Nome Cognome:

Num. Matr.:

Marcare con una crocetta su \mathbf{V} le affermazioni ritenute vere e su \mathbf{F} le affermazioni ritenute false. Per annullare una risposta già marcata, cerchiarla. Per ognuno dei nove quesiti vi possono essere da 0 a 4 affermazioni vere. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 in caso di astensione. Non è consentito l'utilizzo di alcun ausilio (libri, appunti, calcolatrici...). La scheda verrà ritirata al termine della prima ora.

Versione 5

- 1. Sia $(V, \langle \cdot \rangle)$ uno spazio vettoriale euclideo, e $v, w \in V$. Allora
 - (a) se v = 0 oppure w = 0, allora $\langle v, w \rangle = 0$.
 - (b) se $\langle v, w \rangle = 6$, allora $\langle 3v, 3w \rangle = 18$.
 - (c) è sempre possibile completare $\{v, w\}$ a una base ortogonale di V.
 - (d) risulta $\langle v, w \rangle < \langle v + w, w \rangle$.
- 2. In \mathbb{R}^4 , con il prodotto scalare standard, sia U il sottospazio vettoriale generato da (1,0,2,-1) e (3,1,0,0). Allora
 - (a) il vettore (0,0,1,2) appartiene a U^{\perp} .
 - (b) il sottospazio U^{\perp} ha equazioni cartesiane x+2z-t=0, 4x+y+2z-t=0
 - (c) non esiste un vettore non nullo di U, ortogonale a (1,0,2,-1).
 - (d) $\dim(U^{\perp}) = 4 \dim U$.
- 3. Siano $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 3 \\ 0 & 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Allora
 - (a) A ha segnatura (1,2).
 - (b) A è definita negativa.
 - (c) A è congruente alla matrice B.
 - (d) A è congruente alla matrice C.
- 4. Sia F l'endomorfismo di \mathbb{R}^3 tale che: $F(1,0,1)=(-2,0,-2),\,F(1,0,0)=(-2,0,0),\,F(0,-1,0)=(0,0,0).$ Allora
 - (a) F non è diagonalizzabile.
 - (b) F ammette una base spettrale ortonormale.
 - (c) Uno degli autovalori di ${\cal F}$ ha molteplicità geometrica 2.
 - (d) F ha un solo autovalore non nullo.

- 5. L'endomorfismo T di \mathbb{R}^4 che ha
 - (a) un autospazio di dimensione 3 è diagonalizzabile;
 - (b) come polinomio caratteristico $p_T(\lambda) = \lambda^4 + 5\lambda^2 + 4$ è diagonalizzabile;
 - (c) come equazioni $T(x, y, z, t) = (\lambda x, \lambda y, \lambda z, \lambda t)$ è diagonalizzabile;
 - (d) come polinomio caratteristico $p_T(\lambda) = (\lambda^2 1)(\lambda^2 + 1)$ non è diagonalizzabile;
- 6. Siano $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Allora
 - (a) $A \in B$ sono simili.
 - (b) $A \in B$ sono congruenti.
 - (c) A non è definita positiva.
 - (d) B è definita negativa.
- 7. Le seguenti equazioni sono quelle di un piano nello spazio euclideo \mathbb{R}^4 :

(a)
$$\begin{cases} x_1 = 3 \\ x_2 - x_3 = 1 \\ x_1 + 2x_2 - 2x_3 = 5 \end{cases}$$

(b)
$$\begin{cases} x_1 = \alpha + \beta \\ x_2 = 0 \\ x_3 = 3\alpha + 6\beta \\ x_4 = 1 - \alpha - 2\beta \end{cases}$$
 (con $\alpha, \beta \in \mathbb{R}$)

(c)
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + 2x_2 + 2x_3 = 2 \end{cases}$$

(a)
$$\begin{cases} x_1 = 3 \\ x_2 - x_3 = 1 \\ x_1 + 2x_2 - 2x_3 = 5 \end{cases}$$
(b)
$$\begin{cases} x_1 = \alpha + \beta \\ x_2 = 0 \\ x_3 = 3\alpha + 6\beta \\ x_4 = 1 - \alpha - 2\beta \end{cases}$$
(c)
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + 2x_2 + 2x_3 = 2 \end{cases}$$
(d)
$$\begin{cases} x_1 = 2\alpha + 4\gamma + 1 \\ x_2 = \beta + 4 \\ x_3 = \alpha + 2\gamma + 1 \\ x_4 = \alpha + \beta + \gamma \end{cases}$$
(con $\alpha, \beta, \gamma \in \mathbb{R}$)

- 8. Sia rla retta di \mathbb{R}^3 di equazioni $\left\{\begin{array}{l} x+z=2\\ x-z=4 \end{array}\right.$. Allora
 - (a) r è parallela all'asse z
 - (b) r è ortogonale all'asse y
 - (c) r è parallela al piano xy
 - (d) r è ortogonale al piano xz
- 9. Due rette $r \in r'$ di \mathbb{R}^3 sono sghembe se
 - (a) esistono due piani paralleli distinti π e π' , con $r \subseteq \pi$ e $r' \subseteq \pi'$.
 - (b) sono disgiunte e non esiste una retta r'' parallela sia a r sia a r'.
 - (c) la distanza tra $r \in r'$ è positiva.
 - (d) $r \in r'$ non sono complanari.