
DOI: 10.1142/S0218195910003414

October 18, 2010 13:38 WSPC/Guidelines S0218195910003414

International Journal of Computational Geometry
& Applications
Vol. 20, No. 5 (2010) 511–525
c© World Scientific Publishing Company

A COVERING PROJECTION FOR ROBOT NAVIGATION UNDER

STRONG ANISOTROPY∗

ANDREA ANGHINOLFI

Servizio Sistemi Informativi e Telematica

Provincia di Modena

Modena, Italy

anghinolfi.a@provincia.modena.it

LUCA COSTA

Autodesk SpA

Milano, Italy

luca.costa@autodesk.com

MASSIMO FERRI

Dept. of Mathematics and ARCES

University of Bologna

Bologna, Italy

ferri@dm.unibo.it

ENRICO VIARANI

ARCES

University of Bologna

Bologna, Italy

eviarani@deis.unibo.it

Received 24 June 2005
Revised 22 November 2006

Communicated by Bernard Chazalle

ABSTRACT

Path planning can be subject to different types of optimization. Some years ago a German
researcher, U. Leuthäusser, proposed a new variational method for reducing most types
of optimization criteria to one and the same: minimization of path length. This can be
done by altering the Riemannian metric of the domain, so that optimal paths (with
respect to whatever criterion) are simply seen as shortest. This method offers an extra
feature, which has not been exploited so far: it admits direction–dependent criteria.

∗Research accomplished under support of INdAM-GNSAGA, of MACROGeo and of the University
of Bologna, funds for selected research topics.
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In this paper we make this feature explicit, and apply it to two different anisotropic
settings. One is that of different costs for different directions: E.g. the situation of a

countryside scene with ploughed fields. The second is dependence on oriented directions,
which is called here “strong” anisotropy: the typical scene is that of a hill side. A covering
projection solves the additional difficulty. We also provide some experimental results on
synthetic data.

Keywords: Path–planning; Riemannian metric.

1. Introduction

Path planning can be conditioned by different factors, as fuel consumption, mission

duration and others.5,14,17,22 U. Leuthäusser11–13 has shown how to discharge these

factors on a Riemannian metric on the plane or space where the task has to be

performed. The optimal path then becomes the path x(t) of minimal “length”,

where this length is classically computed by the line integral (see, e.g., Formula

4.19 of Ref. 10)

∫ b

a





n
∑

i,k=1

gik(xj , ẋj)ẋiẋk





1/2

dt

the gik being the components of the metric tensor. Of course, these components

loose their original geometric meaning (Formula 3.2 of Ref. 10). See Sec. 2.1 for a

sketch of their computation.

Actually, Leuthäusser’s articles only treat isotropic cases, where the metric ten-

sor is expressed by the identity matrix multiplied by a (possibly varying) scalar

factor. Those papers concentrate on the very important problems related to the

variational calculus involved.

Here, on the contrary, we shall be less concerned with the computational prob-

lem. We have modelled the domain as a labelled directed graph, and we have used

quite standard methods for finding shortest paths between vertices. Moreover, we

shall assume no dependence on velocity: The gik will depend solely on position. The

ambient space will be 2-dimensional.

Of course, we do not underestimate the importance of computational issues.

Still, we prefer to focus on the main, so far unexploited feature of the method,

and to defer performance optimization to a possible, further collaboration with an

engineering environment. In fact, the main goal of this paper is to explore the most

peculiar potentiality of Leuthäusser’s method not covered by that Author’s papers:

path planning in anisotropic environments. We shall consider two separate types of

anisotropy, which we shall call weak and strong.

Weak anisotropy is a situation in which cost (i.e. ground resistance, fuel con-

sumption, lack of comfort, threat, or whatever is to be minimized) depends on the

direction, but not on the orientation along a direction. We mean that a displace-

ment vector and its opposite have equal cost. This is typically the case of ploughed

fields, which was anticipated in Ref. 2, and which will be our example of navigation

under weak anisotropy.



October 18, 2010 13:38 WSPC/Guidelines S0218195910003414

A Covering Projection for Robot Navigation under Strong Anisotropy 513

Strong anisotropy is the situation in which cost is different for two opposite

displacement vectors. This is the case with slopes, currents, wind. This will give us

an additional problem, since this condition makes it impossible to stick with a mere

metric tensor, if we insist not to have an explicit dependence on velocity. We shall

overcome the problem by using a particular map which is a cross–section of a 2-fold

covering projection of the tangent plane.19

Ground characteristics, as for resistance to the motion of a fixed vehicle, are

usually expressed by maximum speeds, common to whole ground units with homo-

geneous characteristics. This is the convention used, e.g., in the N.A.T.O. Army

Mobility Model AMM–75.15 On the contrary, the eigenvalues of our matrices will

be directly proportional to the difficulty of movement. In the strongly anisotropic

case, we shall even have negative values.

The practical meaning of negative values is tied with situations in which move-

ment along a direction, with one of the two possible orientations, yields a gain: E.g.,

a vehicle descending a slope on a fairly smooth ground might move passively and

charge its batteries. A similar scenario applies to a boat sailing before the wind.

The example which we shall use in our simulation, is a slope with rough ground,

crossed by a zig–zag road.

Several Authors have treated robot motion on rough terrain: Ref. 18 is mainly

concerned with the stability of a computed path at varying approximations of the

terrain description;6 also deals with path stability and considers the use of land-

marks; some, as,7 treat extensively the physical problems related with wheel–terrain

contact. On the other hand, also dependence on direction has been studied, but

mainly involving the robot’s mechanical structure and the connected constraints.4,9

But perhaps the most careful analysis of path planning in anisotropic environments

is the one of Ref. 21 followed by the related one of Ref. 24: Our method could be

seen as a sort of mixing of the ideas of these Authors with the one of Leuthäusser.

Section 2 of the present article describes the method from the mathematical

viewpoint. Section 3 is devoted to the problems connected with discretization. Sec-

tion 4 contains the descriptions and comments on some simulations. Section 5 com-

ments on the usefulness of the method while the conclusions are drawn in Sec. 6.

Sections 2–4 have separate subsections corresponding to weak and strong anisotropy.

2. Norm and Skew-norm

2.1. Weak anisotropy

Under weak anisotropy (or under isotropy), at each point of the ground the metric

is represented by the metric tensor, in the form of a real, symmetric square matrix

of order two (having fixed an orthonormal basis for each tangent space in a coherent

way). The corresponding bilinear form is obtained by matrix products, at both sides

of the matrix, of the component pairs of the vectors; this induces a quadratic form

(here, v is a generic vector of components (a, b)):

v 7→ (a, b) 7→
(

a b
)

· A ·
(

a

b

)

= ‖v‖2. (1)
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Note that the quadratic form has to be always positive definite, since every

displacement has a cost. So ‖ ‖ is really a norm on the tangent space, and the bilinear

form is a scalar (or inner) product. It is this norm, which enters the computation

of the line integral yielding the (fictitious) length of a path.

The directions of least and greatest cost will be mutually orthogonal, due to

the symmetry of the matrix; they are given by the eigenspaces of A. The eigenval-

ues represent the extremal costs. The isotropic case is represented by a matrix A

with just one eigenvalue λ of multiplicity two, so A = λI2. Of course, in practical

situations, things go the other way around: The extremal costs (eigenvalues) and

their directions (eigenspaces) are directly measured on the terrain, and matrix A is

obtained by conjugation (change of basis).

In practice, the construction of A at each point proceeds as follows. First, at

points where resistence to motion — or any other cost — is independent of direction,

A is simply the identity matrix I2 multiplied by the scalar representing cost, e.g,

the inverse of maximum speed. Obstacles are represented by sets of points, where

this scalar is set at a very high value. At a point where cost is (weakly) anisotropic,

we compute the matrix A by first building an auxiliary diagonal matrix D, whose

diagonal entries are the maximal and minimal costs, as directly measured on the

terrain. If E is matrix of the change of orthonormal basis which takes the E–W

direction to the one of maximal cost, and the N–S direction to the one of minimal

cost, then A = E−1 · D · E. Note that, in order to keep within classic Riemannian

metrics, A has to be symmetric, and the extremal directions have to be orthogonal;

the more general situation of nonorthogonal extremal directions — hence of an

asymmetric matrix — is affordable, but will not be considered in this paper.

2.2. Strong anisotropy

One important feature of the above mentioned approach is the fact that reversing

a vector does not affect its norm. This is why the method, without modifications,

cannot take into account an oriented direction, but only directions as parallelism

classes. So, the following method has been conceived expressly to allow a distinction

between a displacement vector and its opposite.

The method simply consists in taking a vector v of Cartesian components (a, b),

passing to polar coordinates (ρ, θ), halving the anomaly, passing again to Cartesian

components (a′, b′), then evaluating the resulting pair by a suitable quadratic form:

v 7→ (a, b) 7→ (ρ, θ) 7→ (ρ, θ/2) 7→ (a′, b′) 7→ (2)

7→
(

a′ b′
)

· A ·
(

a′

b′

)

= f(v).

Of course, the composite function f so defined is not the square of a true norm,

and not even a quadratic form so this is no more a Riemaniann metric. Moreover,

the quadratic form corresponding to the matrix A need not be positive definite. In
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fact, in the case of strong anisotropy some displacements might incur null cost, or

even yield a gain. Therefore, A may also have nonpositive eigenvalues.

We define the skew-norm of v as

‖v‖ = sign(f(v))
√

|f(v)|. (3)

The core of the composition is the function which maps (ρ, θ) to (ρ, θ/2). This is

a cross-section of the 2-fold covering projection (ρ, η) 7→ (ρ, 2η) of the tangent plane

onto itself, branched on the null vector (see p. 292 of Ref. 19). This cross-section

transforms opposite vectors into orthogonal ones, so allowing to apply the previous

method.

The vectors at greatest and least skew-norm are opposite to each other, due to

the symmetry of A, hence to the orthogonality of its eigenspaces. The isotropic case

is again represented by means of a matrix with a single eigenvalue λ of multiplicity

two: A = λI2.

In the strong anisotropic case, concrete construction of A then proceeds at each

point as follows. A diagonal matrix D is built, whose diagonal entries are the maxi-

mal and minimal cost. Now, let r be an oriented straight line whose positive direction

goes from minimal to maximal cost. Let then s be the oriented line which bisects

the angle between the positive half–lines on the x-axis and on r. If E is the matrix

of the change of orthonormal basis taking the oriented direction W → E (i.e. of

positive x) to the oriented direction of s, then A = E−1 · D · E.

Note that our representation of (weak and strong) anisotropy is still rather

rigid, although effective. The rigidity comes from the fact that the only “degrees

of freedom” are a direction (the other is compelled to be orthogonal, in the weak

case), the value along that direction, the value along the orthogonal direction.

In the strong case, just one direction is directly considered, with the two possible

orientations. By the way, our method allows to treat ploughed fields and hill sides,

but not the two together. To solve the problem of ploughed fields on a hill side,

we should be compelled to mix the values coming from the two methods vector by

vector.

Of course, the method proposed in this paper is just one of many possible solu-

tions to the problem of distinguishing orientation. We have chosen it as the slightest

possible variation from the weak anisotropy model and perhaps the simplest one

allowing orientation.

3. The Discrete Model

We have chosen to treat the variational problem on a directed graph. Vertices

represent equally spaced ground points of a rectangular grid, arcs connect each

vertex to the ones of a suitable neighbourhood. So each arc starting at a vertex P

corresponds to a tangent vector based at P ; we label it by the norm of the vector,

computed according to the metric tensor at P itself. This rough discretization is
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introduced just for explaining the method by simple simulations; of course, a real

application should directly deal with tangent vectors.

We can assume that the ground patch of interest fits into a rectangle, and that

we draw the rectangular grid of vertices with rows and columns parallel to its sides.

Recall that orthogonality and length are here the physical ones. For the topographic

map of an undulating ground, the distances are actually those of the projection on

a horizontal plane. Units can be so adjusted, that the nearest neighbors of each

vertex are at distance one.

For the sake of description simplicity, we can assume that one side of the rect-

angle, and the x axis at each vertex, are in East–West direction, and the other,

together with all y axes, in North–South direction. We progressively number the

vertices, from left to right, from top to bottom.

The vehicle is supposed to be endowed with a limited number of possible dis-

placements: With the obvious exceptions of the vertices at the border of the rect-

angle, each vertex P is joined to 32 vertices (as, e.g., in Ref. 20). These correspond

to the 32 vectors of integer components (m, n) with 1 ≤ |m| + |n| ≤ 5 which are

not multiples of vectors with lesser |m+n| (see Fig. 1). Of course, a finer or coarser

directional resolution can be chosen by the actual programmer.

Fig. 1. The 32 vertices reached by elementary displacements.

In other words, the vertices adjacent to P are the ones which can be reached

from P by a “tower–like” path of no more than five steps, in which at least one

change of direction is necessary; the vertices left out are those which can be reached

by repeated, shorter displacements in the same direction.

This setting has a problem: the robot tends to cut through the edges of obstacles

(i.e. ground units with high eigenvalues). This happens because at P the robot may

test a displacement vector to a point Q and find it convenient, even if the line

PQ crosses an obstacle (what it cannot know). A possible solution to this problem

(which we have tested in Ref. 2) is smoothing the boundaries between all pairs of

different ground units: Each ground unit is surrounded by a belt of vertices at which

the metric is a mean of the nearby metrics. We shall not use this expedient in the
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experiments of the present paper, as it might slightly confuse the evaluation of the

main method; here, our “robots” do cut through the edges.

As an algorithm for finding paths with minimal weight sum, we (as also Ref. 18)

have chosen the one of Dijkstra,3 which has an O(m + n log n) computational com-

plexity on a graph with m arcs and n vertices. The algorithm implemented in our

program runs — for small experiments as the ones presented here — in real time.

For a detailed survey on shortest path algorithms see Ref. 16.

3.1. Weak anisotropy

As already said, at each vertex a matrix (gij) represents the metric tensor with

respect to the fixed base. Then the squared norm of a displacement vector is evalu-

ated as in Formula 1 of Sec. 2.1. E.g., the vector v of components (1, 2) is multiplied

as follows:
(

1 2
)

·
(

g11 g12

g21 g22

)

·
(

1

2

)

whence the norm
√

g11 + 2g12 + 2g21 + 4g22.

3.2. Strong anisotropy

The only difference from the case of weak anisotropy, is that the weights are not

directly given by matrix multiplication. Before this operation, conversion to polar,

halving of the anomaly (the cross section of the described covering projection), and

conversion back to Cartesian are performed, according to Formula 2 and Formula 3

of Sec. 2.2.

The same vector v of components (1, 2) will now be processed as follows.

v 7→ (1, 2) 7→
(√

5, arctan(2)
)

7→
(√

5,
arctan(2)

2

)

(4)

7→
√

5





√√
5 + 1

2
√

5
,

√√
5 − 1

2
√

5





7→ 5 +
√

5

2
g11 +

√
5g12 +

√
5g21 +

5 −
√

5

2
g22

which is the value of f on the displacement vector, and from which, depending on

the sign, we get the skew-norm by Formula 3.

For practical purposes, we assume that the system either already has a database

formed by the matrices A for each relevant point, or builds it dynamically while

exploring the terrain. At each point, in either case, the following algorithm computes

the costs of the elementary displacements v[i] (32 in the case of Fig. 1) by means of

the entries g11, g12, g22 of the symmetric A at that point, so getting as output the

cost values for each v[i]; these become the input data for the optimal (or suboptimal)

path search.
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for (i = 0; i < 32; i++)

{ a = v[0] [i]; b = v[1] [i]; /*loading 32 displacements*/

ro = sqrt ((a^2) + (b^2)); /*from Cartesian to polar and...*/

theta = atan (b / a);

aprime = ro * cos (theta /2); /*...from "half"polar back to Cartesian*/

bprime = ro * sin (theta / 2);

f[i] = (aprime^2) * g11 + /*local cost computation*/

2 * aprime * bprime * g12 +

(bprime^2) * g22;

}

*
*

*
*

*

*
*
****

*****
******

********

*

*

*

*

*

*
*

**
***

****

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*

G2

S2

G1

S1

Fig. 2. Two simulations in weak anisotropy.
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4. Simulations

4.1. Weak anisotropy

Besides some isotropic situations, we have experimented with the program on a true

countryside topographic map (Fig. 2). The ground patch considered has different

features, the most intriguing one being the presence of ploughed fields, with furrows

of several directions. S1, S2 are starting points, and G1, G2 are, respectively, goals

for the moving robot.

In the upper part of the domain, near S1 and G1 there are furrows forming an

angle of about 18◦ with the N–S direction. The matrix E of change of basis is then

approximately

(

0.95 −0.3

0.3 0.95

)

.

If we assume to have measured (with respect to suitable units) a resistance to

motion of 10 across the furrows and of 5 along, then the diagonal matrix D is
(

10 0

0 5

)

and the final matrix A is approximately

(

9.5 −1.4

−1.4 5.4

)

=

(

0.95 0.3

−0.3 0.95

)

·
(

10 0

0 5

)

·
(

0.95 −0.3

0.3 0.95

)

The orchard (represented as a grid of dots) is an isotropic obstacle, and we set

its resistence to motion at a high 50:

(

50 0

0 50

)

whereas the meadow just north of

G1 is isotropic but practicable; assume we have measured its resistance to motion

to be 5:

(

5 0

0 5

)

. There is a narrow track at the upper margin of the orchard; we

assume its metric tensor to be

(

2 0

0 2

)

.

The result of the search for an optimal path (computed as “shortest” by the

system according to the displacement costs deriving from these matrices) is shown

by the dotted lines: from S1 the robot first moves along the furrows, then it turns

eastwards when it hits the boundary of the orchard and goes along the track up

to the corner. There, it finds the meadow which it crosses diagonally, pointing not

exactly towards the goal, but almost, in order to reach the endpoint of a furrow,

along which it goes up to G1.

More interesting yet is the bottom path, starting at point S2. The robot points

away from the goal, because of the presence of a drain (isotropic with value 100); it

chooses to reach a track going along the furrows; then it reaches the junction with

a road (isotropic with value 1), goes right over the bridge, up to the furrow which

leads it to G2.

Note that the furrow starting at S2 is not followed exactly: this is because the

angle with the x axis is not one of the 32 allowed. However, the solution looks

acceptable.
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4.2. Strong anisotropy

For a simulation under strong anisotropy, we have worked with totally synthetic

data (Figs. 3–6). Letter S stands for Start and G for Goal. The figures are bird’s

eyeviews. The sign in the lower right corner of each figure indicates (in perspective)

the direction of maximum slope, with the corresponding cost values.
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S

f

Fig. 3. A road crossing a hillside.

The situation of Figs. 3 and 4 represents a steep side of a hill (with maximum

slope from South to North), on which a road climbs from South–West to North–

East. In Fig. 3 the road has been given eigenvalues 5 uphill and −3 downhill (along

its own direction), so the corresponding diagonal matrix is

(

5 0

0 −3

)

.

Recalling that the angles with the x axis have to be halved before computing

the matrix, the matrix E of change of basis is the one of a π/8 rad rotation:







√√
2+2

2

√
2−

√
2

2

−
√

2−
√

2

2

√√
2+2

2
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and the resulting matrix A is

(

2
√

2 + 1 2
√

2

2
√

2 1 − 2
√

2

)

=





√√
2+2

2
−
√

2−
√

2

2√
2−

√
2

2

√√
2+2

2



 ·
(

5 0

0 −3

)

·





√√
2+2

2

√
2−

√
2

2

−
√

2−
√

2

2

√√
2+2

2





The meadows have eigenvalues 50 uphill (i.e. towards the top of the picture)

and 3 downhill, with matrix
(

53/2 47/2

47/2 53/2

)

=

(
√

2/2 −
√

2/2√
2/2

√
2/2

)

·
(

50 0

0 3

)

·
(
√

2/2 −
√

2/2√
2/2

√
2/2

)

The setting of Figure 4 differs in that the meadows are given eigenvalues 50 and

−1, i.e. with a slight gain in descent, so that the matrix is
(

49/2 51/2

51/2 49/2

)

=

(√
2/2 −

√
2/2√

2/2
√

2/2

)

·
(

50 0

0 −1

)

·
(√

2/2 −
√

2/2√
2/2

√
2/2

)

10

20

30

40

*
*

*

*
*
*
*
*

*

G

S-3

+5

a

10

20

30

40

*
*

*

*
*
*

*
*
*

-3

+5

G

S

b

10

20

30

40

*
*

* *
*
*
*
*

*

*

*

-3

+5G

S

c

10

20

30

40

*
*

*

*
*
*

*
*
*

*

-3

+5

G

S

d

10

20

30

40

*
*
*
*
*

-3

+5G

S

e

10

20

30

40

*
*

-3

+5

G

S

f

Fig. 4. A road crossing a hillside, with a gain when going downhill.

As the pairs of starts and goals are the same in both situations, it is possible

and interesting to compare the robot behaviours. Of course there is much more

symmetry between ascent and descent in Fig. 3; in Figs. 3(a) to 3(d) the robot

points straight to the road and goes along it — be it uphill or downhill. Only in

Figs. 3(e) and 3(f) are start and goal too close, and the robot does not make use

of the road. Figure 4(b) is very different from the homologous Fig. 3(b): the robot
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covers just a short path on the road, as it finds it convenient to cross the meadows

downhill. There is a difference also between Figs. 3(f) and 4(f): whereas Fig. 3(f) is

symmetrical to Fig. 3(e), this is not so for Fig. 4(f). In fact the robot tries to get

as much as possible from the gain that comes from going straight downhill.

A more complex setting is shown in Figs. 5 and 6: Here the road goes zig–zag.

The eigenvalues for the road are again 5 and –3. Figure 5 is relative to eigenvalues

50 and 3 for the meadows, whereas Fig. 6 has 50 and –1 instead. Also in these cases

one can appreciate the asymmetry between ascent [Figs. 5(a) and 6(a)] and descent

[Figs. 5(b) and 6(b)], and between the two different solutions in descent [Figs. 5(b)

and 6(b)], while ascent is the same.
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Fig. 5. A zig-zag road crossing a hillside.
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Fig. 6. A zig-zag road crossing a hillside, with a gain when going downhill.
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Of course, the discretization used here yields awkward polygonals. It would be

interesting to implement a more faithful simulation in a continuous domain.

5. Why This Method

A reasonable objection to our method has been: “Why not directly assign weights to

edges?”. The answer is in the number of decisions or measurements to be made; our

method just requires to evaluate the field characteristic in the form of a symmetric

2× 2 matrix, instead of the usual single parameter. Then the method takes care of

deciding the weights of the vectors corresponding to the various directions, whatever

resolution (i.e. whatever the number of directions) the user wants to adopt. So the

user has just to find the direction of maximum-minimum resistance to motion, and

to measure the values of resistance in the two opposite orientations.

Speculations on theoretical issues are not new to the area of motion planning:

Ref. 1 is concerned with different metrics; Ref. 25 abstracts potential field theory

(as many others) in order to re–apply it to motion planning with the support of

fuzzy logic; Ref. 23 is closer to our work, in that it introduces a fuzzy rule–based

Traversability Index. As we mentioned earlier, direction–dependent path planning

under the effect of friction and gravity has been treated in an extremely detailed

way by Rowe and Ross in Ref. 21 and more recently by Sun and Reif in Ref. 24.

These papers, moreover, treat exhaustively the problem of impermissibility.

A comparison between our method and the results we have just quoted is not

possible, since the aims are different. Those papers study properties of optimal

paths, or deal with computational issues, within a specific model of anisotropy.

Instead, we are proposing a different way of modelling anisotropy: a new model to

which those same results might apply. In fact, the only possible, true comparison

is between our construction and Leuthäusser’s own applications of his idea. There,

there is no doubt that ours is a definite progress.

We think that our contribution is potentially meaningful, as it offers the pos-

sibility of mixing the advantages of the methods of Rowe, Ross, Sun, Reif to the

great generality of Leuthäusser’s idea; moreover it offers a rather new mathematical

viewpoint on the problem.

As mathematicians, we are particularly interested in unfolding the present

method — introduced in an industrial environment — in its full theoretical capabil-

ity. Leuthäusser’s method of altered Riemaniann metric seems to be little present

in the literature, maybe because of its limited exploitation by that Author. Its great

simplicity and generality suggest that it could — if not substitute — at least in-

tegrate alternative path planning methods in anisotropic environments. Its major

drawback, i.e. insensitivity to direction but not to orientation, is overcome in the

present paper.

As applied mathematicians, we care for the effectiveness of a theoretical issue.

Our simulations show that this tool produces plausible reactions to various sim-

ple strongly anisotropic conditions. It could be interesting to collaborate with an

engineering team in exploiting integrations and applications of this tool.



October 18, 2010 13:38 WSPC/Guidelines S0218195910003414

524 A. Anghinolfi et al.

6. Conclusions

We have shown how to use a varying metric tensor to direct the choice of a path

for a moving robot, in anisotropic situations.

In the case of weak anisotropy (indifference to reversal of displacement) the

method is simply the one suggested by U. Leuthäusser and plainly imported from

Riemannian geometry. Under strong anisotropy, where opposite displacements have

different costs, the use of a covering projection enhances the method.

Some simulations show the applicability of both techniques.
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