Papers and preprints by Andrea Petracci
  1. (with Alessio Corti, Paul Hacking) Smoothing Gorenstein toric Fano 3-folds. arXiv:2412.06500
  2. (with Liana Heuberger) On K-moduli of Fano threefolds with degree 28 and Picard rank 4. To appear in Ann. Fac. Sci. Toulouse Math. arXiv:2303.12562
  3. (with Antonella Grassi, Giulia Gugiatti, Wendelin Lutz) Reflexive polygons and rational elliptic surfaces. Rend. Circ. Mat. Palermo (2) 72 (2023), no. 6, 3185-3221. doi.org/10.1007/s12215-023-00922-3 arXiv:2302.05751
  4. (with Hamid Abban, Ivan Cheltsov, Alexander Kasprzyk, Yuchen Liu) On K-moduli of quartic threefolds. To appear in Algebr. Geom. arXiv:2210.14781
  5. (with Simon Felten and Sharon Robins) Deformations of log Calabi-Yau pairs can be obstructed. Math. Res. Lett. 30 (2023), no. 5, 1357-1374 doi.org/10.4310/MRL.2023.v30.n5.a3 arXiv:2109.00420
  6. K-moduli of Fano 3-folds can have embedded points. arXiv:2105.02307
  7. On deformation spaces of toric singularities and on singularities of K-moduli of Fano varieties. Trans. Amer. Math. Soc. 375 (2022), no. 8, 5617-5643. doi.org/10.1090/tran/8636 arXiv:2105.01174
  8. A 1-dimensional component of K-moduli of del Pezzo surfaces. In: I. Cheltsov, X. Chen, L. Katzarkov, J. Park (eds), Birational Geometry, Kähler-Einstein Metrics and Degenerations, Springer Proceedings in Mathematics & Statistics, vol 409, Springer. doi.org/10.1007/978-3-031-17859-7_36 arXiv:2102.13510
  9. (with Yuchen Liu) On K-stability of some del Pezzo surfaces of Fano index 2. Bull. London Math. Soc. 54 (2022), no. 2, 517-525. doi.org/10.1112/blms.12581 arXiv:2011.05094
  10. (with Simon Felten) The logarithmic Bogomolov-Tian-Todorov theorem. Bull. London Math. Soc. 54 (2022), no. 3, 1051-1066. doi.org/10.1112/blms.12613 arXiv:2010.13656
  11. (with Anne-Sophie Kaloghiros) On toric geometry and K-stability of Fano varieties. Trans. Amer. Math. Soc. Ser. B (2021), no. 8, 548-577. doi.org/10.1090/btran/82 arXiv:2009.02271
  12. (with Alessio Corti and Matej Filip) Mirror Symmetry and smoothing Gorenstein toric affine 3-folds. In: Facets of Algebraic Geometry: A Collection in Honor of William Fulton's 80th Birthday (2022), London Mathematical Society Lecture Note Series, pp. 132-163, Cambridge University Press. doi.org/10.1017/9781108877831.005 arXiv:2006.16885
  13. On deformations of toric Fano varieties. In: A.M. Kasprzyk, B. Nill (eds), Interactions with Lattice Polytopes, Springer Proceedings in Mathematics & Statistics, vol 386, Springer. doi.org/10.1007/978-3-030-98327-7_14 arXiv:1912.01538
  14. An example of Mirror Symmetry for Fano threefolds. In: Birational Geometry and Moduli Spaces, Springer INdAM Series (2020). doi.org/10.1007/978-3-030-37114-2_10 arXiv:1901.06155
  15. Some examples of non-smoothable Gorenstein Fano toric threefolds Math. Zeit. (2020), no. 295, 751-760. doi.org/10.1007/s00209-019-02369-8 arXiv:1804.07960
  16. Homogeneous deformations of toric pairs. Manuscripta Math. (2021), no. 166, 37-72. doi.org/10.1007/s00229-020-01219-w arXiv:1801.05732
  17. (with Alessandro Oneto) On the quantum periods of del Pezzo surfaces with 1/3(1,1) singularities. Adv. Geom. 18 (2018), no. 3, 303-336. doi.org/10.1515/advgeom-2017-0048 arXiv:1507.08589
  18. (with Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander Kasprzyk, Alessandro Oneto, Thomas Prince, Ketil Tveiten) Mirror Symmetry and the Classification of Orbifold del Pezzo Surfaces. Proc. Amer. Math. Soc. 144 (2016), no. 2, 513-527. doi.org/10.1090/proc/12876 arXiv:1501.05334


Other writings: