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Abstract

Contradiction is often seen as a defect of intelligent systems and a dangerous limitation on efficiency. In this paper we raise the ques-
tion of whether, on the contrary, it could be considered a key tool in increasing intelligence in biological structures. A possible way of
answering this question in a mathematical context is shown, formulating a proposition that suggests a link between intelligence and
contradiction.

A concrete approach is presented in the well-defined setting of cellular automata. Here we define the models of ‘‘observer”, ‘‘entity”,
‘‘environment”, ‘‘intelligence,” and ‘‘contradiction”. These definitions, which roughly correspond to the common meaning of these
words, allow us to deduce a simple but strong result about these concepts in an unbiased, mathematical manner.

Evidence for a real-world counterpart to the demonstrated formal link between intelligence and contradiction is provided by three
computational experiments.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we are going to examine the relationship
between intelligence and contradiction, hopefully clarifying
the presence and importance of inconsistency in thought
and in the processes trying to emulate it. To arrive at our
objective, we shall need to put the concepts of ‘‘observer”,
‘‘entity,” and ‘‘environment” on a mathematical footing, so
that formal definitions of intelligence and contradiction can
be proposed.

This model will allow us to treat our controversial sub-
ject precisely, illustrating the possibility of a quantitative
mathematical approach to the problem, and its intrinsic
advantages.
1389-0417/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cogsys.2007.07.009
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2. Background: contradiction in science, mathematics,

philosophy

Contradiction is undoubtedly one of the most interesting

concepts in science. It has been studied since ancient times
and it would be impossible to take into account all the lit-
erature on this subject, whether from a logical, philosoph-
ical, or psychological viewpoint (Piaget, 1974). Many
scholars, from the Greek philosophers onwards, have stud-
ied contradiction often regarding it as a key presence in
human thought processes. On the other hand, mathemati-
cal research views contradiction as incompatible with any
workable theory and has studied inconsistency almost
exclusively in terms of the danger it represents to formal
structures. Even after Gödel published his famous ‘‘Second
Theorem”, mathematicians continued to consider contra-
diction simply as a nuisance to be eliminated. The situation
did not change after the work of mathematicians such as
Church, Kleene, Rosser, and Turing on the limitations of
logical systems and computational machines, demonstrating
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the weakness of a naı̈ve approach to the concept of ‘‘math-
ematical truth”. On this subject we also refer to De Long
(1970), Lucas (1964), and Webb (1980). Paraconsistent log-
ics (i.e., logics where not every statement follows from a
contradiction) were created in order to constrain the pres-
ence of inconsistencies (cf. Anderson et al., 1975 for rele-
vant logics, Jaskowski, 1948 for non-adjunctive systems,
da Costa, 1974 for non-truth-functional logics, and Dunn,
1976 for many-valued systems).

Paradoxically, mathematics has almost always consid-
ered the problem of inconsistency of thought as either
taboo or an irrelevant subject. In this sense there is an enor-
mous difference between the research of mathematicians
and that of philosophers. An interesting attempt to close
the gap between the studies carried out in these two fields
was made at the beginning of the previous century by the
Russian mathematician, philosopher and theologian Flor-
enskij (1914). We mention this work also because it con-
tains a fascinating survey of the concept of contradiction.
From an epistemological point of view, an interesting
debate about this and other problems concerning mathe-
matics has recently been raised by the mathematician and
philosopher G.C. Rota (cf., e.g., Rota, 1997). Another
key reference is the work done by G. Priest, concerning
the relationship between contradiction and mathematical
logic (cf., e.g., Priest, 2006).

Psychology and economics are also involved in research
on contradiction. The concepts of inconsistency between

attitudes or behaviors (cognitive dissonance) (cf. Festinger,
1957) and time-inconsistent agent (cf., e.g., Brocas & Carril-
lo, 2000; Strotz, 1956) are generally studied in these fields.
However, it should be noted that the term ‘‘inconsistent” is
often used in a precise or technical sense, depending on the
particular scientific context.

We shall not make any attempt to review the extensive
bibliography of the psychological, economical, philosophi-
cal and epistemological approaches to contradiction, since
this would extend this paper far beyond our limited
purposes.

Informally, we could define contradiction as the phe-
nomenon in which a given entity evolves in two different
ways (at different times) from the same initial state. In Sec-
tion 4.4 we shall justify this definition by comparing it with
alternative definitions. A typical example of this phenome-
non could be that of a person who answers differently to
the same question at different times. We could object that,
in a deterministic and mechanical paradigm, those different
answers simply reveal either different states of mind or a
difference between the questions, but this objection is mis-
leading. In fact, if we look at phenomena as events per-
ceived by an observer, it does not make sense to consider
differences that are not perceived by the observer. To us,
the expression ‘‘same initial state” simply means that the
observer does not perceive changes in the pair (entity, envi-
ronment) that he/she is observing. Hence, we see contradic-
tion as a concept that intrinsically depends on an observer.
In fact, even the classical approach given by Turing (1950)
to the problem of testing intelligence suggests the key role
of the observer as judge. In any case, a mathematical
attempt to formalize the notions of intelligence and contra-
diction probably cannot avoid reference to the concept of
observer, since such formalization cannot avoid involving
a testing procedure, which requires the presence of an
observer (possibly neither human nor intelligent). This does
not imply that an entity cannot observe itself; indeed, an
entity can perfectly well study the ‘‘intelligence” of another
entity, and an agency inside a given entity can study the
‘‘intelligence” of other agencies inside the same entity (or
even of itself!) (we refer to Minsky, 1986; Rychlak, 1991;
Wooldridge & Jennings, 1995) for the (concept of agency).
The role of the observer in judging intelligence has been
studied by many researchers (cf., e.g., Goodnow, 1969;
Jones & Nisbett, 1971). An important reference to the cen-
tral role of the observer is contained in the fundamental
work of Maturana and Varela (1992).

Experience shows us that contradictions are very com-

mon in the behavior of living beings and other complex

systems. Thus, when a complex system is constructed,
much effort usually goes into guaranteeing consistency
in the defined structure. Mathematicians seem to be par-
ticularly disturbed by contradiction, although it is a vital
part of reality. In the past, the existence of contradiction
was studied as a formal and philosophical problem, but
was ignored by mathematics and computer science. Now-
adays the situation is quite different. Interest in artificial
intelligence compels us to look at the occurrence of con-
tradiction as a practical problem. As Minsky and others
have pointed out, reasonable models of intelligence sup-
pose the presence of internal conflicts that must be
solved in order to make unambiguous decisions (cf.,
e.g., Minsky, 1986; Rich, 1983; Winston, 1984). More-
over, it is clear that an intelligent entity must be able
to manage contradiction (as happens, for instance, in
artificial vision when two different interpretations of an
image conflict with each other), and people working in
artificial intelligence are well aware that conflicts cannot
be separated from decisions. In other words, an intelli-
gent entity must be able to solve internal conflicts and
change its vision of the world (see, e.g., Dennett,
1978). Furthermore, a significant proportion of software
development and research is spent in detecting, analyzing
and handling inconsistency in development processes and
products (cf. Ghezzi & Nuseibeh, 1998) and there is a
considerable amount of literature on this subject. We
also refer to Wooldridge and Jennings (1995) for a dis-
cussion of the problem of inconsistency in agent theory.

In any cases the concept of contradiction is much more
than just an inevitable practical problem, and even in soft-
ware engineering many researchers have begun to accept
inconsistencies not only as problems to solve but also as
a reality to live with (cf., e.g., Balzer, 1991), and some have
developed a body of research that seeks to ‘‘make inconsis-
tency respectable” (cf. Gabbay & Hunter, 1990). It is also
interesting to point out the presence of contradictions in
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the behavior of Search Engines for the World Wide Web
(cf. Bar-Ilan, 1998/99).

Besides this, a contradictory action frequently reveals

itself to be a valuable quality allowing entities to survive

changes in their world. The unusual behavior of a cell
caused by genetic mutation can be seen as a sort of contra-
diction in the way we have previously described it, as long
as the mutation (i.e., the cause of a change in behavior) is
not perceptible. Hence contradiction can be seen as a virtue
rather than as a defect. Furthermore, the constant presence
of inconsistencies in our thoughts leads us to the following
natural question: is contradiction accidental or is it the nec-
essary companion of intelligence? As we pointed out previ-
ously, this question is no longer only important from a
philosophical point of view, since any attempt to construct
artificial entities capable of intelligent behavior demands an
answer to this question.

The sole aim of this paper is to place this question in a
mathematical framework and to propose a formal line of
attack. In order to do this we have chosen to use the con-
cept of cellular automaton (a structure invented by von
Neumann (1966) to study the phenomenon of self-replica-
tion), since it combines simplicity of definition with the
capability of simulating complex systems.

In our model, we obtain a result suggesting a strong link
between contradiction and intelligence. Roughly speaking,
our finding can be expressed in this way:

Any sufficiently intelligent entity must be contradictory.

Obviously, this result depends on some hypotheses that
some readers may not agree with, and so our answer is far
from being absolute: it is given only to point out a possible
approach to the study of inconsistency in complex systems.

However, this result is not counter-intuitive, even in a
deterministic world: in plain words it can be explained in
the following way. Intelligence can be seen as the capability
of an entity to survive changes in the environment by
adapting to new conditions. If both the changes in the envi-
ronment and the adaptation of the entity are sufficiently
clear to an observer who is examining what is going on,
then their presence can be perceived and there is no contra-
diction (since the different behavior is justified by the
changes in the entity and the environment). On the other
hand, if the changes in the environment and the adaptation
of the entity become too complex and subtle for the obser-
ver to see the differences in all these data, then the behavior
of the entity may begin to be seen as contradictory, since
the observer cannot perceive the differences causing this
change in behavior. Therefore, the entity may become con-
tradictory for the observer when the intelligence of the
entity produces behavior that is too complex for that par-
ticular observer. As an example, when someone changes
his/her mind about something, we usually consider him/
her to be contradictory if we cannot understand the details
of the mental process prompting him/her to make this
change in opinion. On the other hand, if we are able to
understand the changes producing this different behavior
(‘‘the reasons of the change in opinion”), then no contra-
diction is perceived.

We shall devote this paper to formalizing this idea in a
mathematical context.

3. Some notes about our epistemological approach

The subject we are going to treat is quite controversial.

Terms such as ‘‘intelligence” and ‘‘contradiction” allow
for so many different interpretations that our first aim is
to clarify the epistemological setting we wish to use. The
reader will find that all the ideas in this paper will be dis-
cussed from a point of view that stresses the belief that
intelligence cannot be studied independently from the con-
text in which it develops and is observed. This belief is
based on the consideration that an analysis of phenomena
where feedback between the observed object and the obser-
ver is not negligible requires this retroaction to be carefully
examined. Intelligence is a typical case of this feedback,
since the attempt to study the intelligence of an entity can-
not ignore the possibility (the fact) that the entity tries to
influence (influences) the observer. Studying intelligence
independently from the context is effectively a contradic-
tion in terms. While we are aware that our choice biases
this whole paper, we wish to stress the framework we are
using and to bring out some explicit links with some
well-known lines of thought.

As previously explained, we believe that intelligence and

contradiction are phenomena concerning the relation between

an entity and an observer within an environment. As a con-
sequence, we think it is nonsense to speak about intelli-
gence and contradiction as concepts independent from
the context, i.e., the experimental setting where intelligence
is studied. The definitions of ‘‘entity”, ‘‘environment”,
‘‘intelligence,” and ‘‘contradiction” considered in the fol-
lowing sections must always be taken with reference to a
given observer and not as an absolute. This means that
we should really say entity detection, environment detection,
intelligence detection, and contradiction detection made by a

given observer (in the same way as, in quantum mechanics,
the concept of ‘‘particle” is replaced with that of ‘‘observa-
tion of a particle”). From this point of view we must not
assume that our opinion about a phenomenon (e.g., the
presence of an entity at a given place) is the one accepted
by the considered observer: once it has been chosen, we
cannot superimpose our own personal judgment on the
one it expresses. Nevertheless we shall maintain the use
of the words ‘‘entity”, ‘‘intelligence,” and ‘‘contradiction”

for the sake of concision. In any cases the real and relative
meanings of these terms will always have to be carefully
recalled.

Some aspects of our approach are surely not new. The
reader will find many links to ideas previously expressed
by other researchers. The treatment of concepts such as
entity and dependence on the observer is certainly related
to the work by Maturana and Varela (1992). The
hypothesis that intelligence is situated in the world, not
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in disembodied systems such as theorem provers or expert
systems, can be found in behaviorism and, in particular, in
Brooks’ research (cf., e.g., Brooks, 1991). The same can be
said about the idea that intelligent behavior arises as a
result of an agent’s interaction with its environment, and
that intelligence is ‘‘in the eye of the beholder” and is not
an innate, isolated property. The interdisciplinary method-
ology, together with the use of mathematical concepts and
the assertion that any experience is subjective, may remind
us of the approach by Bateson (1972, 1979). The impor-
tance given to a global point of view and the impossibility
of splitting up the problem of perception into independent
components derives from Gestaltpsychologie (cf., e.g., Katz,
1944).

A common base to these approaches might be found in
the use of a phenomenological and global framework. In
other words, our attitude of mind is to think of intelligence
as an emergent property that cannot be studied at a unique
level. In particular, we look at perception and comprehen-
sion as intrinsically related processes (cf. Hofstadter, 1995),
and assume that intelligence cannot be examined without
reference to the act of perceiving. All of our research is cen-
tered on the hypothesis that any attempt to study intelli-
gence and contradiction cannot ignore this
phenomenological and global point of view, which is
strongly dependent on the choice of an observer. This
implies that our attention is not given to isolated entities,
but to relations between observers and entities acting
within an environment.

Like any other epistemological framework, the frame-
work we are going to use in this paper can be criticized
or even rejected. While we shall motivate any choices we
make, the reader should consider our research within the
setting we have described.

Note 1. In Section 4 we shall give formal definitions of the
concepts we have mentioned in this section. We shall
proceed by setting out some hypotheses in our model, in
order to emulate some properties of the real world: for the
sake of clarity we shall first informally describe each
property we wish to emulate, and then we shall give its
counterpart in the formal mathematical language of
cellular automata. In Section 5 we shall obtain the above
mentioned result concerning the connection between con-
tradiction and intelligence. In Section 6 we shall present the
results of three computational experiments supporting the
line of thought expressed in this paper. In Section 7 some
controversial points and our corresponding answers will be
presented.
4. A way of formalizing the problem

4.1. A cellular automaton as a ‘‘world” in which we can study

entities

The first thing we need is a mathematical structure
through which we can try to give an acceptable formaliza-
tion of such concepts as entity, environment, intelligence,
and contradiction. Obviously, we are not interested in all
the phenomena involving such complex concepts, but only
in constructing a simple model to preserve some key facts
of a real case. Cellular automata are good candidates for
this, since many authors have shown their usefulness in
representing many complex phenomena. In particular, they
have proved capable of emulating many physical and bio-
logical systems. The literature available on this subject is
considerable and we refer to the bibliography in Wolfram
(1994) for many references. Furthermore, it is well known
that many cellular automata have the property of universal
computation – that is, they can emulate every Turing
machine. Therefore, any computation that can be achieved
by a Turing machine can be performed by many cellular
automata, too. For example, it is well known that Con-
way’s famous cellular automaton Life (cf., e.g., Wolfram,
1994) has this property. So, in principle, all algorithms
we can implement on a computer can also be implemented
in Life. Obviously, this implementation would not be prac-
tical and would take a great deal of space and time for exe-
cution, but this is a common problem for Turing machines
and here we are interested only in a theoretical approach.
Moreover, in spite of their huge theoretical capabilities, cel-
lular automata have the advantage of being very easily
defined.

Some people may think that such a simple structure can-
not emulate or reproduce intelligence. In particular, some
may simply maintain that a Turing machine cannot have
intelligence, for various reasons (cf. Searle, 1984). We do
not want to enter into this debate, but we stress that most
of the tools available for developing artificial intelligence
(including discrete neural networks) can be emulated by a
Turing machine, so that everything we use at the moment
to study intelligence from a discrete-mathematical point
of view can be reduced in principle to the functioning of a
cellular automaton. Therefore, it is reasonable to choose
a cellular automaton as a model for our proposals.

In this paper we shall often refer to an instance C� of the
well-known cellular automaton Life (see Fig. 1), showing a
moving structure commonly known as a glider. This simple
structure allows for the construction of the logical gates
AND, OR, NOT, and on the basis of this, it has been pro-
ven that Life can emulate every Turing machine (cf., e.g.,
Wolfram, 1994). We have chosen this example both
because of its simplicity and because of its relevance to
the theory of cellular automata. Obviously, it is hard to
view this as a model of a world populated by structures
endowed with intelligence, but probably such an interesting
model would require a cellular automaton with a huge
number of non-zero cells, so our toy example is a more eco-
nomical way of making our definitions clear.

In any case we shall justify our choice of these defini-
tions by showing their appropriateness to the real world.
In order to do so, we shall use a more complex (but still
simple) example that is not explicitly implemented in a cel-
lular automaton, since it would be too large. However, this



Fig. 1. The first 20 consecutive states s0, s1, . . ., s19 in the evolution of the cellular automaton C�, showing a ‘‘glider” crashing against a ‘‘block”.
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implementation is possible in principle, because of the
properties previously mentioned. We proceed analogously
when we informally speak about an algorithmic procedure
without explicitly and formally giving a complete definition
of the Turing machine simulating the procedure. Since we
shall refer to this latter example throughout this paper,
we begin from its description:

Example 1. (‘‘FIGHT”). At the time of this writing,
contests between virtual robots are increasingly common
all over the World Wide Web. In general, this type of game
is given by an implementation on a server of a fight
between programs emulating virtual robots. The task of
each virtual robot is to destroy its opponents using a set of
permitted actions inside a given virtual arena. Each
program usually runs on the same server, and a specific
routine (the referee) examines the state of the fight in real
time. To summarize, we have a program containing various
subroutines representing the various virtual robots, and
another subroutine implementing the referee. In this kind
of game it is easy to identify the concepts of ‘‘world”,
‘‘environment” and ‘‘entity”: the world is the program
implementing the arena with the fighting robots and the
judging referee, the part of the arena external to the
considered entity may be interpreted as the environment,
while each entity is represented by a virtual robot. We
point out that no human observer usually watches the
game, and that all ‘‘perceptions” and ‘‘judgments” belongs
to the referee. For each time step, the referee identifies the
virtual robots, their positions in the space, and their states
(dead or alive), so that it can decide the result of the
competition. Observe that, in this particular game, the ref-
eree is not affected by the destructive actions of the virtual
robots, but we can easily imagine more complex games,
where the robots can influence the decisions of the referee,
as happens in the real world. Obviously, we can think of a
concrete implementation of the previous game in a large
cellular automaton, even if we do not explicitly describe it.
In the following we shall often refer to this particular
cellular automaton in order to clarify and justify some
concepts, and we shall call it FIGHT. Before proceeding,
we point out that in FIGHT it makes intuitive sense to
speak about the intelligence of a virtual robot (or, if we
prefer, of its human programmer) by considering its ability
to survive in the contest. We shall return to this idea in the
next sections.

For specific and concrete reference to the theme of
competition between robots we can also refer to the project
RoboCup (see, e.g., Kitano, 1998), involving teams of
robot soccer players.

Now that we have justified our choice of a cellular
automaton as a model, let us return to our formal
approach. The environment in which we shall formalize
the concepts we are interested in is a two-dimensional cel-
lular automaton C. By that we mean a regular lattice of
sites (called cells), in which each cell contains a value cho-
sen from the set {0,1}. This lattice is subject to evolution
from an arbitrary initial state I. At each time-step, this
evolution changes the value contained in each cell c by
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following a (usually local) rule that does not depend on the
absolute position of c: this rule determines the new value of
the cell c and depends only on the values contained in the
cells belonging to a specified local neighborhood of c.1

Remark 2. Some authors confine the definition of cellular
automaton to the case of the local evolution rule (e.g.,
involving only the 3 � 3 neighborhood of each cell) and
prefer to call lattice dynamical systems the structures we are
using. By contrast, we are following the approach given in
Wolfram (1994), which allows the use of larger (bounded)
neighborhoods. However, from a theoretical point of view,
any evolution rule depending on an n � n neighborhood
can be emulated by a 3 � 3-neighborhood rule applied to
another cellular automaton with m possible values for each
cell (instead of the two values 0,1), and so the condition of
locality is important only from a practical point of view.
However, we wish to stress once again that the aim of this
paper is not to consider efficient cellular automata, but
only to point out some general phenomena arising in all
those cellular automata that have certain properties.

Now, we give a simple cellular automaton C� in order to
make our definitions clear. We do not imply that C� is inter-
esting as a model, but only that it is suitable as an example.
We shall refer back to C� in the remainder of this paper as
well.

Example 3. (The glider in ‘‘Life”) In Fig. 1 we show some
12 � 12 matrices representing 20 consecutive states during
the evolution of a cellular automaton C� following
Conway’s rule.2 By calling x the number of the eight
neighbors of a cell that are non-zero, we can state the
evolution rule as follows: if x = 2 then the cell takes the
same value as in the previous time step (i.e., we maintain its
color); if x = 3, then the cell takes on value 1 (i.e., we set it
black); in all other cases the cell takes on value 0 (i.e., we
set it white). Observe that updating happens for all cells at
the same time. In this way, for every state s in the set R of
all the possible states of C we define the consecutive state
f(s) by following the evolution rule f.
1 More formally, C can be defined in the following way. Denote by R the
set of functions from Z� Z to Z2, where Z is the set of the integers and Z2

is the cyclic group of order 2. Moreover, let I be an element in R. Each pair
in Z� Z is called a cell. We define the two-dimensional cellular automaton
C as a pair (I, f) where f is a function from R to R. We shall call states of C
the functions in R and initial state of C the state I. In plain words, each
state of C is a choice of the contents in the cells of the lattice representing C.
The function f will be called the evolution rule of the cellular automaton. A
state b of C will be said to be consecutive to a state a of C if b = f(a). After t

steps in the evolution of the cellular automaton we shall call present state

of C (or state at time t of C) the state st = f t(I), obtained by applying f t

times to I (we recall that each state f t(I) is a function from Z� Z to Z2).
2 Formally speaking, the matrices represent the finite sublattice of Z� Z

given by the set {0, 1, . . .,n � 1} � {0, 1, . . . ,n � 1} (the cell (0,0) is the top
left one and all the cells outside this sublattice contain the value 0). Each
matrix gives a function in R. The first matrix represents the initial state I.
Black cells and white cells denote cells containing 1 and 0, respectively.
We recall that cellular automata can be regarded as dis-
crete dynamical systems and that they are theoretically
capable of simulating every Turing machine. Moreover,
they seem to be a suitable structure in which to study
self-reproducing entities (cf., e.g., Arbib, 1966; Langton,
1984; von Neumann, 1966). Considerable literature about
cellular automata exists and we shall point to it for more
details about the theory (cf., e.g., Burks, 1974; Codd,
1968; Gutowitz, 1991; Packard & Wolfram, 1985; Toffoli
& Margolus, 1987).

Our model C is the evolving ‘‘universe” in which we shall
study the phenomena of intelligence and contradiction.
However, we are not assuming that C can emulate all the
physical properties and laws of the real world. We simply
mean that cellular automata are models capable of emulat-
ing a set of properties of complex entities that is sufficient
to explain the presence of the contradictions we see in the
real world. Obviously, we cannot be sure that this corre-
spondence is not accidental, but as is well known, no model
can be mathematically proved adequate to describe a real
phenomenon: this can only be verified experimentally.
We shall come back to the concept of contradiction in Sec-
tions 4.4, 5 and 6.

4.2. An observer judges the presence of entities

Before speaking about contradiction, we must define
the concept of ‘‘existence” for an entity. Given this con-
cept, we shall be able to discuss whether an entity is con-
tradictory or not. We point out that in the real world the
presence of an entity is strictly connected to the presence
of an observer perceiving this entity, and hence existence
is subjective, at least from an operative point of view
(cf., e.g., McGinn, 1982). In fact, it is common for differ-
ent people to see different entities in the same environ-
ment (see Fig. 3). This is usual in visual perception
(cf., e.g., Marr, 1982; Winston, 1984) and, for a physi-
cist, this position would be quite natural. An important
reference to this issue can be found in the work of
Maturana and Varela (1992).

It may not seem so obvious from a practical point of
view, and one might imagine that complex entities exist
independently of any observer. For example, someone
might argue that in real life the existence of a living being
at a certain position and time is absolute, since we are look-
ing at macroscopic phenomena where the indeterminacy of
quantum mechanics plays no role. An answer to this objec-
tion is easily formulated: if the concept of entity were not
dependent on the observer, then no animal could hunt
using camouflage, physicians’ diagnoses would always be
identical and no man could ‘‘mistake his wife for a hat”
(Sacks, 1985). Scientists would always see the same causes
for each phenomenon, and all people would agree in judg-
ing who the heroes and villains in a movie or a political
event are. In reality, the problem is not whether the concept
of entity is subjective or not, but whether we can avoid tak-
ing this subjectivity into account or not. Our opinion is that



3 From a formal viewpoint, we are considering the function
�
� ¼ ðps�ent; ps�ENV Þ, where ps�entðstÞ is an element in the set P�ent containing

all possible non-empty subsets of Z� Z and the symbol 0, and P�ENV is the
set of all possible states for the ‘‘matrix” displayed in Fig. 1 (or,
alternatively, a set of qualitative descriptions of these states). In other
words, in this case P�ent represents the set of all possible locations for the
glider, while P�ENV can be seen as the set of all states that the environment
can take on. Obviously, this is only one among many possible choices for
the sets P�ent and P�ENV . An analogous observer who recognizes the block
that is going to be destroyed by the glider could be considered. In our
example, ps�entðstÞ is the set representing the ‘‘body of the glider” for
0 6 t 6 14 and ps�entðstÞ ¼ 0 for t P 15. It is worth noting that our
formalization would allow to represent a fuzzy disappearing of the
considered entity. It would be sufficient to take the time t to a fuzzy set
instead of a set. This can be easily obtained by changing the sets P�ent and
P�ENV .
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the study of artificial intelligence cannot neglect this subjec-
tivity. By referring to our cellular automaton FIGHT, we
emphasize that only the referee can judge the state of the
virtual robots. We must not forget that there is usually
no human observer to confirm or contest the referee’s deci-
sions during the game. The possibility of verifying such
decisions is only hypothetical since no human operator
could examine all of them directly.

Therefore, we need a formal concept of ‘‘observer” in
order to proceed. In an experiment, an observer is an
individual who examines both the state of a studied
entity (a reagent, a cell, an animal species. . .) and the
condition of the environment where the experiment hap-
pens (a laboratory, a tissue culture, an ecosystem. . .).
The researcher acting as observer perceives the events
and reports them according to his/her own opinion and
subjective rules of judgment. Informally, we might say
that an observer is a ‘‘black box” h capable of identify-
ing the states of a particular entity and of the environ-
ment judged relevant to its future behavior. Thus, from
a mathematical viewpoint, an observer might be defined
as an ordered pair of functions (psent,psENV), describing
the ways the observer judges the perceived states (ps)
of the studied entity and of the environment during time,
respectively.

In FIGHT, the observer (i.e., the referee) searching for a
virtual robot R can be seen as a pair of functions
� ¼ ðpsent; psENV Þ, too. The functions psent and psENV take
each state st of the game to the states that the software
judging the competition associates with the robot and envi-
ronment in question. For example, the perceived states
psent(st) and psENV(st) could describe the health of the robot
and how crowded the environment is. The absence (death)
of the virtual robot at time t would be revealed by the
equality psent(st) = 0.

Formally, we give the following

Definition 4. (Observer) Let us choose two finite non-
empty sets Pent and PENV , which will be called sets of

perceptible states for the entity and its environment, respec-
tively. We shall assume that Pent contains a privileged
element 0. We shall call an observer any function
� ¼ ðpsent; psENV Þ : R! Pent � PENV .

Note 2. Pent and PENV can be interpreted as personal
descriptions of the states that the observer perceives for
the entity and its environment. The value 0 2 Pent can be
seen as a judgment of absence for the entity in question
with respect to the examined state of the cellular automa-
ton. It is important to point out that in the real world these
perceptions do not retain all the information about each
event. On the contrary, they usually replace the real world
with a more compact representation. For example, a phys-
ical or biological experiment is not described by giving all
possible information about the laboratory where the exper-
iment is done, but a set of quantitative and qualitative data
that are judged influential or important for the results of
the experiments. So Pent and PENV may consist of formulas,
verbal statements, or any other kind of data considered
useful for the description of what happens in the
experiment.

The hypothesis that Pent and PENV are finite sets is impor-

tant. It means that our observers are assumed to have lim-
ited capabilities, and it will play a key role in our proof of
the proposition stated in Section 5. We emphasize that this
hypothesis corresponds to the fact that in reality the
observers can have neither infinite memory nor unbounded
computational capabilities. We consider this as self-evi-
dent, but for skeptics, many references are available in
the literature. As an example, Wooldridge and Jennings
(1995) take for granted that all real agents are resource-
bounded. They also confront the famous Logical Omni-
science Problem, which arises from the assumption of
unbounded inference capabilities (cf. Stalnaker, 1991).
Therefore, our hypothesis seems to be quite natural.

Once again, we point out that nothing is taken for
granted about the working of the observer h. It is like a
‘‘black box” that decides – in an unknown way – whether
at a specific time a certain type of entity is present or
not, and what the states of this entity are, as well as the
states of the environment influencing its future behavior
according to the judgment of the observer. So any kind
of decisional mechanism is acceptable inside the black
box. The symbol ‘‘h” has been chosen to suggest this fact.

As an example of an observer in C�, we may consider a
process that displays the location of the glider and the state
taken on by the environment where it is moving.3

An observer in FIGHT would be a more interesting
example, but its precise definition in some programming
language could take many pages of this paper. However,
it is not difficult to imagine how it would work. For every
set X of cells, the observer could compare the contents of X

with some set of stored patterns. In this way it would deter-
mine whether or not X contains a given virtual robot R and
whether it is ‘‘alive” or not. Similarly, it could determine
the state of the neighborhood judged relevant to the future
evolution of the robot.
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It is obvious but important to stress that an observer
does not usually perceive the environment as coinciding
with the whole set Z� Z, representing our ‘‘universe”. It
is quite clear that a psychologist observing a patient cannot
consider all possible data in the universe in order to exam-
ine the reaction of the individual. The psychologist must
select a small set of data belonging to a small environment
(the patient’s answers, drawings, expressions. . .). Thinking
of an observer knowing and processing all the data in the
universe is similar to imagining a psychologist capable of
using all the data in the patient’s life. This is not only prac-
tically impossible: it could also be completely misleading
from a theoretical point of view, since omniscient observers
are totally different from real-world observers.

Now we turn to the task of formally defining the concept

of ‘‘entity”. In real life, an entity usually appears to be sta-
ble in our perception of it. Obviously, this trivial remark
hides one of the greatest philosophical debates in history,
and a discussion of the subject would require a much
longer paper. Here we confine ourselves to referring to
the interesting essay ‘‘The primacy of identity” in Rota
(1997). In fact, we are only interested in giving an accept-
able definition for practical purposes and we merely point
out that stability and coherence in perception constitute
the key factor in determining ‘‘existence” from a subjective
point of view (cf., e.g., Marr, 1982). Therefore, it seems
natural to define the existence of an entity as persistence
in perception with respect to a given observer. In plain
Fig. 2. The ‘‘body” ps�entðstÞ of the glider (displayed in grey at the first 15 times i
we have ps�entðstÞ ¼ 0, meaning that the glider is not found on the scene by the o
in Fig. 1.
words, we shall call an entity each maximal sequence of
consecutive non-trivial (i.e., different from 0) images of
the function psent. From the semantic viewpoint, such a
sequence shows that the observer perceives the existence
of the considered structure (e.g., a glider) during the corre-
sponding sequence of time steps. Maximality expresses the
request that our sequence is as long as possible. We will
formalize this concept in the next definition.

Definition 5. (Entity and lifetime) Each maximal sequence
of ‘‘consecutive” perceived states in Pent � f0g will be
called an entity with respect to the observer h. In other
words, an entity with respect to h is defined as a
sequence ðpsentðstÞ; psentðstþ1Þ; . . . ; psentðstþqÞÞ with psent(st),
psent(st+1), . . ., psent(st+q) – 0, psent(st+q+1) = 0 and
psent(st�1) = 0 (if t > 0). We shall call the set {t,
t + 1, . . ., t + q} the lifetime of the entity. The value
psent(st+h) (0 6 h 6 q) will be called the state of the entity

perceived by h at time t + h.

With reference to Figs. 1 and 2, the sequence
ðps�entðs0Þ; ps�entðs1Þ; . . . ; ps�entðs14ÞÞ gives an example of an
entity (the ‘‘glider”) ‘‘perceived” by the observer �� in C�.

Similarly, it makes sense to consider the environment of
an entity.

Definition 6. (Environment) If E ¼ psentðstÞ;psentðstþ1Þ; . . . ;ð
psentðstþqÞÞ is an entity, then the sequence (psENV(st),
psENV(st+1), . . .,psENV(st+q)) will be called the environment
n the evolution of C�). The block does not appear in this figure. For t P 15
bserver, since it has been destroyed in the collision against the block visible



Fig. 3. Different observers can see different entities in the same environment. This photograph depicts three views of the same bronze sculpture by Guido
Moretti, showing a Necker cube transforming into an impossible triangle.

Fig. 4. An observer judges the intelligence of an entity by measuring her
survival capability in the considered environment.
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of E. The value psENV(st+h) (0 6 h 6 q) will be called the
state of the environment perceived by h at time t + h.
Fig. 5. A simple example of contradiction: the observer O perceives two cont
environment, causing the behavioral change.
Note that we do not set any particular constraint on the
observer’s judgment about the concept of environment
influencing the entity’s behavior.

Obviously, human observers are much more complex
than the ones we have defined. Proximity in position during
time, for instance, is important for recognizing the presence
of an entity in our world, in most cases. However, this and
other properties are not necessary in order to derive the
proposition about intelligence and contradiction that we
wish to obtain in Section 5. For this reason we did not
require these hypotheses in our definitions.

In our model, at each time s, each observer h tries to
find the entity it is capable of recognizing. The result of
that search (that is, the pair �ðssÞ) represents both the
state it perceives for the entity and the state of the envi-
ronment judged relevant to its future behavior. If
psent(ss) = 0, the entity is not found in the ‘‘universe”

at time s by the given observer. Each ‘‘maximal chain
of consecutive non-zero perceived states” is an entity.
Obviously, other kinds of choices would be possible,
but we are not interested in enumerating all of them:
we only wish to point out the consequences of a reason-
able definition.
rasting behaviors of E without seeing any relevant difference in E and his



Fig. 6. The subjective nature of contradiction. Ludwig Wittgenstein is
generally considered to have changed his thinking considerably over his
philosophical career, since he denied his own Tractatus Logico–Philo-

sophicus. While an expert in Wittgenstein’s thought might be able to
explain his change in opinion on the basis of the knowledge of his
philosophical research and experience, a common observer might judge his
behavior to be an example of contradiction.
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Remark 7. In this paper we are not interested in discussing
the complexity of the search performed by the observer. On
this subject we refer to Tsotsos (1989) as an example of an
approach to the problem.
4.3. A definition of the intelligence of an entity

This is obviously a key point. It is clear that at this time
it is not possible to say exactly what intelligence is but, on
the other hand, we certainly do not need or wish to enter
into the debate concerning this problem. However, it is
equally clear that we are not looking for the answer to this
huge problem but for a reasonable formal idealization
allowing us to proceed in a mathematical context.

Many definitions of intelligence have been proposed in the
past, among others, biological, computational, epistemolog-
ical, anthropological and sociological (cf., e.g., Khalfa,
1994). Themes such as multiple intelligences (cf., e.g., Gard-
ner, 1985; Horn, 1986), cultural relativism (cf. Mugny &
Carugati, 1989) or the behaviorist interpretation of intelli-
gence (cf. Brooks, 1991) have been studied by many research-
ers. We simply refer to the excellent survey and the rich
bibliography contained in Sternberg (1990). However, in
order to follow a mathematical approach to our problem,
we need a formal definition allowing for a quantitative com-
parison of intelligence across different entities. This elimi-
nates all high-level or self-referential definitions: references
to concepts as complex as intelligence are not useful to our
goal. Therefore, expressions like ‘‘the attitude to solving
problems” (cf. Minsky, 1986) cannot be a good definition,
since they require clarification of very difficult concepts (in
this case the concept of ‘‘problem”). The classical Turing test
(cf. Turing, 1950) is perhaps the most famous attempt to
define intelligence through an experimental framework.
Unfortunately, this test and its various reformulations are
not suitable for a mathematical approach, since they occur
more as tools in a philosophical debate than as practical pro-
cedures. In particular, they give neither a formal definition
nor a quantification of intelligence and do not make clear
any criterion of judgment for the observer, so that it is diffi-
cult to imagine of translating this approach into a mathemat-
ical structure. In any case the Turing test suggests that
measuring intelligence strongly depends on an experiment
made by an observer acting as a judge. After all, this is the
way intelligence is commonly measured, and it is not surpris-
ing that I.Q. tests reflect the thoughts and opinions of the
psychologists who prepare them. So it seems natural to look
at intelligence as something we can measure by a test made by
an observer. Since a test is a practical process, we cannot
think of the observer as an omniscient individual, capable
of perceiving and examining all data about the entity it is
studying. More realistically, all it can do is subject the entity
to some tests and formulate its own opinion about the
results. As an example, our opinion about the intelligence
of someone is not based on a complete knowledge of his/
her life but on some particular experiences concerning his/
her behavior. On the other hand, a classical way of
approaching the goal of formally defining intelligence is that
of looking at it as the capability that an entity has to adapt to
changes in the environment (cf., e.g., Sternberg, 1990). From
this point of view, intelligence can be measured by quantify-
ing success in adaptation. Such success can simply be
expressed by the length of life of the entity considered: this
is the approach we have chosen in this paper.

It may be opportune to observe that the structure of a clas-
sical intelligence test can easily fit into this framework. The
role of observer is taken by the psychologist administrating
the test, which usually consists of some trials and problems
that must be overcome by the person examined. Overcoming
a difficulty (such as solving a problem) can be seen as a form
of survival inside a particular game. Obviously, when we use
the word ‘‘survival” we do not necessarily mean survival in a
biological sense. In our setting, surviving simply means
remaining a player in the game (see Fig. 4).

When we say that intelligence may be expressed by the
length of life of the considered entity, we do not at all mean
that it is explicitly represented in this way (see Remark 8
below), but that it can be represented in this way if suitable
language is used.

For example, the efforts to solve puzzles in a mathemat-
ical competition are not usually described as an attempt to
survive. Nevertheless, the number of puzzles that each par-
ticipant has solved during the contest could be formally
seen as a length of life.

Our final comment is that we are not necessarily think-
ing of the observer as the creator of the difficulties that
the examined person must face. This may happen in the
case of the intelligence test, but we are mostly interested
in cases when the observer does not completely understand
the problems presented and the corresponding solutions.
These are cases in which the most interesting phenomena
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of contradiction may happen, as we shall see in the
following.

For the reasons we have explained, the intelligence of an
entity in a cellular automaton C can be seen as the number
of consecutive states of C during which the studied entity
exists with respect to a given observer.

Remark 8. (‘‘The man and the sequoia”) An easy but
misleading criticism of our approach could be the assertion
that there is very little relation between length of life and
intelligence. For example, we could observe that if we
consider a human being (a man, say) and a sequoia in a
forest, it is likely that the man will ‘‘survive” for a far
shorter time than the sequoia, but this is not a good reason
for thinking that the former is less intelligent than the
latter.

To have this opinion means to forget that our definition
of intelligence strongly depends on the choice of a suitable
model where intelligence can be measured as ability to
survive.4

As usual, choosing a model is a matter that depends on
the aspects of reality that we are interested in. For example,
there would be no point in making a biological simulation
of a chess-player in order to measure her skill in chess,
since no one would judge her intelligence by examining her
metabolism and immunological efficiency. We should
rather test her in the ‘‘virtual world” of chess games,
where threats consist not of disease but of the opponents’
moves.

Similarly, a comparison of intelligence between the man
and the sequoia (with respect to the ‘‘human” concept of
intelligence) should be done in a model in which dangers
and difficulties consist of what a human being considers to
be problems to be solved.

For example, we might choose a model representing a
physical world in which the man and the sequoia are in
direct competition for survival. In such a model, we can
imagine that the former could easily destroy the latter,
revealing the latter’s relative lack of intelligence.

This kind of test is similar to what we do when we think
about the intellectual deficiency of a living being. We do
not look for a real proof of incapacity to react to
‘‘dangers”. We simply simulate in our brain what would
happen if such dangers occurred to the considered living
being, by referring to a model represented in our imagina-
tion. In a ‘‘virtual world” of this kind, the lack of
intelligence of the sequoia could easily be expressed in
terms of a short duration of life.

Remark 9. (‘‘The oscillating pendulum”) It is important to
underline once again that our definition of intelligence
strongly depends on the choice of the observer. Obviously,
if the observer is quite different from a human observer and
4 When we say ‘‘choice of a model” we mean both choosing the observer
and the cellular automaton C representing the phenomenon we are
studying (we must remember that the observer operates on the states of C).
has very limited capabilities, the correspondent definition
of intelligence will be very unusual. We make clear our
position by giving another example. Let us consider an
oscillating pendulum and an observer looking at it. On
the basis of our approach, one might criticize our definition
by claiming that the observer perceives an indefinitely long
‘‘life” of the pendulum, since it never stops. It is worthy to
remark that in this way he would assume to consider an
observer that is completely different from a human one.
Indeed, a human observer interested in examining the pen-
dulum would have a lot of information available about it,
in her memory, and some brain activity concerning her per-
ceptions. The ‘‘right” model should not describe the phys-
ical world where the pendulum is oscillating, but the
computational structure (her brain) where the pendulum
is tested and its behavior checked. In her brain, the obser-
ver could easily imagine to stop or even destroy the pendu-
lum. In this model, that is the most natural for a human
observer, the lack of intelligence of the pendulum could
be easily revealed. Considering a different model (e.g. just
representing the physical evolution of the pendulum)
would mean to choose some kind of mechanical observer
that simply registers a list of actions much like a camera
can do, without any usual mental activity. Judging the
intelligence of the pendulum by examining the regularity
of its oscillations would be much like judging the intelli-
gence of a chess player by examining the regularity of his
heartbeats. It should not be surprising if the choice of an
unusual observer produces a concept of intelligence that
is not the most natural one.

Formally we give the following definition.

Definition 10. (Intelligence of an entity) Let us assume that
an entity E ¼ ðpsentðstÞ; psentðstþ1Þ; . . . ; psentðstþqÞÞ with
respect to an observer h is given. Then we say that q,
i.e., |lifetime| � 1, is its intelligence.

Hence, e.g., the intelligence of the entity represented in
Fig. 2 is 14. The simplicity of this example should not
deceive the reader. More complex cases could be easily
shown, which are not so trivial and might be interesting
for applications. As an example among many, we could
consider the problem of quantifying the efficiency of a
given commercial software agent A. A natural way to do
this could be simulating a standard test market M and test-
ing A inside M. In this case the intelligence of A (i.e., the
lifetime during which the agent can survive in the standard
market) might be taken as a useful reference for compari-
son between similar agents.

We underline that the concept of intelligence, like the
concept of entity, is strictly dependent on the chosen obser-
ver. While we have already justified this position, we refer
the interested reader to Brooks, 1991 for further discussion
of the idea that intelligence is ‘‘in the eye of the observer”.

Note 3. It is important to point out that measuring
intelligence is becoming a key problem in computer science.
As an example, the use of collaborative agent systems
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requires the ability to measure the extent to which a set of
collaborative agents is able to accomplish the goals it was
built for (cf., e.g., Nwana, 1996). In other words, we want
to know if it is reliable or not, and to compare its
‘‘intelligence” to that of other collaborative agent systems
pursuing the same aim (e.g., think of controlling a nuclear
installation or a chemical plant). This necessity makes the
measurement of intelligence a more and more important
task in software engineering, and gives another practical
motivation to our research.
4.4. A definition of the contradictory nature of an entity

Following the dictionary (‘‘contradiction.” Merriam-
Webster OnLine: Collegiate Dictionary. 2000. http://
www.merriam-webster.com/dictionary.htm (6 August
2001)), the word contradiction has the following meanings
in the ordinary language:

(1) act or an instance of contradicting;
(2) a: a proposition, statement, or phrase that asserts or

implies both the truth and falsity of something;b: a
statement or phrase whose parts contradict each
other (‘‘a round square is a contradiction in terms”);

(3) a: logical incongruity;b: a situation in which inherent
factors, actions, or propositions are inconsistent or
contrary to one another.

What is common to these definitions is a conflict of
behavior, as happens when a statement is both asserted
and negated, either by different subjects or by a single indi-
vidual. For example, we call a human being contradictory
if he/she supports both a statement and its negation. If we
accept the point of view that the concepts of intelligence
and contradiction depend on the judgment of an observer,
we can reformulate the previous definitions by saying that
contradiction is a phenomenon in which an observer
perceives that an individual or a group of individuals
produces behaviors which are, in some sense, incompatible
(see Fig. 5). These types of behavior include opinions and
assertions but are not necessarily limited to these. As we
know (see previous definition 3b) actions can also be
contradictory, and the word ‘‘contradictory” is often used
to denote a change in behavioral rules (‘‘He is contradic-
tory: in the past he defended this cause, while now he
attacks it”).

Therefore, a common property can be found in our def-
initions: an entity can be said to be contradictory if faced
with the same circumstances, it does not exhibit the same
behavior (see Fig. 6). In other words, the ordinary use of
the term contradictory refers to a change in behavior of
the same entity.

So it is reasonable to call an entity contradictory, if it
happens that, at different times, it reacts differently to the
same state of its own body and of the environment where
it lives – that is, the same action is considered to produce
different results (cf. Piaget, 1974). At the end of this section
we shall propose a mathematical formalization of this
definition.

Some possible objections to our approach to contradiction

should be considered.

The first objection concerns the classical use of the term
‘‘contradiction” in mathematical logic. We know that
(roughly speaking) a theory is contradictory if in such a
theory it is possible to prove both a statement a and its
negation :a. At first glance our approach to contradiction
seems to ignore this classical use. It could seem that there is
no relation between the meaning we are speaking about
and the one studied by logicians and mathematicians. This
is not the case in our context, since the concept of contra-
dictory theory we use in logic can be seen as a particular
case with respect to our definition. This point can be clar-
ified by an example. Let us assume that a theory S endowed
with a finite set A of axioms is contradictory, in the sense
we have previously described, i.e., in S it is possible to
prove both a statement a and its negation :a. Now we
can imagine a Turing machine T accepting the set A and
the formula a as input data and producing all possible valid
proofs of length l, with l progressively increasing. In other
words, T will produce all possible valid proofs of length 1,
then all possible valid proofs of length 2, and so on. If T

finds a proof of a, it writes down TRUE in a precise loca-
tion of its infinite tape. Similarly, if T finds a proof of :a, it
writes down FALSE at the same location. The statement
written at that location represents the answer given by T

to the question ‘‘Is a true or false in S?”. Obviously, in both
the cases examined the previous contents of the cell are
erased, while the absence of any symbol at the considered
location must be interpreted as the fact that T cannot prove
either a or :a (and hence answer the question) until the
present computational step.

Since S is assumed to be contradictory, there will be two
times (or steps) in the functioning of T at which the
answers will be different, corresponding to the times at
which T will discover a proof of a and :a, respectively.
Hence the reaction of the Turing machine will appear to
be contradictory (in the sense we specified) to an observer,
under the hypothesis we implicitly made, that time is not
considered input data for T. Here we are only assuming
that the observer asked to judge contradiction recognizes
T as a valid prover for S and maintains this opinion about
the identity of T during all its functioning. This example
shows that our approach to the concept of contradiction
includes the classical notion of logical contradiction as a
particular case.

We are aware that our viewpoint can be criticized by
asserting that contradiction is an absolute concept in math-
ematical logic, independently of the opinion of the particular
observer. Even if we respect this position, we cannot avoid
doubting that it is completely acceptable from a scientific
point of view. Excluding on principle any reference to an
observer when affirming (in a formal sense) that ‘‘Theory
X is contradictory” means to maintain an idealistic approach
that might be harmful for further progress in artificial intel-

http://www.merriam-webster.com/dictionary.htm
http://www.merriam-webster.com/dictionary.htm
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ligence. Although many mathematicians support an idealis-
tic vision of mathematics and mathematical logic, none of
them would probably accept a statement without checking
the corresponding proof, so implicitly requiring that an
observer expresses his/her opinion about the statement con-
sidered. In fact, we can probably assert that mathematicians
are not only interested in the existence of proofs, but, above
all, in the discovery of proofs. Moreover, the history of math-
ematics is full of wrong statements that have been corrected
when some expert (observer) has changed his/her point of
view and found some mistake. Expunging the role of the
observer and his/her judgment means separating mathemat-
ics (and hence mathematical logic) from the research by
which it is produced, and putting knowledge into a limbo
where truth is both untouchable (since we want it to be stable
in time) and potentially transient (since progress and
research can change it). In some sense, we could say that
the price of certainty, from an idealistic point of view, is to
give up the study of reality.

While we do not insist on this subject, we refer to the
discussion in Davis and Hersh (1981) about the difficulties
inherent in an idealistic approach to mathematics.

Another possible objection concerns the meaning of the
expression ‘‘equivalent conditions”. If the conditions are
really equivalent one might think that two different behav-
iors are not possible in a deterministic setting, and hence
that no contradiction could appear. Once again, we stress
that in our model the only judge of equivalence can be
the chosen observer. As happens in reality, there is no point
in asserting that two conditions are different if we cannot
perceive any difference between them. The contrary posi-
tion may be interesting in philosophy but (perhaps) much
less in computer science. The assertion that there is no
room for contradiction in the presence of complete and
universal knowledge is perhaps valid, but not very useful
in practice, and it may imply the non-existence of equiva-
lent conditions, thus destroying the concept of science as
we usually interpret it. As an example of what we are say-
ing, let us imagine that a proof of a contradiction (in the
mathematical sense) is discovered for a given, relevant
and useful theory. Assume that the proof is checked and
verified by all the qualified experts in the world, and imag-
ine that we can make the same verification of correctness.
How plausible would it be to argue that the given theory
is nonetheless free from contradictions and that the so-
called ‘‘proof” of a contradiction in it must contain one
or more invisible flaws? It is highly implausible, and we
would probably rely on the opinion of experts and on
our own verification, without considering the existence of
invisible data and errors that could potentially modify
our position.

Analogously, when we speak about ‘‘equivalent condi-
tions” for an observer, we should not think of an incompe-
tent judgment due to lack of information or the presence of
errors, since, in doing so, we would simply superimpose our
own personal judgment on the opinion of the chosen obser-
ver. This act would be equivalent to a change of observer.
We can thus introduce and propose the following

definition.

Definition 11. (Contradictory entity) Let us assume that an
entity E ¼ ðpsentðstÞ; psentðstþ1Þ; . . . ; psentðstþqÞÞ with respect
to the observer h is given. If natural numbers a, b (a, b 6 q)
exist such that psent(st+a) = psent(st+b) and psENV(st+a) =
psENV(st+b) (i.e. �ðstþaÞ ¼ �ðstþbÞ), but psent(st+a+1) –
psent(st+b+1), then we shall say that such an entity is
contradictory.

In other words, our definition means that, while the
observer perceives equivalent states for the entity and the
environment at times t + a and t + b, it is assumed that
the entity reacts differently to these states.

Remark 12. (‘‘Is a flipping coin a contradictory entity?”) A
simple question may arise immediately after giving our
definition of contradiction. Should we consider a flipping
coin, giving many different results, an example of contra-
dictory entity? This kind of question is important to make
our position clear. Once again, the point is the choice of the
model and the observer. If we decide to choose a ‘‘human
observer” we cannot rule out his/her usual distinguishing
features. A human observer knows that the coin is a disk
made of inert metal and that it can be easily stopped and
destroyed. Obviously, the model we are interested in must
be large and complex enough to represent the evolution of
the observer’s brain, where the information is stored and
the ‘‘physical” coin is substituted with its mental represen-
tation (cf. Remark 9). This representation can be checked
by the observer’s mind. The fact that in this model the coin
does not oppose its destruction reveals that the coin has no
intelligence and hence, by definition, no contradictory
behavior (no contradiction is possible if q = 0, according to
Definition 11). Obviously, since any kind of observer can
be chosen in the model, we could also choose a different
and non-human observer, having no memory and no pre-
existent opinion about the coin, and unable to check the
reaction of the coin to hypothetical situations. However, it
should not be surprising that the choice of this unusual
observer would lead to an unusual evaluation of intelli-
gence and contradiction.

Another useful concept is that of the deterministic envi-
ronment, formalized by the following definition:

Definition 13. (Deterministic environment) Let us assume
that an environment ðpsENV ðstÞ; psENV ðstþ1Þ; . . . ;
psENV ðstþqÞÞ with respect to the observer h is given. If for
any pair of natural numbers (a,b) verifying a, b 6 q,
psent(st+a) = psent(st+b) and psENV(st+a) = psENV(st+b) (i.e.
�ðstþaÞ ¼ �ðstþbÞ) the equality psENV(st+a+1) =
psENV(st+b+1) holds, then we say that the considered
environment is deterministic.

According to the previous definition, if the environment
is deterministic its future state depends on the present state
of the entity and the environment (i.e., all that the observer
knows about the examined ‘‘world”). In any case, this
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dependence is not required to be explicit and computable,
and the observer may not be able to anticipate the future
environmental state.

Some environments appear to be deterministic, while
others do not. Even far away from quantum mechanics,
it may happen that the environment evolves in an unpre-
dictable way, according to the observer’s judgment. For
example, the weather evolution may be predictable or
unpredictable, depending on the computational capabilities
of the observer looking at it and on the information that is
available to him, expressed by the states he can perceive.

From a formal point of view it may be interesting to
observe that, following our definitions, an environment is
deterministic if and only if it is non-contradictory as an
entity, with respect to the dual observer that exchanges
the roles of psent and psENV (provided we add the required
special symbol 0 to PENV ).

5. The key result in our model

In the model we have established the following result
can be proved, as a trivial consequence of the pigeonhole
principle. This result shows that determinacy is forced to
break down when the observer examines an intelligent
enough entity.

Proposition 14. Assume E is an entity having a finite lifetime
and a deterministic environment with respect to an observer

h for the cellular automaton C. Let k be the product of the

cardinalities of the sets Pent and PENV . Then, if the

intelligence of E is strictly greater than k, the entity E must

be contradictory.

Proof. Let L = {t, t + 1, . . ., t + q} be the lifetime of E.
From q > k ¼ jPentj � jPENV j it follows that in L two time
steps t + a and t + b (a < b) must exist such that
psent(st+a) = psent(st+b) and psENV(st+a) = psENV(st+b). Sup-
pose E is not contradictory. Then for each time step
s 2 L, the values psent(ss) and psENV(ss) would determine
both psent(ss+1) (since by assumption E is non-contradic-
tory) and psENV(ss+1) (since by assumption the environ-
ment of E is deterministic). Therefore, the equalities
psent(ss) = psent(ss+b�a) – 0, psENV(ss) = psENV(ss+b�a)
would hold for every s P t + a. Thus, psent(ss) and
psENV(ss) would be periodic functions in s for s P t + a

and the lifetime of E would be infinite, contradicting our
hypothesis. Hence our thesis is proved. h

The previous result can be reformulated in the following
way: if an entity is intelligent enough with respect to a
given observer, then either the entity appears to be contra-
dictory (and hence its behavior is unpredictable) or the
environment is not deterministic (and hence no prediction
can be made). This statement requires that the entity has
a finite lifetime and the observer has bounded capabilities,
and suggests that in the real world the previously described
limitation about determinacy should be expected in intelli-
gent systems.
Remark 15. Some comments should be made about the
stipulation that the lifetime of entity E is finite. From a
technical point of view, this stipulation is made in order to
exclude the possibility of an observer judging a structure
that endlessly repeats the same configurations to be alive.
In the real world and in realistic models this type of endless
repetition cannot occur, since mechanisms break down and
living beings die sooner or later (some remains are usually
left but the observer does not recognize them as being alive,
as in the case of biological death). In this fashion, our
stipulation characterizes the structures that are most
interesting for our proposals.

Suitable limitations to our choice of model would allow
us to exclude entities with an infinite lifetime, but we
preferred to accept all models and simply point out the
ones we think are most significant.

Remark 16. From the observer’s viewpoint, the contradic-
tory behavior of the studied entity implies that its actions
are unpredictable. In fact, the observer cannot foresee the
next state of a contradictory entity as a consequence of
its present state and the state of the environment. Thus,
the statement we have proved implies the following asser-
tion, valid for a deterministic environment:

Any sufficiently intelligent entity is unpredictable.

This point of view is supported by various research. In par-
ticular, the project Copycat (Hofstadter, 1984a, 1984b) sug-
gests that non-determinism is very important for
intelligence. The detailed description of some cognitive
processes points out the necessity of non-deterministic
behavior in order to allow the discovery and efficient
manipulation of analogies. For an introduction to this pro-
ject and its implications we also refer to Hofstadter (1995).

Many examples stressing the importance of the link
between intelligence and unpredictable behavior might be
done, showing how unforeseeable actions can be useful for
survival. As an example of this kind, we could refer to the
techniques that many animals adopt for escaping predators
(think of a rabbit avoiding a pursuing fox by making
unpredictable zigzag bounds across a field).
6. Computational experiments

In our model a proposition about the link between intel-
ligence and contradiction has been proved. The next ques-
tion is to what extent our approach can be connected to the
real world. Some research proving the existence of this link
is available in literature. For example, the result of the
experiments described in Mattei (2000) might be inter-
preted as evidence of the relationship between intelligence
and contradiction. However, in order to get further data
that maintain the statement expressed in our framework,
we have carried out some tests. In this section we shall give
the results of three computational experiments. Each of
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these is an idealization of a real phenomenon involving
intelligence and contradiction. In each case the results sup-
port the thesis that there is an upper bound beyond which
only contradictory entities ‘‘survive” (we wish to stress
that, in our context, ‘‘to survive” simply means to get the
best performance in the game undertaken). The experi-
ments to be described are very austere, and deliberately
so, in order to make them simple and comprehensible,
but more complex and realistic examples could easily be
obtained by introducing more parameters.

Experiment 1. (Up and Down.) We begin with an exper-
iment showing the computation of a threshold analogous
to the one we spoke about in Section 5, in a concrete case.
We consider a simple solitaire game, called Up and Down.
We have a deck of n cards having different values. Before
playing, each player chooses a strategy – that is, a sequence
of n � 1 words in the set {up,down}: w1, . . .,wn � 1. Then the
cards in the deck are placed on the table one after the
other, and we get a sequence of cards c1, . . .,cn. The player
wins if and only if wi = up when ci < ci+1 and wi = down

when ci > ci+1 for every i. In other words, a player ‘‘over-
comes the difficulty of the game” when he/she always
guesses correctly the rises and falls in the sequence of cards
on the table. The rise-and-fall structure of the deck can be
thought of as a simple environment E with respect to which
the player tries to survive by guessing the behavior suitable
for E. In this simulation, the player’s states that are sup-
posed to be perceived by the observer are the player’s wait
for a new game and his/her choice of a strategy (if he/she is
still ‘‘in the game”). Note that a single strategy may work
for many different orderings of the deck of cards.

Since a normal observer knows no relation connecting
the present ordering of the pack to any future ordering
of the pack, in this experiment all environmental states
may be considered equivalent (as not influential on future
events).

Therefore, according to our observer-oriented frame-
work, it is clear that every change of strategy constitutes
contradictory behavior, since the observer never perceives
differences between the games.

In our experiment we considered all the possible strate-
gies in the game by taking n = 10, 11, 12. Then we com-
puted all possible shufflings of decks of sizes 10, 11, and
12. For each player we obtained the corresponding number
of victories. We assumed that the players are not contradic-
tory, i.e., they do not change their strategies during the set
of games.

We found that the maximum number m of victories for a
single player is 50,521 out of 3,628,800, 353,792 out of
39,916,800, 2,702,765 out of 479,001,600 for n = 10, 11,
12, respectively.

Therefore, any player winning a strictly greater number
of games (with different orderings of the cards) is forced to
be contradictory, i.e., to change his/her strategy during the
set of games. In fact, it is easy to see that there are contra-
dictory players who are able to win m + 1 times: it is suffi-
cient to consider a player who has already won m games
using the same strategy, and who then changes strategy
in order to win further games.

Obviously, the maximum m is the logical equivalent of
the upper bound k we mentioned in the proposition we
gave in Section 5.

It is relevant to point out that an analogous computa-
tion could easily be performed for strategies depending
on the values of the cards already placed on the table. In
this case we would also get bounds on the number of victo-
ries, beyond which contradictory behavior is unavoidable if
we require different orderings for the cards.

Experiment 2. (Co-operative/non-co-operative behavior.)

We simulated an interaction between individuals from the
point of view of co-operative/non-co-operative behavior.
We assumed that when two individuals meet, each of them
can act either co-operatively or non-co-operatively. In the
case of co-operation, each of them gets a positive pay off
gcc = 2, while when both of them act non-co-operatively
the pay off is zero for both (gnn = 0). If their behavior is dif-
ferent, the co-operative individual receives a negative pay
off �1 (gcn = �1) while the non-co-operative individual
gets a positive pay off 1 (gnc = 1). In other words, we have
assumed that reciprocal co-operative behavior produces
the maximum pay off, while every non-co-operative indi-
vidual is supposedly trying to steal resources from co-oper-
ative individuals.

In our simulation we randomly assign a co-operative/
non-co-operative stance to each of a set E of m people.
Analogously, we randomly assign a co-operative/non-co-
operative attitude to each one in a set I of n individuals.
Then we assume that each individual x in I enters the envi-
ronment represented by the set E and meets each person in
this set, thus obtaining a total pay off dictated by the set of
strategies.

We took m = 20 and n = 1000.
In this experiment we assume that the observer of the

game can perceive the psychological status of player
x 2 I, but not that of the people in E whom player x is
going to meet. Therefore the observer’s knowledge of the
environment and the entity are limited to the state of the
game and the player’s stance, in this case.

Before any of the m meetings any individual x can change
his/her stance, and the probability of this change is set at p.
Obviously, according to our framework, if x changes his/
her behavior (by moving from a co-operative to a non-co-
operative stance or vice versa) he/she becomes contradic-
tory, since the observer never perceives differences between
the meetings he/she observes, except for their results.

Finally, in the set I, the individual x who has achieved
the maximum gain (i.e., the winner of the game) is deter-
mined. In every simulation two outcomes are possible:
the winner x of the game is either contradictory or is not.
By repeating our simulation 100 times, we calculated the
percentage of winners that were contradictory.

We point out that we chose probability p so that non-
contradictory individuals were as likely as contradictory
ones (p � 0.034). Furthermore, we chose our pay off matrix
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in such a way that the expected value for the gain from
each meeting was the same both for co-operative and
non-co-operative individuals (i.e., 0.5).

In this experiment we found that the percentage of con-
tradictory winners was 100%. In other words, all winners
were contradictory, showing that contradictory individuals
are much more likely to be winners in this type of situation.

Incidentally, we point out that a large bibliography
exists for the co-operative/non-co-operative behavior
tested in this experiment, examined from various points
of view. A very interesting treatment from a biological
point of view can be found in Dawkins, 1989.

Experiment 3. (Stockholders and share prices.) We sim-
ulated the behavior of a set of stockholders during a week.
Each stockholder can buy or sell one kind of share and
owns 10,000 units of cash assets and 10 shareholdings, at
the beginning. The price of each share is an integer in the
set {900, 1000, 1100}, varying daily. We assume that the
price on day t + 1 is determined by the price on day t. This
dependence is chosen randomly and is assumed to be
unknown to the stockholders at the beginning of the week.
The initial price of the shares is chosen randomly as well.
On any day each stockholder can buy or sell an arbitrary
number of shares at the price for that day, with the obvious
constraint that he/she can neither spend an amount greater
than his/her cash assets at that time, nor sell more shares
than he/she owns.

Our experiment consists of 50 tests. In each test we have
two groups of stockholders. Group A contains 100 non-
contradictory stockholders. On each day of the week the
number of shares to be sold or bought is chosen randomly,
but we require that if, in the presence of a price p, the
stockholder sells or buys a number x of shares, he/she
makes the same choice every day the price takes the same
value p. Group B contains 100 stockholders who are
allowed to be contradictory. Therefore, in this case the
number of shares to be sold or bought is chosen randomly
on each day of the week, without any constraint on behav-
ior in the presence of the same market price.

At the end of the week we compute the final capital of
each stockholder in both groups, given by adding the
stockholder’s final cash assets to the value of the shares
owned according to the final market price. The greatest
final capitals c(A) and c(B) are found, by running through
all the stockholders in each of the two groups. If
c(A) > c(B), then in A a non-contradictory stockholder
exists whose final capital is greater than the final capitals
of all the stockholders in B. If c(A) < c(B), then in B a pos-
sibly contradictory stockholder exists, whose final capital is
greater than all the final capitals of all the non-contradic-
tory stockholders in A. We carried this experiment out 50

times, and we found that the former case never arose, while
the latter arose 29 times (more than half the total number),
thus demonstrating that contradictory behavior is often
required to obtain the maximum total profit.

In our experiment it is quite natural to interpret the
share price as the perceived environment, while the sell-
ing–buying action of the stockholder and his/her wait for
a new price can be seen as the information available to
the observer about the entity. The dependence of the share
price on the price assigned on the previous day corresponds
to the stipulation that the environment is deterministic.

Remark 17. As well as the experiments we have carried
out, there is a wealth of further evidence supporting the
relationship between intelligence and contradiction. The
development of Genetic Programming and Genetic Algo-
rithms, for example, is based on the concept that increasing
the capability of problem-solving requires changes in
behavioral rules without the observer realizing the exact
procedure of these changes. However, we cannot enter into
this wide area of study in the present paper.
7. Some controversial points: our answers

During the drawing-up of this paper, many useful com-
ments were made by anonymous referees and by other
readers. Since this constructive criticism has contributed
considerably to this research we decided to collect together
the main objections and questions about the concepts we
are discussing, in order to highlight both these remarks
and problems and the answers we gave in the paper. Obvi-
ously, this list must be perceived only as a concise résumé
of the approach we developed in the previous sections.

� Objection a: ‘‘The definition of intelligence seems to be

arbitrary and not well justified. Many different definitions

are possible, but intelligence is certainly not as simple as a
number denoting a lifetime.”

Answer: We see two possible mutually exclusive reasons
on which to base this objection: (1) It is hopeless to try
to make a mathematical definition of such a complex
and elusive concept as intelligence; (2) The idea of a
mathematical definition is acceptable, but the one pro-
posed seems to be inadequate.
Objection (1) is tantamount to rejecting the idea that
intelligence can be scientifically studied. Science is
widely understood as the proposal and working-out of
precise models of limited aspects of reality, and the
checking of how well these match reality itself. Our
model, focusing on success in adaptation, allows a quan-
titative approach to the concept of intelligence and a
predictive result about contradiction.
As for (2), the intelligence we perceive in playing chess,
proving theorems, deciding purchases and sales in a
market, solving puzzles (and so on) can be seen as the
ability to survive in an environment where the threats
are represented, respectively, by chess opponents, logical
errors, financial crises and the puzzles themselves. How-
ever, we are not suggesting that intelligence is accurately
modelled by the length of an entity’s survival in an arbi-
trarily chosen mathematical situation. Such a lifetime
must be considered within a suitable model, which often
involves the observer’s ‘‘brain” and its predictive ability.
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We discussed, in Remark 8, the example of the sequoia
and the man, showing that if we take the proper model
then the length of life is larger for the latter, contrary to
naı̈ve expectations. Therefore, in view of the motivations
and the examples given in Section 4.3, a convincing crit-
icism of our approach should be based on counterexam-
ples showing some kind of intelligence that cannot be
reduced (in the sense specified in the paper) to survival
capability.
� Objection b: ‘‘What is the practical usefulness of measur-

ing intelligence by a single number?”

Answer: Obviously, saying that the intelligence of the gli-
der in Fig. 2 is 14 is not very interesting. On the other
hand, saying that the intelligence of a commercial soft-
ware agent is x (since it can ‘‘survive” x time cycles in
a given standard test market Y) could be much more
interesting for a possible purchaser. In fact, the need
for quantification of and comparison between various
software agents’ performances is without doubt going
to be ever more relevant in software engineering, accord-
ing to many experts.
� Objection c: ‘‘The definition of contradiction involves cri-

teria that are far less stringent than would be required to

conform with common usage in logic.”

Answer: We showed that the concept of contradiction is
not only a matter of mathematical logic. Additionally,
we pointed out that the meaning of ‘‘contradiction” used
in mathematical logic is subsumed under our definition
(see Section 4.4), if we accept the key role of the observer.
� Objection d: ‘‘To describe an agent’s behavior as inconsis-

tent merely on the grounds that the agent adopts a differ-

ent strategy when dealing with the same particular facet of

its environment on different occasions seems to be an

implausibly weak criterion of contradictory behavior. To

modify one’s strategies in the light of changing external

conditions is not inconsistent. Intelligence is applying dif-

ferent strategies to different circumstances.”

Answer: Again, if we accept the key role of the observer,
this observation is misleading. The expressions ‘‘particu-
lar facet of its environment”, ‘‘changing external condi-
tions” and ‘‘different circumstances” may not make
sense. If we agree that complete knowledge of the universe
that we are studying is not possible and if we decide to rely
on the judgment of an observer with bounded capabili-
ties, we cannot consider any data that are not accessible
to the observer. In a deterministic universe, the phenom-
enon of contradiction appears to be strictly connected to
the existence of bounds of knowledge. For example, let us
consider the most classical case of contradiction – that is,
an individual asserting two incompatible statements.
When we are involved as observers in this event, we
usually guess that there must be differences between the
situations producing the different answers (e.g., psycho-
logical differences). The point is that if we do not perceive
these differences (since we cannot access them as observ-
ers), it is almost useless to claim their existence, at least
from a practical point of view.
� Objection e: ‘‘What you call contradiction should be more

properly called adaptation for survival.”

Answer: These concepts are quite different. First of all,
there are contradictory behaviors that are harmful for
survival (changing one’s own behavioral rules without
any change in the environment is often dangerous, as
can easily be verified by the example of a driver who
decides to assign a personal meaning to the colors of
traffic lights). More interestingly, ‘‘adaptation for sur-
vival” is not necessarily a contradiction, since the obser-
ver can find such an adaptation quite reasonable.
Adaptation for survival may, however, be perceived as
contradictory when the observer is not able to under-
stand the reason for such a change. From this point of
view, the claim made in this paper is not that intelligence
implies adaptation, but that intelligence necessarily
implies a kind of adaptation that is perceived as unrea-
sonable by the observer.
� Objection f: ‘‘Why do you use the concept of cellular auto-

mata in your approach?”

Answer: As we state in the paper, cellular automata can
emulate a universal Turing machine and are very simple
at a local level. Moreover, they naturally adapt to
describing evolution in time and space. Although we
could express the same ideas in another context, the con-
cept of cellular automata makes it particularly straight-
forward and easy. Another reason motivating our
choice is the possibility of easily including the observer
in cellular automata, allowing interaction between an
entity and the corresponding observer. This line of
research has not been explored in this work, but we plan
to do so in a forthcoming paper.
� Objection g: ‘‘The notion of intelligence cannot be illus-

trated by something as trivial as the game of Life.”

Answer: In principle, the game of Life can emulate any
Turing machine and hence all algorithms we can imple-
ment on a computer can also be implemented in Life (cf.
Section 4.1). Saying that intelligence cannot be repre-
sented in the functioning of a cellular automaton
implies, from a theoretical point of view, the assertion
that computers cannot emulate intelligence. This might
well be the case, but if so, the proof is lacking, as far
as the author knows.
� Objection h: ‘‘Intelligence and contradiction are not con-

cepts depending on the existence of an observer. The valid-

ity of a mathematical proof does not depend on the
existence of a reader of such a proof.”

Answer: We will certainly not try to attack an idealistic
approach to knowledge. However, independently of
own epistemological attitude, reality and science (and
A.I. in particular) are full of contradictions and contro-
versial judgments. On the other hand, the history of
mathematics is rife with examples of statements and
proofs that were revealed to be erroneous many years
after their first appearance, while the search for a con-
cept of absolute truth seems naı̈ve after Gödel and Tur-
ing, at least according to scientific methodology. To
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assert that when sufficient data and computational abil-
ity are available neither controversial statements nor
mistakes will ever appear implies a vision of science
that totally leaves out the process of research and dis-
covery. Rejecting concepts such as contradiction and
incomprehensibility might (perhaps) be acceptable in
some philosophical thought experiment, but it would
seem foolhardy in the attempt to study the real pro-
cesses of intelligence. Studying intelligence after elimi-
nating all references to inconsistency, madness,
misunderstanding (and so on) would be similar to
studying biology after eliminating any references to
death.
� Objection i: ‘‘What is the point of this paper? What is the

point of proving the link between intelligence and contra-

diction?”

Answer: The point of this paper is, in the first place, to
construct a mathematical framework where the concepts
of intelligence and contradiction can be represented and
formally treated. In the second place, it is to suggest a
possible link between these two concepts, which emerges
as a straightforward consequence of our definitions.
Knowing whether such a link really exists seems impor-
tant, both from a theoretical and a practical point of
view. Attempts to avoid contradiction might be danger-
ous, both in software engineering and in Artificial Intel-
ligence. A general approach to the problem appears to
be useful. In any case, the main purpose of this paper
is to define an issue and its relevance in scientific terms,
not to fully work out the corresponding answer. The
results found herein should be seen only as the necessary
and quite straightforward consequence of a particular
mathematical model.

8. Conclusions

In this paper we have proposed some formal definitions of
the concepts of observer, entity, intelligence and contradic-
tion. On this basis we have proved that any sufficiently
intelligent entity E must be contradictory for any observer
with bounded capabilities, under the assumptions that the
lifetime of E is finite and that the environment is
deterministic.

In practice, we know that the more intelligent a living
being is, the more difficult it is to predict its behavior by
means of deterministic rules. This is another way of
expressing the previous statement.

We have also performed some computational experi-
ments showing that our theoretical conclusions are sup-
ported by empirical evidence.

Our attempt to define a mathematical model in which
we can study the relations between contradiction and intel-
ligence is obviously only a subjective proposal. However, a
systematic approach to problems involving the active role
of contradiction in intelligent beings seems at this point
to be essential to the study of complex systems.
Acknowledgements

This work owes its existence to Massimo Ferri and
Francesco Livi, and to their love of beauty within complex-
ity. The author wishes to thank Claudio Barbini, Andrea
Vaccaro and Joelle Crowle for their helpful suggestions,
and Michele d’Amico for his precious help in performing
the experiments. Thanks also to Guido Moretti and Al Sec-
kel for providing some beautiful pictures, and to Charles
Stewart and Reuben Hersh for their illuminating and con-
structive criticism. The author is profoundly grateful to
Douglas R. Hofstadter for revising the paper and for his
valuable suggestions, which have made this paper better
and clearer. Finally, the author is solely responsible for
any errors.

Many readings have indirectly influenced the drawing up
of this paper. In particular the work by Quinzio (1995), the
letters between Magee and Milligan (1995) and a book by
Vaccaro (2001) have been important in this process.

This work is partially supported by INdAM-GNSAGA
and MIUR.

I dedicate it to the memory of Matthew Lukwiya, Malli
Gullu, Giorgio Gentili and Giulio Ciampi.

References

Anderson, A. R., & Belnap, N. D. Jr., (1975). Entailment: The logic of

relevance and necessity (Vol. I). Princeton: Princeton University Press.
Arbib, M. (1966). Simple self-reproducing universal automata. Informa-

tion and Control, 9, 177–189.
Balzer, R. (1991). Tolerating inconsistency. In Proceedings 13th Interna-

tional Conference on Software Engineering (ICSE-13) (pp. 158–165).
Austin, TX: IEEE CS Press.

Bar-Ilan, J. (1998/99). Search engine results over time – A case study on
search engine stability. Cybermetrics, 2/3. Available from: <http://
www.cindoc.csic.es/cybermetrics/articles/v2ilpl.pdf>.

Bateson, G. (1972). Steps to an ecology of mind. Toronto: Chandler
Publishing Company.

Bateson, G. (1979). Mind and Nature. A necessary unity. Dutton: Toronto-
Vancouver.

Brocas, I., & Carrillo, J. D. (2000). The value of information when
preferences are dynamically inconsistent. European Economic Review,

44, 1104–1115.
Brooks, R. (1991). Intelligence without representation. Artificial Intelli-

gence, 47, 139–159.
Burks, A. W. (Ed.). (1974). Essays in cellular automata (pp. 206–218).

Urbana, IL: University of Illinois.
Codd, E. F. (1968). Cellular automata. New York: Academic Press.
da Costa, N. C. A. (1974). On the theory of inconsistent formal systems.

Notre Dame Journal Formal Logic, 15, 497–510.
Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston:

Birkhäuser.
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