
ar
X

iv
:0

81
0.

30
29

v1
  [

ph
ys

ic
s.

so
c-

ph
] 

 1
6 

O
ct

 2
00

8

parameter evaluation of a simple mean-field model

of social interaction

Ignacio Gallo†, Adriano Barra∗†, Pierluigi Contucci†

†Dipartimento di Matematica, Università di Bologna,
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Abstract

The aim of this work is to implement a statistical mechanics theory of social in-

teraction, generalizing econometric discrete choice models. A class of simple mean

field discrete models is introduced and discussed both from the theoretical and phe-

nomenological point of view. We propose a parameter evaluation procedure and test

it by fitting our model against three families of data coming from different cases:

the estimated interaction parameters are found to have similar positive values es-

tablishing a quantitative confirmation of the peer imitation behavior found in social

psychology. Moreover all the values of the interaction parameters belong to the

phase transition regime suggesting its possible role in the study of social systems.

1 Introduction

In recent years there has been an increasing awareness towards the problem of finding

a quantitative way to study the role played by human interactions in shaping behaviour

observed at a population level. Indeed, as early as in the seventies the dramatic con-

sequences of including peer interaction in a mathematical model have been recognized

independently by the physical [11], economical [25] and social science [16] communities.

The conclusion reached by all these studies is that mathematical models have the po-

tential of describing several features of social behaviour, among which, for example the
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sudden shifts often observed in society trends [19], and that these are unavoidably linked

to the way individual people influence each other when deciding how to behave.

The possibility of using such models as a tool of empirical investigation, however, is not

found in the scientific literature until the beginning of the present decade [6]: the reason

for this is to be found in the intrinsic difficulty of establishing a methodology of systematic

measurement for social features. Confidence that such an aim might be an achievable one

has been boosted by the wide consensus gained by econometrics following the Nobel prize

awarded in 2000 to economist Daniel Mcfadden for his work on probabilistic models of

discrete choice, and by the increasing interest of policy makers for tools enabling them to

cope with the global dimension of today’s society [17, 14].

This has led very recently to a number of studies confronting directly the challenge

of measuring numerically social interaction for bottom-up models, that is models deriving

macroscopic phenomena from assumptions about human behaviour at an individual level

[5, 24, 22, 26].

These works show an interesting interplay of methods coming from econometrics [12],

statistical physics [10] and game theory [18], which reveals a substantial overlap in the

basic assumptions driving these three disciplines. It must also be noted that all of these

studies rely on a simplifying assumption which considers interaction working on a global

uniform scale, that is on a mean field approach. This is due to the inability, stated in [27],

of existing methods to measure social network topological structure in any detail. It is

expected that it is only matter of time before technology allows to overcome this difficulty:

one of the roles of today’s empirical studies is then to assess how much information can

be derived from the existing kind of data such as that coming from surveys, polls and

censuses.

This paper considers a mean field model that highlights the possibility of using the

methods of discrete choice econometrics to apply a statistical mechanical generalization

of the model introduced in [6]. The aim of the paper is two-fold. On one hand we are in-

terested in assessing how well the simplest instance of such a model fares when confronted

with data, and on the other, we’d like to propose a simple procedure of estimation, based
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on a method developed by Berkson [4], that we feel might be very appealing for models

at an early stage of development.

2 The model

Consider a population of individuals facing with a “YES/NO” question, such as choosing

between marrying through a religious or a civil ritual, or voting in favor or against of death

penalty in a referendum. We index individuals by i, i = 1...N , and assign a numerical

value to each individual’s choice σi in the following way:

σi =





+1 if i says YES

−1 if i says NO
,

Accordingly with the large use of logistic distribution in the econometrics of similar models

[20] and with a reasonable statistical mechanics basis beyond [7], we assume that the

joint probability distribution of these choices may be a Boltzmann-Gibbs distribution

corresponding to the following Hamiltonian

HN(σ) = −

N∑

i,l=1

Jilσiσl −

N∑

i=1

hiσi.

Heuristically, this distribution favors the agreement of the people’s choices σi with

some external influence hi which varies from person to person, and at the same time

favors agreement of a couple of people whenever their interaction coefficient Jil is positive,

whereas favors disagreement whenever Jil is negative.

Given the setting, the model consists of two basic steps:

1) A parametrization of quantities Jil and of hi,

2) A systematic procedure allowing us to “measure” the parameters characterizing the

model, starting from statistical data (such as surveys, polls, etc).

The parametrization must be chosen to fit as well as possible the data format available,

so to design a model which is able to make good use of the increasing wealth of data

available through information technologies.
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3 Discrete choice

Let us first consider our model when it ignores interactions Jil ≡ 0 ∀ i, l ∈ (1, ..., N),

that is

HN(σ) = −

N∑

i=1

hiσi.

The model shall be applied to data coming from surveys, polls, and censuses, which

means that together with the answer to our binary question, we shall have access to

information characterizing individuals from a socio-economical point of view. We can

formalize such further information by assigning to each person a vector of socio-economic

attributes

ai = {a
(1)
i , a

(2)
i , ..., a

(k)
i }

where

a
(1)
i =





1 for i Male

0 for i Female
,

or

a
(2)
i =





1 for i Employee

0 for i Self-employed
,

etc.

We choose to exploit the supplementary data by assuming that hi (which is the “field”

influencing the choice of i) is a function of the vector of attributes ai. Since for the sake

of simplicity we chose our attributes to be binary variables, the most general form for hi

turns out to be linear

hi =

k∑

j=1

αja
(j)
i + α0

so that the model’s parameters be the components of the vector α = {α0, α1, ..., αk}.

It’s worth pointing out that the parameters αj , j = 0...k do not depend on the specific

individual i.

This parametrization of hi correspond to what economists call a discrete choice model

[21], and shows a remarkable link between econometrics and statistical mechanics, which

is of special interest in view of McFadden’s work concerning this theory and its application
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to the study of urban transport.

Discrete choice theory states that while making a choice each person weighs various factors

such as his own gender, age, income, etc, as to maximize in probability the benefit arising

from his/her decision. Parameters α tell us the relative weight (i.e. the importance) that

the various socio-economic factors have when people are making a decision with respect

to our binary question. The parameter α0 does not multiply any specific attribute, and

thus it is a homogeneous influence which is felt by all people in the same way, regardless

of their individual characteristics. A discrete choice model is considered good when the

parametrized attributes are very suitable for the specific choice, so that the parameter α0

is found to be small in comparison to the attribute-specific ones.

Elementary statistical mechanics tells us that the probability of an individual i with

attributes ai answering “YES” to our question is the following [10]:

pi = P (σi = 1) =
ehi

ehi + e−hi

hi =

k∑

j=1

αja
(j)
i + α0

Therefore collecting the choices made by a relevant number of people and keeping track

of their socio-economic attributes allows us to use a statistics in order to find the value

of α for which our distribution best fits the real data. This in turn allows to assess the

implications on aggregate behavior if we apply incentives to the population which affect

specific attribute, as can be commodity prices in a market situation.

4 Interaction

The kind of model described in the last section has been successfully used by econometrics

for the last thirty years [21], and has opened the way to the quantitative study of social

phenomena. Such models, however, only apply to situations where the functional relation

between the people’s attributes and the population’s behavior is a smooth one: it is ever

more evident, on the other hand, that behavior at a societal level can be marked by

sudden jumps [22, 24, 19].
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There exist many examples from linguistics, economics, and social sciences where it

has been observed how the global behavior of large groups of people can change in an

abrupt manner as a consequence of slight variations in the social structure (such as, for

instance, a change in the pronunciation of a language due to a little immigration rate,

or as a substantial decrease in crime rates due to seemingly minor action taken by the

authorities) [1, 15, 19]. From a statistical mechanical point of view, these abrupt transition

may be considered as phase transitions caused by the interaction between individuals.

Indeed, Brock and Durlauf have shown in [6] how discrete choice can be extended to the

case where a global mean-field interaction is present (providing an interesting mapping to

the Curie-Weiss theory [10]), thus further highlighting the close relation existing between

the econometric and the statistical mechanical approach to problems concerning many

agents.

We then go back to studying the general interacting model

HN(σ) = −

N∑

i,l=1

Jilσiσl −

N∑

i=1

hiσi, (4.1)

while keeping

hi =
k∑

j=1

αja
(j)
i + α0.

We now need to find a suitable parametrization for the interaction coefficients Jil.

Since each person is characterized by k binary socio-economic attributes, the population

can be naturally partitioned into 2k subgroups, which for convenience we take of equal

size: this leads us to consider a mean field kind of interaction, where coefficients Jil depend

explicitly on such a partition. We can express this as follows

Jil =
1

2k N
Jgg′ , if i ∈ g and l ∈ g′,

which in turn allows us to rewrite (4.1) as

HN(σ) = −
N

2k
(

2k∑

g,g′=1

Jgg′mgmg′ +
2k∑

g=1

hgmg)
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where mg is the average opinion of group g:

mg =
1

2k N

g N/2k∑

i=(g−1)N/2k+1

σi.

In [13] the case k = 1 of this model was considered: the model’s thermodynamic limit

was proved, and it was given a rigorous derivation of the model’s solution, as well as an

analysis of some analytic properties. In particular, it was shown that the model factorizes

completely, so that all the information about the model consists of the equilibrium states:

m̄1 = tanh(J11m̄1 + J12m̄2 + h1) (4.2)

m̄2 = tanh(J21m̄1 + J22m̄2 + h2) (4.3)

This allows us, in particular, to write the probability of i choosing YES in a closed

form similar to the non-interacting one:

pi = P (σi = 1) =
eUg

eUg + e−Ug
, (4.4)

where

Ug =

2∑

g′=1

Jg,g′m̄g′ + hg.

This is the basic tool needed to estimate the model starting from real data. We

describe the estimation procedure in the next section.

5 Estimation

We have seen that according to our model an individual i belonging to group g has

probability of choosing “YES” equal to

pi =
eUg

eUg + e−Ug

where

Ug =
∑

g′

Jg,g′m̄g′ + hg.
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The standard approach of statistical estimation for discrete models is to maximize the

probability of observing a sample of data with respect to the parameters of the model

(see e.g. [3]). This is done by maximizing the likelihood function [12]

L =
∏

i

pi

with respect to the model’s parameters, which in our case consist of the interaction matrix

J and the vector α.

Our model, however, is such that pi is a function of the equilibrium states mg, which

in turn are discontinuous functions of the model’s parameters. This problem takes away

much of the appeal of the maximum likelihood procedure, and calls for a more feasible

alternative.

The natural alternative to maximum likelihood for problems of model regression is

given by the least squares method [12], which simply minimizes the squared norm of the

difference between observed quantities, and the model’s prediction. Since in our case the

observed quantities are the empirical average opinions m̃g, we need to find the parameter

values which minimize
∑

g

(m̃g − tanhUg)
2, (5.5)

which in our case correspond to satisfying as closely as possible the state equations (4.2)

in squared norm. This, however, is still computationally cumbersome due to the non-

linearity of the function tanh(Uj). This problem has already been encountered by Berkson

back in the nineteen-fifties, when developing a statistical methodology for bioassay [4]:

This is an interesting point, since this stimulus-response kind of experiment bears a close

analogy to the natural kind of applications for a model of social behavior, such as linking

stimula given by incentive through policy and media, to behavioral responses on part of a

population. Furthermore the same approach is used by statistical mechanics, for example

within the problem of finding the proper order parameter for a given Hamiltonian [2].

The key observation in Berkson’s paper is that, since Ug is a linear function of the

model’s parameters, and the function tanh(x) is invertible, a viable modification to least
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squares is given by minimizing the following quantity, instead:

∑

g

(arctanh m̃g − Ug)
2. (5.6)

This reduces the problem to a linear least squares problem which can be handled with

standard statistical software, and Berkson finds an excellent numerical agreement between

this method and the standard least squares procedure.

There are nevertheless a number of issues with Berkson’s approach, which are analyzed

in [3], pag. 96. All the problems arising can be traced to the fact that to build (5.6),

we are collecting the individual observations into subgroups, each of average opinion mg.

The problem is well exemplified by the case in which a subgroup has average opinion

mg ≡ ±1: in this case arctanh mg = −∞, and the method breaks down. However the

event mg ≡ ±1 has a vanishing probability when the size of the groups increases, so that

the method behaves properly for large enough samples.

The proposed measurement technique is best elucidated by showing a few simple concrete

examples, which we do in the next section.

6 Case studies

We shall carry out the estimation program for real situations which corresponds to a very

simple case of our model. The data was obtained from periodical censuses carried out by

Istat 1: since census data concerns events which are recorded in official documents, for a

large number of people, we find it to be an ideal testing ground for our model.

For the sake of simplicity, individuals are described by a single binary attribute charac-

terizing their place of residence (either Northern or Southern Italy) and we chose, among

the several possible case studies, the ones for which choices are likely to involve peer in-

teraction in a major way.

The first phenomenon we choose to study concerns the share of people who chose to

marry through a religious ritual, rather than through a civil one. The second case deals

1Italian National Institute of Statistics
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with divorces: here individuals are faced with the choice of a consensual/ non-consensual

divorce. The last test we perform regards the study of suicidal tendencies, in particular

the mode of execution.

6.1 Civil vs religious marriage in Italy, 2000-2006

To address this first task we use data from the annual report on the institution of marriage

compiled by Istat in the seven years going from 2000 to 2006.

The reason for choosing this specific social question is both a methodological and a con-

ceptual one.

Firstly, we are motivated by the exceptional quality of the data available in this case,

since it is a census which concerns a population of more than 250 thousand people per

year, for seven years. This allows us some leeway from the possible issues regarding the

sample size, such as the one highlighted in the last section. And just as importantly

the availability of a time series of data measured at even times also allows to check the

consistency of the data as well as the stability of the phenomenon.

Secondly, marriage is probably one of the few matters where a great number of in-

dividuals makes a genuine choice concerning their life that gets recorded in an official

document, as opposed to what happens, for example, in the case of opinion polls.

We choose to study the data with one of the simplest forms of the model: individuals

are divided according to only to a binary attribute a(1), which takes value 1 for people

from Northern Italy, and 0 for people form Southern Italy. In the formalism of Section 2,

therefore, the model is defined by the Hamiltonian

HN (σ) = −
N

2
(J11m

2
1 + (J12 + J21)m1m2 + J22m

2
2 + h1m1 + h2m2),

hi = α1a
(1)
i + α0,

and the state equations to be used for Berkson’s statistical procedure are given by (4.4).
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% of religious marriages, by year

Region 2000 2001 2002 2003 2004 2005 2006

Northern Italy 68.35 64.98 61.97 54.64 57.91 55.95 54.64

Southern Italy 81.83 80.08 79.32 75.46 76.81 76.52 75.46

Table 1: Percentage of religious marriages, by year and geographical region

Table 1 shows the time evolution of the share of men choosing to marry through a religious

ritual: the population is divided in two geographical classes. The first thing worth noticing

is that these shares show a remarkable stability over the seven-year period: this confirms

how, though arising from choices made by distinct individuals, who bear extremely dif-

ferent personal motivations, the aggregate behavior can be seen as an observable feature

characterizing society as a whole.

In order to apply Berkson’s method of estimation, we choose gather the data into

periods of four years, starting with 2000 − 2003, then 2001 − 2004, etc. Now, if we label

the share of men in group g choosing the religious ritual in a specific year (say in 2000)

by m2000
g , we have that the quantity that ought to be minimized in order to estimate the

model’s parameters for the first period is the following, which we label X2:

X2 =
2003∑

year=2000

2∑

g=1

(arctanh myear
g − Uyear

g )2,

Uyear
g =

2∑

g′=1

Jg,g′m
year
g′ + hg,

hg = α1a
(1)
g + α0.

The results of the estimation for the four periods are shown in Table 2, whereas Table

3 shows the corresponding estimation for a discrete choice model which doesn’t take into

account interaction.
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4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006

α0 -0.10 ± 0.42 -0.16 ± 0.15 -0.18 ± 0.10 -0.13 ± 0.01

α1 0.20 ± 0.59 0.20 ± 0.22 0.16 ± 0.14 0.14 ± 0.01

J1 1.16 ± 0.41 1.09 ± 0.16 1.01 ± 0.11 1.02 ± 0.01

J2 1.29 ± 0.89 1.40 ± 0.33 1.45 ± 0.21 1.36 ± 0.01

J12 -0.21 ± 0.89 -0.10 ± 0.33 0.03 ± 0.21 -0.01 ± 0.01

J21 0.09 ± 0.41 0.02 ± 0.16 -0.01 ± 0.11 0.01 ± 0.01

Table 2: Religious vs civil marriages: estimation for the interacting model

4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006

α0 0.67 ± 0.15 0.63 ± 0.03 0.61 ± 0.06 0.58 ± 0.03

α1 -0.41 ± 0.1 -0.43 ± 0.04 -0.45 ± 0.08 -0.46 ± 0.04

Table 3: Religious vs civil marriages: estimation for the non-interacting model
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% of consensual divorces, by year

Region 2000 2001 2002 2003 2004 2005

Northern Italy 75.06 80.75 81.32 81.62 81.55 81.58

Southern Italy 58.83 72.80 71.80 72.61 72.76 72.08

Table 4: Percentage of consensual divorces, by year and geographical region

6.2 Divorces in Italy, 2000-2005

The second case study uses data from the annual report compiled by Istat in the six

years going from 2000 to 2005. The data show how divorcing couples chose between a

consensual and a non-consensual divorce in Northern and Southern Italy.

As shown in Table 4 here too, when looking at the ratio among consensual versus the

total divorces, the data show a remarkable stability.

Again we gather the data into periods of four years and Table 5 presents the estimation

of our model’s parameters for the whole available period, while in Table 6 we show the

corresponding fit by the non-interacting discrete choice model.

We stress that the estimated parameters have some analogies with the preceding case

study in that here too the cross interactions J12, J21 are statistically close to zero whereas

the diagonal values J11, J22 are both greater than one suggesting an interaction scenario

which is due to multiple equilibria [13]. Furthermore, in both cases the attribute-specific

parameter α1 is larger than the generic parameter α0 in the interacting model (Tables

2 and 5), as opposed to what we see in the non-interacting case (Tables 3 and 6): this

suggests that by accounting for interaction we might be able to better evaluate the role

played by socio-economic attributes.
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4-year period

Parameter 2000-2003 2001-2004 2002-2005

α0 0.02 ± 0.06 -0.08 ± 0.01 -0.07 ± 0.01

α1 -0.25 ± 0.08 -0.22 ± 0.01 -0.23 ± 0.01

J1 1.59 ± 0.14 1.64 ± 0.01 1.66 ± 0.01

J2 1.16 ± 0.06 1.25 ± 0.01 1.25 ± 0.01

J12 -0.05 ± 0.06 0.01 ± 0.01 0.00 ± 0.01

J21 -0.08 ± 0.14 0.00 ± 0.01 -0.01 ± 0.01

Table 5: Consensual vs non-consensual divorces: estimation for the interacting model

4-year period

Parameter 2000-2003 2001-2004 2002-2005

α0 0.41 ± 0.13 0.48 ± 0.01 0.480046 ± 0.01

α1 0.28 ± 0.18 0.25 ± 0.02 0.261956 ± 0.01

Table 6: Consensual vs non-consensual divorces: estimation for the non-interacting model

6.3 Suicidal tendencies in Italy, 2000-2007

The last case study deals with suicidal tendencies in Italy, again following the annual

report compiled by Istat in the six years from 2000 to 2007, and we use the same geo-

graphical attribute used for the former two studies.

The data in Table 7 shows the percentage of deaths due to hanging as a mode of

execution. The topic of suicide is of particular relevance to sociology: indeed, the very first

systematic quantitative treatise in the social sciences was carried out by Émile Durkheim

[8], a founding father of the subject, who was puzzled by how a phenomenon as unnatural

as suicide could arise with the astonishing regularity that he found. Such a regularity

as even been dimmed the “sociology’s one law” [23], and the connection to statistical

mechanics might eventually shed light on the origin of such a law.

Mirroring the two previous case studies, we present the time series in Table 7, whereas

Table 8 shows the estimation results for the interacting model, and Table 9 are the esti-

mation results for the discrete choice model. Again, the data agrees with the analogies
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% of suicides by hanging

Region 2000 2001 2002 2003 2004 2005 2006 2007

Northern Italy 34.17 37.02 35.83 34.58 35.21 36.23 33.57 38.08

Southern Italy 37.10 37.40 37.34 38.54 34.71 38.90 40.63 36.66

Table 7: Percentage of suicides with hanging as mode of execution, by year and geograph-

ical region

4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006 2004-2007

α0 0.01 ± 0 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

α1 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

J1 1.09 ± 0.01 1.09 ± 0.01 1.09 ± 0.02 1.10 ± 0.03 1.09 ± 0.01

J2 1.06 ± 0.01 1.08 ± 0.01 1.08 ± 0.01 1.07 ± 0.01 1.07 ± 0.01

J12 0 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

J21 0 ± 0.01 0.01 ± 0.01 0.00 ± 0.02 0.01 ± 0.03 0.01 ± 0.01

Table 8: Suicidal tendencies: estimation for the interacting model

found for the two previous case studies.

4-year period

Parameter 2000-2003 2001-2004 2002-2006 2003-2007 2004-2008

α0 -0.25 ± 0.02 -0.27 ± 0.03 -0.26 ± 0.03 -0.24 ± 0.04 -0.25 ± 0.05

α1 -0.05 ± 0.03 -0.03 ± 0.04 -0.04 ± 0.04 -0.07 ± 0.06 -0.04 ± 0.07

Table 9: Suicidal tendencies: estimation for the non-interacting model
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7 Comments

We introduced a class of simple mean field models of choice in the presence of social

interaction, which generalizes the model introduced in [6].

After showing how our model reduces to a standard discrete choice model when we ne-

glect interaction, we analyzed the simplest kind of interaction (by accounting for only

one attribute): in this case the model reduces to a well known bipartite model, whose

thermodynamic limit as well as multiple equilibria have already been shown to exist [13].

In order to test our model we considered three case studies, concerning relevant social

phenomena such as marriage, divorce, and suicide, and we found that Berkson’s method

of estimation [4] provides a valuable statistical tool, alternative to the more typical max-

imum likelihood procedure used in econometrics, which is not suitable for our model due

to discontinuities arising in its probability structure.

This papers aims to suggest the outline of a method that can be used to study more

specific situations, where individuals may be modelled in a more precise way, by assign-

ing more socio-economic attributes to them. In this simple case we were able to find

consistencies in the interaction parameters regarding different topics for the same popu-

lation. Furthermore, the parameters values where found to be in a regime characterized

by multiple equilibria, which suggests the possibility that a refinement of this study will

eventually lead to the capability of predicting abrupt transitions at a societal level.
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