{P}^1, \omega_{\mathbb{P}^1}^{\otimes n}) = 0$ for $n \ge 1$.

- Now assume that S = P_C(E) is geometrically ruled. We are going to show K²_S = 8(1 − g(C)) and b₂(S) = 2.
- Recall that $[K_S] = -2h + (\deg(E) + 2g(C) 2)f$ in $H^2(S, \mathbb{Z})$ and that $K_S^2 = [K_S]^2$.
- $K_S^2 = 4h^2 4(\deg(E) + 2g(C) 2)$

• Recall that $h^2 = \deg(E)$. Therefore $K_S^2 = 8(1 - g(C))$.

- To calculate b_2 , we substitute $\chi(\mathcal{O}_S)$ by $1 q(S) + p_g(S)$ and $\chi_{top}(S)$ by $2 2b_1(S) + b_2(S)$ in the Noether's formula.
- $1 q(S) + p_g(S) = \frac{1}{12}(2 2b_1(S) + b_2(S) + 8 8g(C))$ and recall that $q(S) = \frac{1}{2}b_1(S)$.
- $b_2(S) = 2.$

The Hodge diamond of a geometrically ruled surface is in the form:

Warning!

 $h^{1,1}$ is not a birational invariant. For example a blow-up increases $h^{1,1}$ by 1.

Example

۵

Calculate the invariants of a hypersurface in \mathbb{P}^3 .

Assume that S ⊂ P³ is a hypersurface of degree d. There is an exact sequence of sheaves over P³:

$$0 o \mathcal{O}_{\mathbb{P}^3}(-d) o \mathcal{O}_{\mathbb{P}^3} o \mathcal{O}_S o 0.$$

• Taking cohomology, we have the long exact sequence:

$$\cdots \to H^1(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}) \to H^1(S, \mathcal{O}_S) \to H^2(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(-d)) \to \cdots$$
$$q(S) = h^1(S, \mathcal{O}_S) = 0$$

- By adjunction formula, we have $K_S = (K_{\mathbb{P}^3} + S)|_S$.
- Therefore $\omega_S = \mathcal{O}_S(d-4)$.
- Twisting the short exact sequence defining \mathcal{O}_S by n(d-4), we get

$$0 o \mathcal{O}_{\mathbb{P}^3}(nd-4n-d) o \mathcal{O}_{\mathbb{P}^3}(nd-4n) o \omega_{\mathcal{S}}^{\otimes n} o 0.$$

• Since $h^1(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(m)) = 0$ for all integers m, we have

$$P_n(S) = h^0(\mathcal{O}_{\mathbb{P}^3}(nd-4n)) - h^0(\mathcal{O}_{\mathbb{P}^3}(nd-4n-d)) \\ = \binom{nd-4n+3}{3} - \binom{nd-d-4n+3}{3}.$$

• In particular, for n = 1, we have $p_g = \binom{d-1}{3}$.

- We now calculate K_S^2 and $h^{1,1}$.
- To calculate K_{S}^{2} , we use the formula $L.M = \chi(\mathcal{O}_{S}) - \chi(L) - \chi(M) + \chi(L \otimes M).$

•
$$K_{S}^{2} = \chi(\mathcal{O}_{S}) - 2\chi(K_{S}) + \chi(2K_{S}).$$

•
$$\chi(\mathcal{O}_S) = 1 - q + p_g = 1 + \binom{d-1}{3}$$
.

• By Serre's duality, $\chi(K_S) = 1 + {d-1 \choose 3}$

• To calculate $\chi(2K_S)$, consider the exact sequence

$$0 o \mathcal{O}_{\mathbb{P}^3}(d-8) o \mathcal{O}_{\mathbb{P}^3}(2d-8) o \mathcal{O}_S(2d-8)=\omega_S^{\otimes 2} o 0.$$

• Since $h^1(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(m)) = 0$,

$$\begin{split} h^0(S, 2K_S) &= h^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(2d-8)) - h^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(d-8)) \\ &= \binom{2d-5}{3} - \binom{d-5}{3}. \end{split}$$

• $h^1(S, 2K_S) = 0$ since $h^1(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(m)) = 0$ and $h^2(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(m)) = 0$.

- We are left to calculate $h^2(S, 2K_S)$. It is equivalent to calculate $h^0(S, -K_S)$.
- Consider

$$0 o \mathcal{O}_{\mathbb{P}^3}(-2d+4) o \mathcal{O}_{\mathbb{P}^3}(-d+4) o \mathcal{O}_{S}(-d+4) = \omega_S^ee o 0.$$

• Similar to the previous discussion,

$$\begin{split} h^0(S, -K_S) &= h^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(-d+4)) - h^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(-2d+4)) \\ &= \binom{7-d}{3} - \binom{7-2d}{3}. \end{split}$$

•
$$\chi(2K_S) = \binom{2d-5}{3} - \binom{d-5}{3} + \binom{7-d}{3} - \binom{7-2d}{3}$$

• We conclude that

$$\begin{aligned} \mathcal{K}_{S}^{2} &= \chi(\mathcal{O}_{S}) - 2\chi(\mathcal{K}_{S}) + \chi(2\mathcal{K}_{S}) \\ &= -1 - \binom{d-1}{3} + \binom{2d-5}{3} - \binom{d-5}{3} \\ &+ \binom{7-d}{3} - \binom{7-2d}{3} \end{aligned}$$

- We are left to calculate $h^{1,1}$.
- By Noether's formula,

$$\chi_{top}(S) = 12\chi(\mathcal{O}_S) - K_S^2$$

= $13 + 13\binom{d-1}{3} - \binom{2d-5}{3} + \binom{d-5}{3}$
 $-\binom{7-d}{3} + \binom{7-2d}{3}$

• On the other hand,

$$\chi_{top}(S) = 2 - 2b_1 + b_2$$

= 2 - 4q + 2p_g + h^{1,1}
= 2 + 2 $\binom{d-1}{3}$ + h^{1,1}

• $h^{1,1} = 11 + 11\binom{d-1}{3} - \binom{2d-5}{3} + \binom{d-5}{3} - \binom{7-d}{3} + \binom{7-2d}{3}$

Conclusively, a hypersurface of degree d in \mathbb{P}^3 has the Hodge diamond:

$$1 \\ \begin{pmatrix} d & -1 \\ 3 \end{pmatrix} = 11 + 11 \binom{d-1}{3} - \binom{2d-5}{3} + \binom{d-5}{3} - \binom{7-d}{3} + \binom{7-2d}{3} = \binom{d-1}{3} \\ 0 = 0 \\ 1 \end{bmatrix}$$

$$X \subset \mathbb{P}^{3} \text{ smooth projective surface of degree } d:$$

$$d=1: X = \mathbb{P}^{2} \qquad \bigcirc_{1}^{0} \bigcirc \qquad K_{X}^{2} = 9$$

$$d=2: X = \mathbb{P}^{1} \times \mathbb{P}^{1} \qquad \bigcirc_{1}^{0} \bigcirc \qquad K_{X}^{2} = 8$$

$$quadric \qquad \bigcirc_{1}^{0} \bigcirc \qquad K_{X}^{2} = 3$$

$$d=3: X \subset \mathbb{P}^{3} \qquad \bigcirc_{1}^{0} \bigcirc \qquad K_{X}^{2} = 3$$

$$d=4: X \subset \mathbb{P}^{3} \qquad \bigcirc_{1}^{0} \bigcirc \qquad K_{Y}^{2} = 0$$

$$k_{X} = (K_{P^{3}} + X)]_{X} = \mathcal{O}_{X}$$

$$K_{3} = (K_{P^{3}} + X)]_{X} = \mathcal{O}_{X}$$

$$K_{3} = (K_{P^{3}} + X)]_{X} = \mathcal{O}_{X}$$

$$K_{3} = (K_{P^{3}} + X)]_{X} = \mathcal{O}_{X}$$

[1]A. Beauville, Complex algebraic surfaces, London Mathematical Society Student Texts 34, Cambridge University Press, 1996
[2]C. Voisin, Hodge theory and complex algebraic geometry I, Cambridge studies in advanced mathematics 76, Cambridge University Press, 2002
[3]R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, 1977.

Thank you for listening!

X smooth projective surface over C \longrightarrow $\xrightarrow{\text{Dinn}X}$ Dins X Div X ->>> Div X lin.eq. alg. eq. pas num. eq. $\mathbb{N}^{1}\mathbb{X}\simeq\mathbb{Z}^{\mathbb{P}}$ kernel NSX Pic X SOME

 $H^{2}(X,\mathbb{Z}) \xrightarrow{hos} Ruite H^{2}(X,\mathbb{C})$ kernel $N^{1}X \xrightarrow{\sim} (image of) \cap H^{1,1}(X)$ Picardrank $H^{2}(X,Z)$ $\rho \leq h^{1,1}(X)$