LINEAR RECURRENCE SEQUENCES

Fix $r \in \mathbb{N}^+$, $b_1, \dots, b_r \in \mathbb{C}$, $a_0, a_1, \dots, a_{r-1} \in \mathbb{C}$. Consider the sequence of complex numbers (an) neIN

defined by
$$\{a_0, a_1, ..., a_{r-1}\}$$
 $\{a_0, a_1, ..., a_{r-1} + b_2 a_{n+r-2} + ... + b_{r-1} a_{n+1} + b_r a_n \mid \forall n \geqslant 0\}$

We want to study properties of this sequence.

Consider the matrix
$$A \in M_r(\mathbb{C})$$
 given by
$$A = \begin{pmatrix} \frac{b_1 \ b_2 \cdots \ b_{r-1} \ b_r}{1} & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \end{pmatrix}$$

and consider the vector $\sigma_{N} = \begin{pmatrix} \alpha_{N+r-1} \\ \vdots \\ \alpha_{N+l} \\ \alpha_{N} \end{pmatrix} \in \mathbb{C}^{r}. \quad \text{In particulare } \sigma_{0} = \begin{pmatrix} \alpha_{r-1} \\ \vdots \\ \alpha_{1} \\ \alpha_{0} \end{pmatrix}$

$$\frac{1}{1000} \text{ AN} > 0 \qquad (N^{N+1} = 1, \dots, N^{N+1} = 1, \dots, N^{$$

$$\begin{array}{c}
\begin{pmatrix}
a_{n+r} \\
- \\
- \\
\end{pmatrix}
\begin{pmatrix}
b_1 & b_2 & \dots & b_{r-1} & b_r \\
1 & 1 & & \ddots \\
\end{pmatrix}$$

Prop 4n>0 on= A'No $Pt \quad v_1 = Av_0$ $\sigma_2 = A \sigma_1 = A (A \sigma_0) = A^2 \sigma_0$ $w_3 = A w_2 = A(A^2 w_0) = A^3 w_0$ $\mathcal{N}_{4} = A \mathcal{N}_{3} = A (A^{3} \mathcal{N}_{0}) = A^{4} \mathcal{N}_{0} \dots$ Prop The characteristic polynomial of A is $P_A(t) = det(A-tI) = (-1)^r \cdot \left[t^r - (b_1t^{r-1} + \dots + b_{r-1}t + b_r)\right]$

Pt Omitted. It follows from the properties of the companion matrix.

Write the motrix A. Try to diagonalise A: compute the eigenvolues and the eigenvectors of A. Try to find ME Mr(C) invertible such that $D = M^{-1}AM$ is diagonal. Then $A = MDM^{-1}$, so $A^n = MD^nM^{-1}$ for all $N \ge 0$. The powers D' are easy to compute because D is diagonal. Then $\sigma_{n} = A^{n} \sigma_{0} = MD^{n} M^{-1} \sigma_{0}$ Read the East entry and get an interms of n.

Algorithm to find a closed formula for an

If A is not diagonolisable, then you need to find MEMr(C) s.t. M-1AM is upper triangular, e.g. in Jordan form.

Prop In most cases we have:

$$\lim_{N\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = \max \left\{ |\lambda| \mid \lambda \text{ is an eigenvalue of } A \right\}$$

Pf Assume that A has distinct eigenvalues $\lambda_1, ..., \lambda_r$ such that $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_r|$.

Then A is diagonalisable: $\exists M \in M_r(C)$ invertible such that $M^{-1}AM = D = \operatorname{diag}(\lambda_1, ..., \lambda_r)$. Then $A = MDM^{-1}$ and $A = MD^{-1}$ and

$$c_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n} + \dots + c_{r} \left(\frac{\lambda_{r}}{\lambda_{1}}\right)^{r}$$
For $j = 2, \dots, r$, $\left|\frac{\lambda_{j}}{\lambda_{1}}\right| < 1 \implies \lim_{N \to +\infty} \left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{N} = 0$

$$j=2,...,\Gamma$$
, $\frac{\lambda}{\lambda}$

 $c_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^{n+1} + \cdots + c_r \left(\frac{\lambda_r}{\lambda_s}\right)^{n+1}$

 $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right|$ even when the assumptions are not satisfied.

Now assume
$$C_1 \neq 0$$
, hence $\lim_{N \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = |\lambda_1|$. \square

Now assume
$$C_1 \neq 0$$
, hence $\lim_{n \to +\infty} \left| \frac{a_n + 1}{a_n} \right| = |\lambda_1|$. If Remark The strategy of the proof can be used to compute

What happens if A doesn't have r distinct eigenvolves? Let $\lambda_1, ..., \lambda_s$ be the distinct eigenvalues of A, i.e. the zeroes of $P_A(t) = (-1)^r \cdot [t^r - (b_1 t^{r-1} + \dots + b_{r-1} t + b_r)]$. For each i=1,...,s, let m; be the multiplicity of \ian zero of PA. Then there exist polynomials $c_1(n),...,c_s(n)$ such that: • deg $C_i(n) < m_i \quad \forall i = 1,..., s$ • $\forall n \geq 0$, $a_n = c_1(n) \cdot \lambda_1^n + \cdots + c_s(n) \cdot \lambda_s^n$

Since the polynomial $c_i(n)$ has degree $< m_i$, we can write $c_i(n) = \delta_{i,0} + \delta_{i,1}n + \cdots + \delta_{i,m_i-1} n^{m_i-1}$

The Vij can be determined from knowing ao,..., ar-1.