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INFORMATION & SYSTEM SCIENCES set P of points approximating Ab. A second function év(x,y) is computed, which is defined

analogously, with volume replacing diameter.

DISCRETE COMPUTATION OF SIZE FUNCTIONS

PATRIZIO FROSINI*

Dipartimento di Matematica This approximation process is far from being new, as it is the core of the “Regge calculus” [MTW, Ch.

Universita di Bologna
Piﬁz%f;;%zz,;z‘zslt;’ 5 42] of Gaussian curvature and, in general, of the geometry of spacetime. It was later used in [CMS] for
generalizations, and in [BK] the other way around, i.e. for approximation of polyhedra by means of
A discrete approximation theory for computing size functions of submanifolds of smooth manifolds.

Euclidean spaces is developed, both for Dk-homotopy and V-homotopy. Some concrete
exampl,es of computation are provided.

Introduction. . . . - .
Section 1 gives the basic definitions. Section 2 studies the relations between the size functions in the

Mathematicians are becoming more and more involved in the task of giving a well-structured o ;
smooth case and their discrete counterparts, with diameter measuring the size. Section 3 does the same

mathematical answer to the problems of Pattern Recognition (as stressed, e.g., in [J] and [YWB]). The . I )
for volume instead of diameter. Section 4 presents some examples of explicit computation.

introduction of metric homotopies [Frl] and of a distance for similarity classes of submanifolds of

Euclidean spaces [Fr2] were aimed to provide theoretical techniques in that direction. The present
paper takes the first idea to the computational side, by developing a “paralle]” theory for discrete 1. The basic definitions.

BT T In this Secti i ‘mi TSN : ;
spaces and using it in an approximation process. n this Section we shall give some preliminar definitions: our purpose is that of constructing some tools

suitable to describe in one sense the “shape” of a submanifold of a Euclidean spaze. We begin by a

. »_bavs K . i .
Given a submanifold M of a Euclidean space, the “size” function to be computed is an integral concise description of D" —homotopic theory. In this paper b will be always a piecewise C* and

K B .
function of two real variables ¢ (x,y). This roughly describes the number of ways in which a closed n—submanifold (n>0) of E™ and for every keN we shall denote by ARFL ihe cet of all ordered

. — 1 . k+1 . - .
(k+1)—fingered hand can grasp b with fingers not farther apart than x, where two grasps are (k-+1)—tuples of points in . In a natural way A** is a metric space with respect to the distance

d,  defined by setting dk((QOv'“va)v(Rov"ka))= max IQi—Ril for  every pair

_considered equivalent if they can be deformed into each other without ever pulling the fingers apart max
_I_

((Qo,...,Qk),(Ro,...,Rk))e ALY sl

K
beyond a diameter y. The computation is carried out by computing a discrete analogous llg on a finite

*Work performed under the auspices of the GNSAGA of the CNR and within the Subproject *‘Geometria delle
Varieta’ Differenziabili’> of the MURST (Italy), under the supervision of Prof. M. Ferri.

Definition (1.1). For every real number y we can define an equivalence relation on Xt and all its
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234 DISCRETE COMPUTATION OF SIZE FUNCTIONS

subsets: for every pair ((Qo,...,Qk),(RO,....Rk)) in Ak+lx.ﬁ\:k+l we shall say that (Qo,...,Qk) and
(Rg»--1Rg) are y—Dk— homotopic if either they are the same ordered (k+1)—tuple or a function H
exists such that:

i) HeCO([O,I],Jﬂ;H'l)

i) H(0)=(Qg,--Qy) and H(1)=(Rg.....Ry)

iii) for every t¢[0,1] A(H(‘r))gy , A being the function that takes every ordered (k+1)—tuple of
points of E™ to the diameter of the convex hull of the (k+1)—tuple. If (Qg,-.,Q) and (Rg»--»Ry) are
y—Dk—homot,opic we shall write (QO,.A.,QK)]%k(RO,...,Rk) and, in case it exists, H will be said to be a

y—Dk— homotopy from (Qg,...,Qy) to (Rgy--s Ry )

Obviously the diameter we spoke about in the previous definition is the one inherited from the

DX :
embedding of b in E™. In the case yZA((QO,...,Qk)) the symbol (QOV*"QK)? (Rgs---»Ry) means, in
plain words, that we can “transform (Qg,--»Qy) in (Rgy--Ry) without exceeding the diameter y”.
Diameter can be thought of as a real function defined on et A y—Dk—homotopy is actually just a
path in AK-H, where no point of the path has a value greater than y.

P k+1 k+1
Definition (1.2). Let x and y be real numbers. We shall denote by b, (x) the subset of b
containing the (k+1)—tuples on which the function A takes a value less than or equal to x. Moreover,

DK ; . 5 KT .0 o 3
we shall denote by €° (x,y) the number of equivalence classes into which Mg (x) is divided by the

relation of y—Dk—homotopy if such a number is finite, +00 otherwise.

Another formalization of the idea described at the beginning of this section can be the one that we

obtain by substituting in the above-mentioned_definitions the concept of (k+1)—tuple by the one of
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(m+1)—tuple (with m determined by the dimension of Em> and the function A by the function vol
which takes every ordered (m+1)—tuple to the oriented volume of its convex hull. We shall call
V —homotopy the corresponding theory. This procedure leads in a natural way to the function €v(x,y)

. : DX
(whlch corresponds naturally to the function £~ (x,y) ) We give in the following the exact

formalization of the above-mentioned concepts. On A" we shall consider the distance dpm.

Definition (1.3). For every real number y we can define an equivalence relation on AL and all its
subsets: for every pair ((QO,...,Qm),(RO,...,Rm)> in J\:m+1x.ﬁ%m+l we shall say that (Qg,....Qm) and
(Rg,--Rm) are y—V —homotopic if either they are the same ordered (m-+1)—tuple or a function H
exists such that:

i) HsCo([O,ll,Am+1)

ii) H(0)=(Qg,-Qm) and H(1)=(Rg,....Rm)

iii) for every 7&[0,1] it results vol(H(r))gy , vol being the function that takes every ordered
(m+1)—tuple A:(AO, Ay Agpes Am) of points of E™ into the value that the form
l:nl—!dxl/\dxi,/\.../\dx,‘,, takes on the ordered m—tuple of vectors of R™ (AI—AOv Ay—Ag,..., Am-—Ao).

If (Qgy--\Qm) and (Rg,....Rm) are y—V —homotopic we shall write (Qg;--.\Qm)

?V(Ro....‘Rm) and, in

case it exists, H will be said to be a y—V —homotopy from (Qgy+--Qm) to (Rgs+-sRm)-

In the case yzvol((Qo,...,Qm)) the symbol (QO,...,Qm)¥(R0,...,Rm) means, in plain words, that we can
“transform (Qg,---\Qm) in (Rg,...,Rm) without exceeding the volume y”. Volume can be thought of as a
real function defined on ™A y—V —homotopy is actuaily just a path ir _Akm+l,whcre no point of
the path has a value greater than y.
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236 DISCRETE COMPUTATION OF SIZE FUNCTIONS PATRIZIO FROSINI 237

Definition (1.4). Let x and y be real numbers. We shall denote by .A\:{:;Tl(x) the subset of A™T! ii} for every index i (0<i<h) B®(P;,e)N A is a non—empty connected set.

containing the (m+1)—tuples on which the function vol takes a value less than or equal to x. We shall call B, an ¢—covering of Ab. The set P will be called the set of the centers of B.. We can

Moreover, we shall denote by Ev(x,y) the number of equivalence classes into which .ALU:)TI(X) is define the following relation ~ on the set P: P;~P; if (Bo(pr)UBO(PPC))nJﬂ’ is a connected set. For

oo s k41 . ;
% 3 ¢ /ey t oot
divided by the relation of y -V —homotopy if such a number is finite, +00 otherwise. every positive integer k we define on the set P of ordered (k+1)--tuples of points of P a relation.

Let a=(Qg,Qqy-Qu)r B=(RgRyssRy)e P¥HL if for every index i it results that Q~R; then we

k
Remark (1.1). In the following the functions (0" and €V will be called also size functions. For the
shall say that o and 3 are adjacent (in symbols a:ﬂ).

main results concerning DX — and V—homotopic theory (whose core is the study of the corresponding

Remark (2.1). Obviously ~ i flexi d sy tric relation.
size functions) and a more general view of this subject we refer to [Fr2] and [Fr3]. We confine the (2.1) VIOUSLY S5 188 TEUEKINE RAE SYIAGRIES THAsEN

discussion to pointing out that if Ab is a closed, connected and piecewise C* n—submanifold of E™
In the following of this paper we shall suppose that an ¢ —covering B¢ of b is given and denote by P

k
and p is the minimum of the function vol on A™F then the values of D" and eV are interesting _
the set {Po,Pl,...,Ph} of the centers of B..

(that is not irivial) respectively for O<x<y and for either p<x<y or p=x.

k+1

Definition (2.2). For every x,yeR let us denote by P, K

K (x) the set of the elements of P on which
2. Size functions in D* —homotopic theory.

k

<O

the function diameter A takes a value not greater than x and by the equivalence relation on

k

- . . . . DX :
this Section we shall give a technique to compute the function £~ (x,y). In order to do it we need ) ) ) o ) )
g ' $ = P () ‘.P’;+1(x) defined this way: if a,ﬂs‘??_l(x) we write a% B if either o=/ or there exists a finite

some preliminary definitions. Our purpose is that of “approximatiny™ the considered manifold b and

Kk K . K
the corresponding function D respectively with a finite set P and a function Gg . The function EI,,_-)P

k
will be related to the function ¢D” but much simpler to be computed.

ill be itive real number. - ik
From now on ¢ wi & posthive from a to B of length r with respect to B.. We shall denote by l!g (x,y) the number of equivalence

: . K1\ o e s K .
c d —-D"— | g
Definition (2.1). Let ‘?:{PO,PI,...,Ph} be a finite set of points of E™ and let us denote by B. the set classes in which P47 "(x) is divided by y—D" —equivalence

of the h+1 open balls B°(P;,€) of radius ¢ centered in the points of ?P. Suppose that B verifies the

) . The following two definitions will allow us to substitute every Y-D*-homotopy H between two (k + 1)-
following properties:

h tuples of points with a (y + 2&)-D*-equivalence sequence which ‘‘approximates’” H in some sense. For sake
i) b is contained in U B°(P;¢) P PO (y +2¢) q eq pp!
i=0
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238 DISCRETE COMPUTATION OF SIZE FUNCTIONS

of clearness, before defining precisely the concepts we need, we explain in plain words (but with some
imprecision) the idea underlying the next definitions. In order to construct a (y+23)—Dk-equivalenoe
H we proceed the following way. First of all we define 7(0) as the ordered (k+1)—tuple of centers of
B, nearest to the (k+1)—tuple H(0). Then let us suppose that the (k+1)—tuple
7(i)=(Co(i),Cl(i),...,Ck_l(i),Ck(i)) and the “time” 7(i) have been defined and that for every j the
(3+1)—th component Hj(r(i)) of H(r(i)) is contained in the open ball Bj(i) of center Cj(i) and radius
¢. While the “time” parameter T is varying from 7(i) it may happen that one (or more) of the points
Hj(r) reaches the boundary of Bj(i). When it happens we call r(i+1) the corresponding “time” and
construct the following term y(i+1) of S(H) by defining it as the ordered (k+1)—tuple of centers of B,

nearest to H(T(i+l)). Now let us give the precise definitions.

Definition (2.3). Let an ordered (k+1)—ﬁuple a:(Qo,Ql,..‘,Qk)s 25F1 be given. For every j (0<j<k)
let us define Qj as the point Pg¢® which has minimum index 5 among those points Pse?® that

minimize the distance from Q; (obviously 6j£B°(P§,c) ) We shall set V(“)'—'(QOlev---'Qk) .

Definition (2.4). Let H:[0,1]— b be a homotopy between two ordered (k+1)—tuples of points of M «

and 8 (i‘e. a continuous function H(r):(Ho(r),H1(r),...,Hk_1(7),Hk(r)):[0,1]-*_,11,k+1 with H(0)=a,
H(l):ﬁ). Now we can inductively define a finite sequence S(H):(-y(i))i=o """" , of (k+1)—tuples of

k+1 _ _ . :
P T". We set 7(0)=0 and define (CO(O),CI(O),...,CK_l(O),Ck(O))_V<H(T(0))) (obvxously for every j

(0<j<k) Hj(r(O))s B°(Cj(0),c)). Furthermore we set B(O)=(Bo(0),BI(O),...,BK_1(0),Bk(0)) where for

Jr. Comb., Inf. & Syst. Sci.
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every j (0<j<k) Bj(O) is the open ball B°(Cj(0),c). Moreover let us  set
7(0)='(C°(0),Cl(0),...,ck_1(0),Ck(0)). Now suppose (i), 7(i) and B(i) defined for the natural index i.
If 7(i)=1 we stop the procedure. Otherwise, we choose in [0,1] a point 7(i+1)>7(i) such that the

following two conditions hold:

i) Hj([r(i),r(i+1)))ch(i) for 0<j<k

ii) either 7(i+1)=1 or there exists a non-empty set J; of indexes such that jelJ; implies
Hj(r(i+l))e¢98j(i).

Such a value 7(i+1) exists because of the continuity of H. We define
(co(i+1),cl(i+1),...,ck_l(i+1),ck(i+1))=u(n(r(i+1))) and for every index j we set
Bj(i+l)=B°(Cj(i+l),c). Moreover let us set -y(i+1):(Co(i+l),C1(i+1),...,Ck_l(i+1),Ck(i+1)). There

will exist an index r such that 7(r)=1: let us define S(H):('y(i))i:o '''' .

Remark (2.2). The finiteness of the sequence (7(1)) defined in Definition (2.4) (that is the existence of
an index r such that r(r):l) can be deduced from the compactness of Ab. In fact this condition
implies the existence of a positive 7 such that the set B.—, of the open balls with center belonging to
%P and radius € —17 is again a covering (not necessarily an (c—r))—covering) of Ab. So if Qe A and Py
is one of the centers of B, that has minimum distance from Q then we have d(Q,aB°(P,,c))>r].
Therefore for every index i such that 7(i+1) is defined it results ;ik(H(r(i+1)), H(T(i))>>r). Hence, if
the sequence (r(i)) were infinite then (H(r(i))) would be a non-convergent infinite sequence, against

the hypothesis that H is continuous in the point 7= lim r(i).

I—o0
Remark (2.3). Referring to Definition (2.4) it is easy to prove that for every index i with O<i<r—1 it
results y(i)~y(i+1).

Vol. 17, Nos. 3-4 (1992)




240 DISCRETE COMPUTATION OF SIZE FUNCTIONS
Lemma (21). Let a=(QpQyrnQq)s B=(RoRyR)eE™* T with dy(a,B)<e. Then
|A(or)—A(B)|<26.

Proof. Trivial. O

k+1
Lemma (2.2). Let y<R, ay,a,e M +1 ﬁl,ﬁze@k+l, dy(aq,8)<e and dy(ay,8,)<e. The following

statements hold:

k

. k+1 K
i) If agape M5FNy) and 0y % oy then 5,8, 5 (y+2¢) and By R B,

+20

ly 2¢

§ k41 X
then aq,a,¢ A =

B, ay,a, (y+2¢) and a1 T2

=]

i) If 81,826 P51 (y) and 8, =

=9

Proof. i) On the one hand consider a y — D —homotopy H from @, to @,: our definitions, Lemma (2.1)
and Remark (2.3) imply that S(H) is a (y +2€) — D* —equivalence sequence from v(e,) tov(cr,) with

respect to the € —covering B.. On the other hand, since for i =1,2the hypothesis d, (¢;,B;) < € and the

condition d, (@;, V() < € hold it results V(ct,) = f3; because of the definition of = and A(B)sy+2¢

DI Dl Dk
+

because of Lemma (2.1). So f3,, 8, #,*'(y + 2€) and B, =, V(o) = v(@,) = f,: the statement is
y y+2e y+2¢€

+2

proved.
Dl
ii) By definition f3, Tﬁz implies that there exists a y—D* —equivalence sequence
0 _ 1 _ :
(ﬁ =B.B....B" —,Bz) with respect to Be. Let us denote by (Pi(ovh),Piu_h),...,Pi(k'h)) the
h s
(k+1)—tuple 8" (0<h <r).Forevery t and h let us choose in BO(Pm,h),s)ﬁJm a point Q,;, and
L —
define " = (Qi(O,h)’Qi(l.h)""'Qi(k,h))' We can suppose @° = @, and & = @,. Because of the definition

Dl

= <t< — 0 0 .
of : we have that for 0 <t <k and 0 <h <r—1 the set (B (Pi(“h),E)UB (Pi(!'hﬂ),e))h M is

non-empty and connected. So there exists a continuous path 7, :[0,1] = M such that 7, (0) = Q)

Ty D = Qe Fum([0.8]) B (P €) and 7 ([%,1]) © B(Pig pany€). Define
h, .

H":[0,1] » m**+1by setting H" (1) = (ni(o'h,(r), i1y Dseons ”i(k,h)(f))i we have by construction that

for every 7 e[0,1] and every index h <r it results either d, (ﬂh,Hh(‘t)) <€or d, (ﬂh“,Hh(T)) <E.

Jr. Comb., Inf. & Syst. Sci.
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Therefore, because of Lemma (2.1) and the hypothesis A(ﬂh) <y for every h, we have that H" is a

h+1

+2€)-D* —homotopy from &' to &"™'. So the product of the homotopies H" is a
b P

+2€)—D* —homotopy from @’ =q, to &' =, and Q,,Q € M ! (y +2¢): the statement is
y 1 2 10 %

proved. [

Now we can prove the main results in this Section. They will allow us to actually compute the values

Dk
of the function €~ (x,y).

Theorem (2.1) For every x,yeR with x+2e<y—2¢ we have

egk(x—Q(,y+2c) < CDk(x,y) < @gk(x+2(,y—2f).

k k
Proof. Let us prove that D x—2¢,y+2¢ ) < e x,y) . In order to do it we shall construct an injective
p P

K 3 k
map F from ‘.P:+1(x—2()/%2! to .AB'XH(X)/I% (we shall suppose that ‘EPT'I(x—Qc)/*%é is not

k
empty because otherwise we would have 43 (x-—?c,y+2¢)=0 and the thesis would be trivial). This
k+1 p*
fact will imply that the cardinality of ®," “(x—2¢) y+z2 is less than or equal to the cardinality of

€
k k K k
.AL'XH(X)/% : since by definition of ¢ and Eg we have that D (x,y) is equal to the number of

k k
equivalence classes of A:+1(x)/pv- and Zg (x—?(,y+2€) is equal to the number of equivalence

k
classes of ‘5?:‘*‘1()(—2()/%2 the considered inequality will follow immediately. Now we construct the
y+2¢

€

K
function F. For every equivalence class CE'EP'XH(X—Zc)%%z we fix arbitrarily a (k+1)—tuple

ﬂ:(Pio,Pil,...,P )EC and a (k+1)—tuple asaﬂ,k'H' with dy(a,B)<e and define F(C) as the

ik
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K
equivalence class of a in .M;'X"l(x) / %) . We observe that such an a exists because of the definition of
€ —covering and that QE_AKA-'-I(X) because of the inequality A(8)<x—2¢ and of Lemma (2.1). Let us
prove that F is injective. If F(C;)=F(C,) then, calling 3, and B, the representatives of C, and G,
considered in the previous part of the proof and recalling that x<y (in fact x+2(5y—2£), we have that
there exists a y—Dk—homotopy between the (k+1)—tuples ay and a, corresponding to 8, and S,
Dk
with respect to the above-mentioned arbitrary choice. It follows from Lemma (2.2)(i) that ﬂlyfz Bo
€
and therefore C; =C,. By the way we observe that this implies 8, =/,. We have so proved that F is

K *nk
an injective function. Now we have to prove that eD (x,y) < Eg (x+26,y—2(). In order to do it we

k K
shall proceed as above and construct an injective map G from A:+1(x)/[% to 9:+1(x+2()//%¢
k+1,, /D*. : D% .=
(we shall suppose that Ab," “(x) J s not empty because otherwise we would have £- (x,y)=0 and
: c o1\ s - . k+1 D* .
the thesis would be tnvxal). This fact will imply that the cardinality of Mb," " (x) 7 s less than or
Dk

equal to the cardinality of ?:+1(x+2()/y-5 and therefore that our inequality holds. Now let us

€
o k41 Dk ‘ %
construct the function G. For every equivalence class Ce by’ (x) T e fix arbitrarily a
(k+1)—tuple a=(Q°,Q1,...,Qk)£C and define G(C) as the equivalence class of v(a) in
k
‘.P';+1(x+26)/!%‘. We observe that y(a)e‘y:+1(x+26) because of the definition of v(a), the

inequality A(a)<x and Lemma (2.1). Let us prove that G is injective. If G(C;)=G(C,) then, calling
@, and a, the representatives of C; and C, considered in the previous part of the proof and keeping in
mind the hypothesis x+2e<y —2¢, we have that there exists a (y—2c)—Dk —equivalence sequence from
v(ay) to v(ay). Since dk(u(al),al)« and dk(v(az),az)« we can apply Lemma (2.2)(ii) and obtain
that all%kaz and therefore C;=C,. By the way we observe that this implies a; =a,. We have so

proved that G is an injective function. So the double inequality is proved. O

Jr. Comb., Inf. & Syst. Sci.

Theorem (2.2). Let XJybeceR with bye>0 and X+2¢ < §—2¢. If the function
DX :
éq, lakes the same value v in the two points (Y+2c,i——2() and (R‘—b—2(,7+c+2e) then il resulis

k
P (x,y)=v for every (x,y) in the rectangle {(x,y)stzi—bs X <X, <y _<_y+c}.

k
Proof. Because of its definition the function lg (x,y) is non-decreasing in the variable x and non-
: .. . . . D
increasing in the variable y, so the hypothesis that the function lay takes the same value v in the two
. e " D
points (x+?c,y-?() and (i—b—2c,y+c+25) implies that 89, has constant value v in the rectangle

{(x,y)sRZ: X—b—2¢ < x < X+2¢, §—2e <y < y+c+2e}. This fact allows us to prove by Theorem (2.1)

k
that for (x.y) in the rectangle {(x,y)st: X-b<x<X ¥<y< Y+c} it results P (x,y)=v. O

k

Remark (2.4). Theorem (2.2) leads naturally to an algorithm to compute ¢P". We can choose
arbitrarily a real number A>2¢ and compute the function Eg in the set
SA:{(x,y)sR:’: x=i), y=jA, i,jeN, jgi}: every time that we find the same value v in two points
(1AjA) and ((i—p),\‘(_j+q)/\) of S, with p,g>2 we can say that in the closed rectangle defined by the

. . . . . D% . . .
vertices ((x—l)/\,(_H»l)/\) and ((l—p+l)/\,(_)+q—l)/\) the value of ¢ is v. Obviously, if our

: . . : . Dk ; X . .
manifold’s “shape” is complicated and the size function £° has a lot of discontinuity points in a little
space, in order to apply usefully our algorithm we shall have to choose an ¢-covering constructed by

using a very small ¢ and a value A not far-away from 2e.

Remark (2.5). In conclusion of this Section we point out that the concept of ¢ —covering has been given

in Definition (2.1) by using balls only for sake of simplicity. In fact the same results could be obtained
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= o 5 B ={Qpins R, . m(m+1) .
by substituting the concept of open ball B°(P;,c) of center P; and radius ¢ for the one of open Lemma (3.1). If a=(QqsQp-1:Q:Qp41+Qm)s A=(Qos-1Qp.1-R.Qp 4 1,--,Qm) ¢ E with

connected subset of B°(Pi.e) in defining the concept of ¢ —covering. "R-—Qp“(c and Vp is the (m—1)—dimensional (and therefore always non-negative) volume of the

convez hull of the set ID:{QO,...,QD_I,QD+1,...,Qm} then [vol(a)—vo/(ﬁ)|gvr%'€.

3. Size functions in V—honiotopic theory.

Vp -
Proof. If V=0 then vol(a)=vol(3)=0 and so |vol(a)—vol(ﬁ)|=—r';1—f. In the case Vp#0 let N be one

K L . . .
The technique used to compute the function CD (x,y) can be adapted to compute also the function ! of the two versors applied in Qp and orthogonal to the: linear hull of I;. ‘The maximum of

ev(x,y). In order to do it we start by setting Definition (3.1), analogous in V—homotopic theory to VOI(Q)_VOI([}(R))} with R varying in the closed ball of center Qp and radius ¢ is obtained only in the

. - - . Vg
two boundary points Qp+¢N and Qp—eN. In such points we have vol(a)—vol(ﬁ(R))l:——g.l—c. So for

Definition (2.2) given in Dk—homotopic theory. Also in this Section Jb will be a piecewise C* and

Vp-
NR—QD"« we have |vo/(a)—vol(ﬁ)|< gl 6. Therefore in any case the thesis is true. O

closed n—submanifold of the Euclidean space E™ and we shall suppose that an € —covering B, of b is

given together with the set ‘EP:{PO,PI,.,.,P,‘} of its centers.
Corollary (3.1). Let R be a subset of E™ and let Mg, be the supremum of the (m—1)— dimensional

ol " . m+1
m+1(x) the set, of the elements of Ml o volumes of the conver hulls of the subsets of R containing ezactly m points. If a,feBR and

Definition (3.1). For every x,yeR we shall denote by P,

. m+tl ap o
which the function vol takes a value not greater than x and by % the equivalence relation on ?%Tl(x) dm(a,B)<e then ]VOI(D‘) VOI(ﬂ)iS M, €.

defined this way: if a,ﬂs?c:)TI(x) it results a%ﬂ if either a=p or there exists a finite sequence

(7(i))i=o ..... - of (m#1)=tuples in @%TI(Y) uich fhat. 7{l)m=a; (r}=F snd for every Tades b with Proof. It follows immediately by applying Lemma (3.1) m+1 times. O

O<i<cr—1 (i) and 7(i+1) are adjacent (m+1)—tuples. This equivalence relation will be called

Note: for sake of conciseness in the following we shall denote by w the value mntl—MJﬂw,,J,-c.

y—V —equivalence and the sequence (7(i))i=o will be said to be a y—V —equivalence sequence from

a to B of length r with respect to B.. We shall denote by lg(x,y) the number of equivalence classes in

Lemma (3.2). Let yeR, aq,a0e ™1 8,,8,6P™ Y, dn(ay,B;)<e and dm(ag,By)<e . The following

which ‘J’ng"(x) is divided by y —V —equivalence.

statements hold:

0 If al,aze./ﬂbm-H(y) and 01%012 then ﬁl,BQEG.PCLTI(y-kw) and 3,

Bo-

<

Before going on with the exposition we need two lemmas and a corollary of the former lemma. y
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m+1(

v v
i) If By,82€Par H{y) and B15P2 then ay,ape AT (y+w) and ay = oy,

Proof. Analogous to the one of Lemma (2.2) by using Corollary (3.1) instead of Lemma (2.1). O

Now we can prove the main results in this Section. They will allow us to actually compute the values

of the function Zv(x,y).
Theorem (3.1). For every x,yeR with x+w<y—w we have eg(x—w,y-i—w) < lv(x,y) < eg(x+w.y—w).

Proof. Analogous to the one of Theorem (2.1) by using Corollary (3.1) and Lemma (3.2) instead of

Lemma (2.1) and Lemma (2.2). O

Theorem (3.2). Let X,y,b,ceR with b,c>0 and X+w < Y—w. If the funclion Z; takes the same value v in
the two points (i+w,y—w) and (i——b—w,y+c+w) then it results lv(x,y)zv for every (x,y) in the

rectangle {(x,y)e R2:x—b< x <X, y< ¥ 5y+c}.
Proof. Analogous to the one of Theorem (2.2) by using Theorem (3.1) instead of Theorem (2.1). O

K
Remark (3.1). What we have pointed out in Remark (2.4) regarding the function ¢P" is true also for
the function /Y if we substitute Theorem (22) by Theorem (3.2), the value 2¢ by the value o and INby Z. Itis
easy to prove that M./ﬂ:u‘.P is less than or equal to .o-m_l-A(JﬁaU‘.P)m'l where o, ; denotes the non-

oriented volume of the standard (m-—1)—simplex of edge 1 and A(Au®P) is the diameter of the set

Jr. Comb., Inf. & Syst. Sci.
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Mu®P. Therefore as an upper bound of w we can use the value T—nT#-om_l-A(thu?)m'l-e. which' is

easier to compute than w.

4. Explicit computation: two examples in D! —homotopic theory.

As pointed out in Remarks (2.4) and (3.1), Theorem (2.2) and (3.2) give a method to actually compute
the sizer function in D¥— and V —homotopic theory. In this Section we shall give some values of the
size function EDI (computed via Theorem (2.2)) for two 1—dimensional submanifolds M; and b, of
E2 as an example of the usefulness of this technique. The use of this method is not conditioned by
mathematical difficulties but only by the efficiency and speed in calculation of the used hardware and
software. To obtain the following two examples we have used a personal computer: its limitations iAn
speed and memory together with the artlessness of the used algorithm have prevented us from

employing € —coverings with a large number of balls and studying more complicated manifolds.

Example (4.1). Let Ab; be the 1—submanifold of E2 defined by the plane curve of equation

p:2+2cos2(219) (represented in polar coordinates). The figures 4.1 and 4.2 show respectively the

\
N
\\\
\ )
/

Fig. 4.1
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1
manifold b, and the values taken by the corresponding size function ¢D” in two connected subsets of

the real parameter plane. In the computation we have used a 0.1 —covering of by constituted by 99

balls and have considered the domain {(x,y)sR2: nggygﬂ}. We have not displayed the values of

1
¢P (x,y) for x>y because they are trivial.

Example (4.2). Let b, be the 1 —submanifold of E2 defined by the plane curve of equation

p:5+4sin(419—7r/2)+3c052(19) (represented in polar coordinates). The figures 4.3 and 4.4 show

4
respectively the manifold M, and the values taken by the corresponding size function éD in four

connected subsets of the real parameter plane (one of these is a point). In the computation we have
used a 0.3—covering of b, constituted by 137 balls and have considered the domain

i
{(x,y)st: 05x5y518}. We have not displayed the values of ¢D (x,y) for x>y because they are trivial.

Remark (4.1). It is interesting to notice that the study of the size function usually becomes more and
more difficult as we approach the line y=x. In its neighbourhood a lot of nearer and nearer
discontinuity points can thicken corrispondingly to the existence of smaller and smaller protuberances
on the considered manifold. The more detailed the analysis of our manifold’s “shape” is, the more we

are interested in studying the size function in the neighbourhood of the line y=x and therefore to use

¢ —covering with ¢ small.
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LINEAR MAXIMIN OBJECTIVE FUNCTION PROGRAMMING

D. G. KABE
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Halifax, Nova Scotia B3H 3C3, Canada

and
A. K. GUPTA*

Bowling Green State University
Bowling Green, Ohio 43403-0221, USA

The following linear maximin programming problem:
Max z = Min(c1x,¢2X,...,¢nx), C = (¢1,-..,cn)’,
subject to Ax2v, x20,

where A(qxn) ofrank q<n, C(nxn), and v are specified, has been studied by
Gupta and Arora (1978). They solved the problem by a certain n-dimensional
geometrical method, assuming C-1 to have nonpositive elements. In this paper
we solve this problem without this restriction on C. A generalization of this
problem to the vector case is also presented.

1. GUPTA AND ARORA'S METHOD
To solve the above maximin problem, Gupta and Arora (1978) set \

x = C-ly, Max z = Min(y,,...,yn), M

By =ACly>v, Cly2o. (2
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