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The point of this talk

In brief, the main message of this talk:

TECHNIQUES FOR THE STABLE COMPUTATION AND

THE COMPARISON OF PERSISTENT TOPOLOGY IN THE

MULTIDIMENSIONAL SETTING (I.E., FOR FILTERING

FUNCTIONS TAKING VALUES IN R
k ) ARE AVAILABLE.
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The results I am going to present refer to a collective work of the Vision
Mathematics Group (Niccolò Cavazza, Andrea Cerri, Barbara Di Fabio,
Massimo Ferri, Patrizio Frosini, Claudia Landi).

The experimental results I shall show at the end of this talk have been
obtained in a joint work with the C.N.R. IMATI Group (Silvia Biasotti,
Daniela Giorgi).

Patrizio Frosini (Department of Mathematics) Multidimensional Persistent Topology GETCO 2010 4 / 51



A Metric Approach to Shape Comparison

1 A Metric Approach to Shape Comparison

2 Lower Bounds for the Natural Pseudodistance

3 New Results in the Multidimensional Setting

4 Experiments

Patrizio Frosini (Department of Mathematics) Multidimensional Persistent Topology GETCO 2010 5 / 51



A Metric Approach to Shape Comparison

Shape depends on persistent perceptions

Massimo and Claudia have already presented some motivations to
study Persistent Topology.
Just a few words to recall our approach to shape comparison:

“Science is nothing but perception.” Plato

“Reality is merely an illusion, albeit a very persistent one.” Albert
Einstein
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A Metric Approach to Shape Comparison

Our formal setting

As shown by Massimo and Claudia, we propose that

Each perception is formalized by a pair (X , ~ϕ), where X is a
topological space and ~ϕ is a continuous function.

X represents the set of observations made by the observer, while
~ϕ describes how each observation is interpreted by the observer.
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A Metric Approach to Shape Comparison

Our formal setting

Persistence is quite important. Without persistence (in space,
time, with respect to the analysis level...) perception could have
little sense. This remark compels us to require that

X is a topological space and ~ϕ is a continuous function; this
function ~ϕ describes X from the point of view of the observer. It is
called a measuring function.
Persistent Topology is used to study the stable properties of the
pair (X , ~ϕ).
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A Metric Approach to Shape Comparison

Our formal setting

A possible objection: sometimes we have to manage
discontinuous functions (e.g., color).
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A Metric Approach to Shape Comparison

Our formal setting

A possible objection: sometimes we have to manage
discontinuous functions (e.g., color).

An answer: in that case the topological space X can describe the
discontinuity set, and persistence can concern the properties of
this topological space with respect to a suitable measuring
function.

As measuring functions we can take ~ϕ : X → R
2 and ~ψ : Y → R

2,
where the components ϕ1, ϕ2 and ψ1, ψ2 represent the colors on
each side of the considered discontinuity set.
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A Metric Approach to Shape Comparison

Our formal setting

A categorical way to formalize our approach

Let us consider a category C such that

The objects of C are the pairs (X , ~ϕ) where X is a compact
topological space and ~ϕ : X → R

k is a continuous function.

The set Hom
(
(X , ~ϕ), (Y , ~ψ)

)
of all morphisms between the

objects (X , ~ϕ), (Y , ~ψ) is a subset of the set of all
homeomorphisms between X and Y (possibly empty).

If Hom
(
(X , ~ϕ), (Y , ~ψ)

)
is not empty we say that the objects (X , ~ϕ),

(Y , ~ψ) are comparable.
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A Metric Approach to Shape Comparison

Our formal setting
Do not compare apples and oranges...

Remark: Hom
(
(X , ~ϕ), (Y , ~ψ)

)
can be empty also in case X and Y are

homeomorphic.

Example:

Consider a segment X = Y embedded into R
3 and consider the

set of observations given by measuring the color ~ϕ(x) and the
triple of coordinates ~ψ(x) of each point x of the segment.
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A Metric Approach to Shape Comparison

Our formal setting
Do not compare apples and oranges...

Remark: Hom
(
(X , ~ϕ), (Y , ~ψ)

)
can be empty also in case X and Y are

homeomorphic.

Example:

Consider a segment X = Y embedded into R
3 and consider the

set of observations given by measuring the color ~ϕ(x) and the
triple of coordinates ~ψ(x) of each point x of the segment.

It does not make sense to compare the perceptions ~ϕ and ~ψ. In
other words the pairs (X , ~ϕ) and (Y , ~ψ) are not comparable, even
if X = Y .

We express this fact by setting Hom
(
(X , ~ϕ), (Y , ~ψ)

)
= ∅.
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A Metric Approach to Shape Comparison

Our formal setting

We can now define the following (extended) pseudometric:

δ
(
(X , ~ϕ), (Y , ~ψ)

)
= inf

h∈Hom((X ,~ϕ),(Y , ~ψ))
max

i
max
x∈X

|ϕi (x)− ψi ◦ h(x)|

if Hom
(
(X , ~ϕ), (Y , ~ψ)

)
6= ∅, and +∞ otherwise.

We shall call δ
(
(X , ~ϕ), (Y , ~ψ)

)
the natural pseudodistance between

(X , ~ϕ) and (Y , ~ψ).

The functional Θ(h) = maxi maxx∈X |ϕi (x)− ψi ◦ h(x)| represents the
“cost” of the matching between observations induced by h. The lower
this cost, the better the matching between the two observations is.
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A Metric Approach to Shape Comparison

Our formal setting

The natural pseudodistance δ measures the dissimimilarity
between the perceptions expressed by the pairs (X , ~ϕ), (Y , ~ψ).
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A Metric Approach to Shape Comparison

Our formal setting

The natural pseudodistance δ measures the dissimimilarity
between the perceptions expressed by the pairs (X , ~ϕ), (Y , ~ψ).

The value δ is small if and only if we can find a homeomorphism
between X and Y that induces a small change of the measuring
function (i.e., of the shape property we are interested to study).
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For more information:

P. Donatini, P. Frosini, Natural pseudodistances between closed
manifolds, Forum Mathematicum, 16 (2004), n. 5, 695-715.
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Our formal setting

The natural pseudodistance δ measures the dissimimilarity
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The value δ is small if and only if we can find a homeomorphism
between X and Y that induces a small change of the measuring
function (i.e., of the shape property we are interested to study).

For more information:

P. Donatini, P. Frosini, Natural pseudodistances between closed
manifolds, Forum Mathematicum, 16 (2004), n. 5, 695-715.

P. Donatini, P. Frosini, Natural pseudodistances between closed
surfaces, Journal of the European Mathematical Society, 9 (2007),
331-353.
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A Metric Approach to Shape Comparison

Our formal setting

Why do we just consider homeomorphisms between X and Y ?
Why couldn’t we use, e.g., relations between X and Y ?
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A Metric Approach to Shape Comparison

Our formal setting

The following result suggests not to do that:

Non-existence Theorem
Let M be a closed Riemannian manifold. Call H the set of all
homeomorphisms from M to M. Let us endow H with the uniform
convergence metric dUC: dUC(f ,g) = maxx∈M dM(f (x),g(x)) for every
f ,g ∈ H, where dM is the geodesic distance on M.
Then (H,dUC) cannot be embedded in any compact metric space
(K ,d) endowed with an internal binary operation • that extends the
usual composition ◦ between homeomorphisms in H and commutes
with the passage to the limit in K .

In particular, we cannot embed H into the set of binary relations on M.
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Lower Bounds for the Natural Pseudodistance
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Size homotopy groups

In the following we shall set X 〈~ϕ � ~u〉 = {x ∈ X : ~ϕ(x) � ~u} and
∆+ = {(~u, ~v) ∈ R

k × R
k : ~u ≺ ~v}.

The concept of size homotopy group:

Frosini&Mulazzani 1999

Assume that M is a C1-submanifold of the Euclidean space and
~ϕ : M → R

k is a C1 function. For each pair (~u, ~v) ∈ ∆+ and every
x ∈ X 〈~ϕ � ~u〉 let us consider the j-th homotopy groups πj(X 〈~ϕ � ~u〉)
and πj(X 〈~ϕ � ~v〉) based at x . Let us consider also the homomorphism
i(~u,~v)∗ : πj(X 〈~ϕ � ~u〉) → πj(X 〈~ϕ � ~v〉) induced by the embedding i(~u,~v)
of the set X 〈~ϕ � ~u〉 into the set X 〈~ϕ � ~v〉. The j-th size homotopy
group of (M, ~ϕ) based at x and associated to (~u, ~v) is the group
i(~u,~v)∗(πj(X 〈~ϕ � ~u〉)).
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Pareto-critical points

Let us recall the concept of Pareto-critical point:
Assume that M is a C1 closed manifold and ~ϕ : M → R

k is a C1

function. We shall say that x ∈ M is a Pareto-critical (or
pseudocritical) point if the convex hull of the vectors ∇ϕi(x) contains
the null vector. If x is a Pareto-critical point, then its image ~ϕ(x) is
called a Pareto-critical (or pseudocritical) value.

Example:
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Pareto-critical points

Figure: (a) The sphere S2 ⊆ R
3 endowed with the measuring function

~ξ = (ξ1, ξ2) : S2 → R
2, defined as ~ξ(x , y , z) = (x , z) for each (x , y , z) ∈ S2.

The Pareto-critical points of ~ξ are depicted in bold red. (b) The point Q is a
Pareto-critical point for ~ξ, since the vectors ∇ξ1(Q) and ∇ξ2(Q) are parallel
with opposite verse.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Natural pseudodistance and size homotopy groups

The natural pseudodistance is usually difficult to compute.

The following result allows us to get a lower bound for the natural
pseudodistance δ, by computing the size homotopy groups.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology.
Natural pseudodistance and size homotopy groups.

Frosini&Mulazzani 1999
Assume that

M, N are C1-submanifolds of the Euclidean space

~ϕ : M → R
k , ~ψ : N → R

k are C1 functions.

Let P~ψ
be the set of Pareto-critical points of the function ~ψ. Assume

also that (~u′, ~v ′), (~u′′, ~v ′′) ∈ ∆+ and that a point x ∈ M〈~ϕ � ~u′〉 exists
for which the following statement holds:

For each y ∈ P~ψ
with ~ψ(y) � ~u′′, the first size homotopy group of

(M, ~ϕ) based at x and associated to (~u′, ~v ′) is not isomorphic to a
subgroup of any quotient of the first size homotopy group of
(N , ~ϕ) based at y and associated to (~u′′, ~v ′′).

Then mini min{u′′
i − u′

i , v
′
i − v ′′

i } ≤ δ
(
(X , ~ϕ), (Y , ~ψ)

)
.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology.
Natural pseudodistance and size homotopy groups.

Example: Consider the two tori T ,T ′ ⊂ R
3 generated by the rotation

around the y-axis of the circles lying in the plane yz and with centers
A = (0,0,3) and B = (0,0,4), and radii 2 and 1, respectively. As
measuring function ϕ (resp. ϕ′) on T (resp. on T ′) we take the
restriction to T (resp. to T ′) of the function ζ : R3 → R, ζ(x , y , z) = z.
We point out that, for both T and T ′, the image of the measuring
function is the closed interval [−5,5].
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology.
Natural pseudodistance and size homotopy groups.

We want to prove that the natural pseudodistance between (T , ϕ) and
(T ′, ϕ′) is 2. In order to do that, let us consider the homeomorphism f ,
that takes each point of the former torus to the point having the same
toroidal coordinates in the latter. We can easily verify that Θ(f ) = 2. So
we have only to prove that δ ((T , ϕ), (T ′, ϕ′)) ≥ 2. This inequality
follows from the previous theorem by choosing x = (0,0,−5), u′ = 1,
v ′ = 5 − ǫ, u′′, v ′′ = 3 − ǫ and observing that if ǫ is any small enough
positive number, then the first size homotopy group of (T , ϕ) based at
x and associated to (1,5 − ǫ) is Z ∗ Z while the first size homotopy
group of (T ′, ϕ′) based at y and associated to (3 − ǫ,3 − ǫ) is Z.
From previous theorem we obtain that
δ ((T , ϕ), (T ′, ϕ′)) ≥ min{(3 − ǫ)− 1, (5 − ǫ)− (3 − ǫ)} = 2 − ǫ.
This implies the wanted inequality.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Natural pseudodistance and persistent homolopy groups

Let us recall the foliation method, illustrated in previous talks by
Massimo and Claudia:

~l = (l1, . . . , lk ), ~b = (b1, . . . ,bk ), with ‖~l‖ = 1, li > 0,
∑

i bi = 0

∆+ = {(~u, ~v) ∈ R
k × R

k : ~u ≺ ~v} is foliated by the 2D half-planes
with parametric equations:

π
(~l ,~b) :

{
~u = s~l + ~b
~v = t~l + ~b

s, t ∈ R, s < t

For every (~l , ~b), define F ~ϕ

(~l,~b)
: X → R by

F ~ϕ

(~l,~b)
(x) = max

i=1,...,k

{
ϕi(x)− bi

li

}
.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Reduction of the multidimensional rank invariant to the 1-dimensional case

Reduction Theorem

For every (~u, ~v) = (s~l + ~b, t~l + ~b) ∈ π
(~l ,~b) it holds that

ρ̌(X ,~ϕ),q(~u, ~v) = ρ̌
(X ,F ~ϕ

(~l,~b)
),q(s, t).

On each leaf of the foliation size functions can be represented as
persistence diagrams.

Multidimensional Matching Distance

Dmatch

(
ρ̌(X ,~ϕ),q, ρ̌(Y , ~ψ),q

)
= sup

(~l ,~b)

min
i=1,...,k

li · dmatch(ρ̌(X ,F ~ϕ
(~l,~b)

),q, ρ̌(Y ,F
~ψ

(~l,~b)
),q

)
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Size functions and persistent homology groups

Claudia has shown that the following result holds for the matching
distance Dmatch:

Multidimensional Stability Theorem

If X is a compact and locally contractible space and ~ϕ, ~ψ : X → R
k are

continuous functions, then

Dmatch

(
ρ̌(X ,~ϕ),q, ρ̌(X , ~ψ),q

)
≤ max

x∈X
‖~ϕ(x)− ~ψ(x)‖∞.
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Lower Bounds for the Natural Pseudodistance

Lower bounds for δ, via Persistent Topology
Size functions and persistent homology groups

The previous result can be reformulated in this way:

A Lower Bound for the Natural Pseudodistance
If X , Y are compact and locally contractible topological spaces, and
~ϕ : X → R

k , ~ψ : X → R
k are continuous functions then

Dmatch

(
ρ̌(X ,~ϕ),q , ρ̌(Y , ~ψ),q

)
≤ δ

(
(X , ~ϕ), (Y , ~ψ)

)
.

This result allows us to get a lower bound for the natural
pseudodistance δ, by computing the rank invariants.
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New Results in the Multidimensional Setting
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New Results in the Multidimensional Setting

Localizing discontinuities of the rank invariants
Our main result about discontinuities

A theorem localizing the discontinuities of the rank invariants

Assume that M is a C1 closed manifold and ~ϕ : M → R
k is a C1

function. Let (~u, ~v) ∈ ∆+ be a discontinuity point for ρ̌(M,~ϕ). Then at
least one of the following statements holds:

(i) ~u is a discontinuity point for ρ̌(M,~ϕ)(·, ~v);

(ii) ~v is a discontinuity point for ρ̌(M,~ϕ)(~u, ·).

Moreover,

If (i) holds, then a projection p exists such that p(~u) is a
Pareto-critical value for p ◦ ~ϕ;

If (ii) holds, then a projection p exists such that p(~v) is a
Pareto-critical value for p ◦ ~ϕ.
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New Results in the Multidimensional Setting

Localizing discontinuities of the rank invariants
Why is the previous result important?

The previous result allows us to divide ∆+ in connected components
where the rank invariant is constant. As a consequence, it implies a
new procedure to compute the multidimensional rank invariant,
requiring to compute it just at one point for each connected component.
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Reformulating the foliation method

In order to proceed, let us reformulate the foliation method. We need
to use a different parametrization of the planes in our foliation. The
question is: does a change of the parametrization produce a different
matching distance?
Fortunately, we can prove the following statement:

The multidimensional matching distance is invariant with respect to
reparametrizations of the half-planes foliating ∆+.
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Reformulating the foliation method

More precisely, the following result can be proven:

Invariance with respect to reparametrization (I)

For each pair (~λ, ~β) ∈ R
k × R

k let us consider the half-plane π
(~λ,~β)

defined by the following parametric equation:

π
(~λ,~β)

:

{
~u = s~λ+ ~β

~v = t~λ+ ~β
s, t ∈ R, s < t

Assume Λ ⊆ R
k and B ⊆ R

k are two sets such that the collection of
half-planes

{
π(~λ,~β)

}
(~λ,~β)∈Λ×B

is a foliation of ∆+.

(−→)
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Reformulating the foliation method

Invariance with respect to reparametrization (II)

Let ~ϕ : X → R
k , ~ψ : Y → R

k be two continuous functions. For every

(~λ, ~β) ∈ Λ× B, define F ~ϕ

(~λ,~β)
: X → R and F

~ψ

(~λ,~β)
: Y → R by

F ~ϕ

(~λ,~β)
(x) = max

i=1,...,k

{
ϕi(x)− βi

λi

}
, F

~ψ

(~λ,~β)
(y) = max

i=1,...,k

{
ψi(y)− βi

λi

}
.

Then
Dmatch

(
ρ̌(X ,~ϕ),q, ρ̌(Y , ~ψ),q

)
=

sup
(~λ,~β)∈Λ×B

min
i=1,...,k

λi · dmatch(ρ̌(X ,F ~ϕ
(~λ,~β)

),q, ρ̌(Y ,F
~ψ

(~λ,~β)
),q

).
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Reformulating the foliation method

Because of the previous theorem, the following parametrization of the
planes in our foliation produces the same matching distance we have
presented previously.

~λ = (λ1, . . . , λk ), ~β = (β1, . . . , βk ), with
∑

i λi = 1, λi > 0,
∑

i βi = 0

∆+ = {(~u, ~v) ∈ R
k × R

k : ~u ≺ ~v} is foliated by the 2D half-planes
with parametric equations:

π
(~λ,~β)

:

{
~u = s~λ+ ~β

~v = t~λ+ ~β
s, t ∈ R, s < t .

For every (~λ, ~β), define F ~ϕ

(~λ,~β)
: X → R by

F ~ϕ

(~λ,~β)
(x) = max

i=1,...,k

{
ϕi(x)− βi

λi

}
.
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
2-dimensional case

Let us consider the previously defined foliation.
We shall denote by Ladm the set of all admissible pairs.
We recall the definition of the matching distance in the case k = 2:

Dmatch

(
ρ̌(X ,~ϕ),q, ρ̌(Y , ~ψ),q

)

= sup
(~λ,~β)∈Ladmµ(

~λ) · dmatch

(
ρ̌(

X ,F ~ϕ
(~λ,~β)

), ρ̌(
Y ,F

~ψ

(~λ,~β)

)

)

= sup(~λ,~β)∈Ladmdmatch

(
ρ̌(

X ,µ(~λ)·F ~ϕ
(~λ,~β)

), ρ̌(
Y ,µ(~λ)·F

~ψ

(~λ,~β)

)

)

where µ(~λ) = min{λ1, λ2}, F ~ϕ

(~λ,~β)
(x) = max

{
ϕ1(x)−β1

λ1
,
ϕ2(x)−β2

λ2

}
,

F
~ψ

(~λ,~β)
(x) = max

{
ψ1(x)−β1

λ1
,
ψ2(x)−β2

λ2

}
.
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Our main result about the perturbation of the leaf in the foliation

The following statement holds:

Change of leaves and matching distance

Let us set C = max{‖~ϕ‖∞, ‖~ψ‖∞} and

d(~λ, ~β) = dmatch

(
ρ̌(

X ,µ·F ~ϕ
(~λ,~β)

), ρ̌(
Y ,µ·F

~ψ

(~λ,~β)

)

)
. Let us assume that

‖(~λ, ~β)− (~λ′, ~β′)‖∞ ≤ ǫ, with ǫ ≤ 1
4 . Then

∣∣∣d(~λ, ~β)− d(~λ′, ~β′)
∣∣∣ ≤ ǫ · (32C + 2)
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Let us simplify our notations

The strip (0,1)× R

In order to simplify the study of d(~λ, ~β), we observe that (~λ, ~β) is
identified by the pair (λ1, β1) (since λ2 = 1 − λ1 and β2 = −β1). In the
following we shall speak of the value of d(~λ, ~β) at the point
(λ1, β1) ∈ (0,1)× R: we shall mean the value of d(~λ, ~β) at the point
((λ1, λ2), (β1, β2)).
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Relationship between d(~λ, ~β) and the 1-dimensional matching distance

The knowledge of the function d(~λ, ~β) implies the knowledge of the
1-dimensional matching distance:

Theorem

d(~λ, ~β) =

{
min(λ1,1−λ1)

λ1
· dmatch(ρ̌(X ,ϕ1),q, ρ̌(Y ,ψ1),q), if β1 ≤ −C

min(λ1,1−λ1)
1−λ1

· dmatch(ρ̌(X ,ϕ2),q, ρ̌(Y ,ψ2),q), if β1 ≥ C

where C = max{‖~ϕ‖∞, ‖~ψ‖∞}.
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New Results in the Multidimensional Setting

Evaluating the matching distance between rank invariants
Let us simplify our notations

In plain words, considering the strip (0,1)× R, we have the situation
represented in this figure:
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New Results in the Multidimensional Setting

An Algorithm to Compute the Multidimensional Matching Distance

Previous results open the way to the approximation of the matching
distance between 2-dimensional rank invariants.
Indeed, if we take a finite grid of points G in (0,1)× R in such the way
that each point of (0,1)× R has distance from G less than ǫ then the
matching distance

Dmatch

(
ρ̌(X ,~ϕ),q , ρ̌(Y , ~ψ),q

)
= sup

(λ1,β1)∈(0,1)×R

d(~λ, ~β)

is approximated with an error less than ǫ · (32C + 2) by the
pseudodistance

D̃match

(
ρ̌(X ,~ϕ),q , ρ̌(Y , ~ψ),q

)
= sup

(λ1,β1)∈G
d(~λ, ~β)

where C = max{‖~ϕ‖∞, ‖~ψ‖∞}.
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New Results in the Multidimensional Setting

An Algorithm to Compute the Multidimensional Matching Distance

Therefore, in order to compute the matching distance between rank
invariants we can proceed this way:

We fix an error tolerance η > 0 and set ǫ = 1
8 ;

We choose a finite grid whose ǫ dilation includes the set
(0,1)× [−C,C];
We consider two further points Ā =

(1
2 ,−

(
C + 1

2

))
and

B̄ =
(1

2 ,C + 1
2

)
;

We compute d(~λ, ~β) for each point of G ∪ {Ā, B̄} and call D the
maximum of these values;
If ǫ · (32C + 2) ≤ η, D is the wanted approximation of the
2-dimensional matching distance and the algorithm ends;
otherwise we refine the grid in the neighborhood of radius ǫ (w.r.t.
the L∞ norm) of each points of G at whose center d(~λ, ~β) takes a
value having a distance from D less than ǫ · (32C + 2). Then we
go again to the previous point, after replacing ǫ with ǫ

2 .
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Experiments

The Multidimensional Matching Distance in Action

The following figures A, B, C, D, E show some examples of the
computation of the 2-dimensional matching distance between 3D
models taken from the SHREC 2007 database.

The 2-dimensional measuring function is ~ϕ = (ϕ1, ϕ2), with ϕ1 the
integral geodesic distance and ϕ2 the distance from the vector
~w =

∫

S(x−B)‖x−B‖ dσ
∫

S ‖x−B‖2 dσ , where S is the surface of the 3D object that

we are studying and B is its barycenter. The functions ϕ1, ϕ2 are
normalized so that they range in the interval [0,1].

An analogous procedure is used for the measuring function ~ψ.
This implies that the constant C = max(‖~ϕ‖∞, ‖~ψ‖∞) is equal to 1.
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Experiments

The Multidimensional Matching Distance in Action

We fix an error tolerance η equal to 5% of the constant C, that is,
η = 0.05. Six iterations are required for the threshold
t = ǫ · (32C + 2) to become less than η.

Each plot in Figures A, B, C, D, E shows the values of d(~λ, ~β). In
the color coding, red corresponds to higher values, whereas blue
corresponds to lower values.
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Experiments

Figure A

Figure: The function d(~λ, ~β) for an airplane and an octopus models, shown
on top of the plot. We fix an error tolerance η equal to 5% of the constant C,
that is, η = 0.05, being C = 1.
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Experiments

Figure B

Figure: The function d(~λ, ~β) for a human and an octopus models, shown on
top of the plot. We fix an error tolerance η equal to 5% of the constant C, that
is, η = 0.05, being C = 1.
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Experiments

Figure C

Figure: The function d(~λ, ~β) for an airplane and a table models, shown on
top of the plot. We fix an error tolerance η equal to 5% of the constant C, that
is, η = 0.05, being C = 1.
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Experiments

Figure D

Figure: The function d(~λ, ~β) for two human models, shown on top of the plot.
We fix an error tolerance η equal to 5% of the constant C, that is, η = 0.05,
being C = 1.
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Experiments

Figure E

Figure: The function d(~λ, ~β) for two human models, shown on top of the plot.
We fix an error tolerance η equal to 5% of the constant C, that is, η = 0.05,
being C = 1.
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Experiments

Conclusions

We have illustrated a paradigm for shape comparison, based on a
pseudometric δ between pairs (X , ~ϕ) (named natural
pseudodistance). The topological space represents the
observations, while ~ϕ : X → R

k describes the corresponding
perceptions.

Some theorems exist, giving lower bounds for this
pseudodistance. These lower bounds are based on the
computation of size homotopy groups and multidimensional
persistent homology groups.
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Experiments

Conclusions

We have illustrated two new results about multidimensional
persistent homology groups, both of them based on the foliation
method:

A theorem allowing us to localize discontinuities of the rank
invariant, based on the concept of Pareto-critical value. This result
makes the computation of the rank invariant easier, since it allows
us to split ∆+ into connected components at which the rank
invariant is constant.
A theorem bounding the change of the function d(~λ, ~β) when we
change the pair (~λ, ~β). This result opens the way to the
computation of the matching distance between rank invariants, as
shown in our examples.
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