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Abstract

When shapes of objects are modeled as topological spaces endowed with

functions, the shape comparison problem can be dealt with using persistent

homology to provide shape descriptors, and the matching distance to mea-

sure dissimilarities. Motivated by the problem of dealing with incomplete or

imprecise acquisition of data in computer vision and computer graphics, re-

cent papers have studied stability properties of persistent Betti numbers with

respect to perturbations both in the topological space and in the function.

This paper reports on progress in this area of research.
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1 Introduction

The problem of comparing shapes is well-studied in computer vision and com-
puter graphics and many algorithms have been developed for this purpose. The
aim of this paper is to present the methodological approach to shape comparison
by persistent homology developed by the authors and their collaborators in recent
years, shedding light on the unifying ideas underlying different papers while skip-
ping technical details. This approach fits in the general scheme of associating a
shape with a shape descriptor, or a signature, and comparing shapes by measuring
dissimilarity between descriptors.

The starting observation is that, although there is no universally accepted defi-
nition for the notion of shape of an object, and most of the proposed techniques are
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Figure 1: Different observations of a cat.

tailored for some particular interesting case (e.g., polyhedral rigid objects, planar
curves, point cloud data, triangular meshes), tentative definitions are commonly
based on observer’s perceptions.

The dependence on observers implies large subjectivity. Depending on what
the observer is observing, observations can be modeled as closed curves (outline),
plane domains (silhouettes), triangular meshes (surfaces) and in many other ways
(see Figure 1).

In this framework, observer’s perceptions can be modeled as a function ~ϕ :
X → R

n. The function depends on the shape property the observer is perceiving:
curvature, roundness, elongation, connectivity etc. For each observation x ∈ X ,
~ϕ describes x as seen by the observer. Due to changes, e.g., in point of view, or
distance from the object, or light conditions, also perceptions are subject to large
subjectivity (see Figure 2).

Figure 2: Different perceptions of the same space, depending on the view-point.

The second fundamental remark is that human judgments rely on persistent
perceptions. Non-persistent properties can be considered as due to noise, whereas
persistent properties concur to give a shape to objects. Therefore, a good shape
descriptor for (X, ~ϕ) should behave well also in the presence of small changes in
the perceptions and in the observations. This yields a request for stability with
respect to perturbations of the function ~ϕ and with respect to perturbations of
the space X . The formalization of the first request motivates the assumption that
X is a topological space (not only a set), and ~ϕ is a continuous function. The
formalization of the second request calls for the availability of a metric between
sets. This happens, e.g., if X is a compact subset of a metric space, so that we
can use the Hausdorff metric to quantify perturbations of X .

As a result, we are led to study pairs (X, ~ϕ) where X is a topological space
and ~ϕ : X → R

n is a continuous function, usually called a measuring or filtering
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function. These pairs are known in literature as size pairs (cf., e.g., [26, 31]). In
Section 4 we shall also assume that X is a compact subset of Rm.

The comparison between two size pairs (X, ~ϕ), (Y, ~ψ) can be done, in principle,
by the natural pseudodistance (cf. [31, 18, 19, 20]). This pseudodistance equals
the infimum of the value maximaxx∈X |ϕi(x) − ψi(h(x))|, assuming that X and
Y are homeomorphic and that h varies in the set of all homeomorphisms between
these spaces. However, the computation of the natural pseudodistance is quite
difficult to do in practice, due to high computational complexity.

Fortunately, lower bounds for this pseudodistance can be obtained by multi-
dimensional persistent homology (cf. [12]), that is much easier to compute. This
theory is often used for studying objects related to computer vision and com-
puter graphics, and involves analyzing the qualitative and quantitative behavior
of vector-valued functions ~ϕ defined over topological spaces X [4, 21]. This is
achieved by considering the filtration obtained from the sequence of nested lower
level sets of the function under study, and by encoding the scale at which a topo-
logical feature (e.g., a connected component, a tunnel, a void) is created, and
when it is annihilated along this filtration. In this framework, multidimensional
persistent homology groups capture the homology of a multi-parameter increasing
family of spaces. For application purposes, these groups are further encoded by
simply considering their rank, which yields a parameterized version of Betti num-
bers, called persistent Betti numbers [22] or rank invariants [8]. Varying the lower
level sets, we get that persistent Betti numbers can be seen as functions taking
pairs of vectors to the set of non-negative integers.

The use of persistent Betti numbers functions as shape descriptors when ϕ is
scalar-valued (i.e. one-dimensional persistent Betti numbers) dates back to the
beginning of the 1990s (see, e.g., [25, 34]) and has found a number of applications
(see, e.g., [5, 10, 13, 16, 24, 32]).

The recent results obtained in [11, 12, 29] by the authors of this paper jointly
with their collaborators when ~ϕ is vector-valued show that persistent Betti num-
bers are stable shape descriptors, behaving well both with respect to perturbations
of the functions and with respect to perturbations of the space. This justifies the
use of multidimensional persistent homology for shape comparison [1, 3, 14].

In this paper these recent results are surveyed. In Section 2 the definitions of
persistent homology group and persistent Betti numbers function (briefly PBNs)
are recalled. In Section 3 we illustrate the main results from [12], that are sta-
bility results with respect to functions perturbations. In particular, in Section
3.1, we report the definition of a distance, called matching distance, between one-
dimensional PBNs useful to compare PBNs. Then the stability theorem for one-
dimensional PBNs with respect to the matching distance is given. The novelty
is that it does not require the tameness assumptions on the functions that were
usually requested. Moreover, in Section 3.2, stability with respect to function per-
turbations is achieved also in the multidimensional case, by means of a so-called
foliation method and an appropriate generalization of the matching distance. Sec-
tion 4 shows how to use the multidimensional matching distance in order to cope
also with changes in the studied topological space. In particular, Section 4.1 sur-
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veys the results of [11], showing that the PBNs of a point sample of X are sufficient
to recover the PBNs of X up to a controlled uncertainty. In section 4.2, the sta-
bility of PBNs with respect to domain perturbations measured by the Hausdorff
distance as dealt with in [29] is reviewed.

We conclude this section by observing that the result about the stability of
PBNs with respect to perturbation of multidimensional filtering functions has
allowed a recent advance about the reconstruction of a size pair (X, ~ϕ) up to
vanishing natural pseudodistance, when the space X is a curve. We refer the
interested reader to [30] for more details.

2 PBNs: Definitions and first properties

In this paper, the following relations � and ≺ are defined in R
n: for ~u =

(u1, . . . , un) and ~v = (v1, . . . , vn), we say ~u � ~v (resp. ~u ≺ ~v) if and only if
ui ≤ vi (resp. ui < vi) for every index i = 1, . . . , n. Moreover, Rn is endowed
with the usual max-norm: ‖(u1, u2, . . . , un)‖∞ = max1≤i≤n |ui|.

We shall use the following notations: ∆+ will be the open set {(~u,~v) ∈ R
n×R

n :
~u ≺ ~v}. For every n-tuple ~u = (u1, . . . , un) ∈ R

n and for every function ~ϕ : X →
R
n, we shall denote by X〈~ϕ � ~u 〉 the set {x ∈ X : ϕi(x) ≤ ui, i = 1, . . . , n}.
The definition below extends the concept of the persistent homology group to

a multidimensional setting.

Definition 2.1 Let k ∈ Z. Let X be a topological space, and ~ϕ : X → R
n

a continuous function. Let π
(~u,~v)
k : Hk(X〈~ϕ � ~u〉) → Hk(X〈~ϕ � ~v〉) be the

homomorphism induced in homology by the inclusion map π(~u,~v) : X〈~ϕ � ~u〉 →֒
X〈~ϕ � ~v〉 with ~u � ~v. If ~u ≺ ~v, the image of π

(~u,~v)
k is called the multidimensional

kth persistent homology group of (X, ~ϕ) at (~u,~v), and is denoted by H
(~u,~v)
k (X, ~ϕ).

In other words, the group H
(~u,~v)
k (X, ~ϕ) contains all and only the homology

classes of cycles born before or at ~u and still alive at ~v.
In what follows, we shall work with coefficients in a field K, so that homology

groups are vector spaces. Therefore, they can be completely described by their
dimension, leading to the following definition (cf. [9, 22]).

Definition 2.2 The function β~ϕ : ∆+ → N ∪ {∞} defined by

β~ϕ(~u,~v) = dim imπ
(~u,~v)
k = dim Ȟ

(~u,~v)
k (X, ~ϕ)

will be called the persistent Betti numbers function of ~ϕ, briefly PBNs.

Obviously, for each k ∈ Z, we have different PBNs β~ϕ of ~ϕ (which should be
denoted β~ϕ,k, say) but, for the sake of notational simplicity, we omit adding any
reference to k. This will also apply to the notations used for other concepts in this
paper, such as multiplicities and persistence diagrams.
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The following two questions have recently been considered: Under which con-
ditions do PBNs take only finite values? Which homology theory is better suited
for the comparison of PBNs?

As for the first question, it has been proven in [7] that, if X is a compact
and locally contractible space embeddable in some R

m, then β~ϕ never attains the
value ∞. For the sake of simplicity, in the rest of this paper we will assume X to
be triangulable, i.e. the underlying space of a finite simplicial complex (up to a
homeomorphism).

The second question has been thoroughly considered in [12], and has led us
to the choice of working with Čech homology. The reason is that, having the
continuity axiom, it allows us to completely represent one-dimensional PBNs by
persistence diagrams. Even assuming tameness, this result would not hold for
singular and simplicial theories, which guarantee a complete description of one-
dimensional PBNs only outside a set of vanishing measure. For details about Čech
homology, the reader can refer to [23, Ch. IX].

3 Stability with respect to functions perturba-

tions

In this section we show that the persistent Betti numbers of nearby scalar or
vector-valued filtering functions are close to each other in the sense expressed by
a suitable matching distance. The proofs of the results presented in this section
can be found in [12].

Our new stability results are not limited by the restrictions of tameness and
max-tameness assumptions used in [15] to prove stability for scalar functions and
in [6] to prove stability for vector-valued functions, respectively.

In what follows, we will refer to the case of scalar filtering functions as to the
one-dimensional case, whereas the term multi-dimensional will refer to the case of
vector-valued filtering functions.

3.1 Stability of one-dimensional PBNs

In this section we give a theorem stating the stability of PBNs for continuous
scalar-valued filtering functions (Theorem 3.6). This result generalizes the main
theorem in [15], which requires tame functions on triangulable spaces. The proof
can be found in [12] and relies on a number of basic simple properties of PBNs that
are completely analogous to those proved in [17, 27] and used to show the PBNs
stability in the case of the 0th homology. We first recall the main ingredients.

Since now we confine ourselves to the case n = 1, for the sake of simplicity,
the symbols ~ϕ, ~u, ~v will be replaced by ϕ, u, v, respectively. We remark that
∆+ reduces to be the set {(u, v) ∈ R

2 : u < v}. Moreover, we use the following
notations: ∆ = ∂∆+, ∆∗ = ∆+ ∪ {(u,∞) : u ∈ R}, and ∆̄∗ = ∆∗ ∪∆.
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Figure 3: (A) A curve X ⊆ R2 represented by a continuous line, and the function ϕ : X → R

such that ϕ(P ) = y for every P = (x, y) ∈ X. (B) The points (proper and at infinity) of the
persistence diagram Dϕ. (C) Computation of multiplicities seen through lens.

Definition 3.1 For every point p = (u, v) ∈ ∆+, we define the number µ(p) as
the minimum over all the positive real numbers ε, with u+ ε < v − ε, of

βϕ(u+ ε, v − ε)− βϕ(u− ε, v − ε)− βϕ(u + ε, v + ε) + βϕ(u − ε, v + ε).

The number µ(p) will be called the multiplicity of p for βϕ. Moreover, we shall
call a proper cornerpoint for βϕ any point p ∈ ∆+ such that the number µ(p) is
strictly positive.

Definition 3.2 For every vertical line r, with equation u = ū, ū ∈ R, let us
identify r with (ū,∞) ∈ ∆∗, and define the number µ(r) as the minimum over all
the positive real numbers ε, with ū+ ε < 1/ε, of

βϕ

(

ū+ ε,
1

ε

)

− βϕ

(

ū− ε,
1

ε

)

.

The number µ(r) will be called the multiplicity of r for βϕ. When this finite
number is strictly positive, we call r a cornerpoint at infinity for βϕ.

The concept of cornerpoint allows us to introduce a representation of the PBNs,
based on the following definition [15].

Definition 3.3 The persistence diagram Dϕ is the multiset of all cornerpoints
(both proper and at infinity) for βϕ, counted with their multiplicity, union the
points of ∆, counted with infinite multiplicity.

An example of persistence diagram in zeroth homology degree is displayed in
Figure 3. We recall that, in the case k = 0, βϕ(u, v) counts the number of connected
components born before or at the level u and still alive at level v. In this example
we consider a curve X of R2 represented by the solid line in Figure 3(A), and the
function ϕ : X → R that associates with each point P ∈ X its ordinate in the
plane. The sole points (both proper and at infinity) of the associated persistence
diagram Dϕ are p, q, and r, and are shown in Figure 3(B). Here, solid lines
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divide ∆∗ into regions where the value taken by the zeroth PBNs of (X,ϕ) is
constant. This value is displayed in each region. For instance, when c ≤ v < d,
X〈ϕ ≤ v〉 has three connected components. Only one of them contains at least
one point of X〈ϕ ≤ u〉, when a ≤ u < b; two of them contain at least one point
of X〈ϕ ≤ u〉, when b ≤ u < c; all of them contain at least one point of X〈ϕ ≤ u〉,
when c ≤ u < v < d. Therefore, when c ≤ v < d, βϕ(u, v) = 1 for a ≤ u < b;
βϕ(u, v) = 2 for b ≤ u < c; βϕ(u, v) = 3 for c ≤ u < v.

Figure 3(C) zooms in on two points of the persistence diagram (one proper,
p, and one at infinity, r) to explain how their multiplicity is computed. The
alternating sum of the zeroth persistent Betti numbers at four points around p is
2− 1− 1 + 1, giving µ(p) = 1. The alternating sum of the zeroth persistent Betti
numbers at two points next to r is 1− 0, giving µ(r) = 1.

The PBNs of a scalar-valued filtering function can be completely described by
a persistence diagram, as the following theorem states.

Theorem 3.4 For every (ū, v̄) ∈ ∆+, we have

βϕ(ū, v̄) =
∑

(u,v)∈∆∗

u≤ū, v>v̄

µ((u, v)).

As an immediate consequence of Theorem 3.4, it follows that any distance
between persistence diagrams induces a distance between one-dimensional PBNs.
This justifies the introduction of the matching distance, recalled in the following
definition.

Definition 3.5 Let X,Y be triangulable spaces endowed with continuous functions
ϕ : X → R, ψ : Y → R. The (extended) matching distance dmatch between βϕ and
βψ is defined by

dmatch (βϕ, βψ) = inf
γ

sup
p∈Dϕ

‖p− γ(p)‖∞̃ , (1)

where γ ranges over all multi-bijections between Dϕ and Dψ, and, for every p =
(u, v), q = (u′, v′) in ∆̄∗,

‖p− q‖∞̃ = min

{

max {|u− u′|, |v − v′|} ,max

{

v − u

2
,
v′ − u′

2

}}

,

with the convention about points at infinity that ∞−y = y−∞ = ∞ when y 6= ∞,
∞−∞ = 0, ∞

2 = ∞, |∞| = ∞, min{c,∞} = c and max{c,∞} = ∞.

In plain words, ‖·‖∞̃ measures the pseudo-distance between two points p and
q as the minimum between the cost of moving one point onto the other and the
cost of moving both points onto the diagonal, with respect to the max-norm and
under the assumption that any two points of the diagonal have vanishing pseudo-
distance.
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Figure 4: A matching between persistence diagrams used to compute the matching
distance.

The term extended means that dmatch can take the value +∞. It will follow
from our next Theorem 3.6 that dmatch is finite when X = Y .

When the number of cornerpoints is finite, the matching of persistence diagrams
is related to the bottleneck transportation problem, and the matching distance
reduces to the bottleneck distance [15]. In our case, however, the number of
cornerpoints may be countably infinite, because of our loose assumption on the
filtering function, that is only required to be continuous.

Theorem 3.6 Let X be a triangulable space, and ϕ, ψ : X → R two continuous
functions. Then dmatch(βϕ, βψ) ≤ maxx∈X |ϕ(x) − ψ(x)|.

For the 0th homology, the claim has been proved in [17, Thm. 25].

3.2 Stability of multidimensional PBNs

We now consider the stability of multidimensional PBNs, i.e. for vector-valued
functions. It can be deduced following the same arguments given in [2] to prove
the stability of multidimensional PBNs for the case of the 0th homology.

The key idea is that a foliation in half-planes of ∆+ can be given, such that the
restriction of the multidimensional PBNs function to these half-planes turns out to
be a one-dimensional PBNs function in two scalar variables. This approach implies
that the comparison of two multidimensional PBNs functions can be performed leaf
by leaf by measuring the distance of appropriate one-dimensional PBNs functions.
Therefore, the stability of multidimensional persistence is a consequence of the
one-dimensional persistence stability.

We start by recalling that the following parameterized family of half-planes in
R
n × R

n is a foliation of ∆+ (cf. [2, Prop. 1]).

Definition 3.7 For every vector ~l = (l1, . . . , ln) of Rn such that li > 0 for i =

1, . . . , n, and
∑n
i=1 l

2
i = 1, and for every vector ~b = (b1, . . . , bn) of Rn such that

∑n
i=1 bi = 0, we shall say that the pair

(

~l,~b
)

is admissible. We shall denote the

set of all admissible pairs in R
n × R

n by Admn. Given an admissible pair
(

~l,~b
)

,
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we define the half-plane π(~l,~b) of Rn × R
n by the following parametric equations:

{

~u = s~l +~b

~v = t~l+~b

for s, t ∈ R, with s < t.

Since these half-planes π(~l,~b) constitute a foliation of ∆+, for each (~u,~v) ∈ ∆+

there exists one and only one
(

~l,~b
)

∈ Admn such that (~u,~v) ∈ π(~l,~b). Observe

that ~l and ~b only depend on (~u,~v).
A first property of this foliation is that the restriction of β~ϕ to each leaf can

be seen as a particular one-dimensional PBNs function. Intuitively, on each half-
plane π(~l,~b) one can find the PBNs corresponding to the filtration of X obtained

by sweeping the line through ~u and ~v parameterized by γ(~l,~b) : R → R
n, with

γ(~l,~b)(τ) = τ~l +~b.

A second property is that this filtration corresponds to the one given by the
lower level sets of a certain scalar-valued continuous function. Both these proper-
ties are stated in the next theorem, analogous to [6, Thm. 2], and are intuitively
shown in Figure 5.

Figure 5: One-dimensional reduction of two-dimensional PBNs. Left: a one-
dimensional filtration is constructed sweeping the line through ~u and ~v. A unit
vector ~l and a point ~b are used to parameterize this line as γ(~l,~b)(τ) = τ~l + ~b.

Right: the persistence diagram of this filtration can be found on the leaf π(~l,~b) of

the foliation.

Theorem 3.8 For every (~u,~v) ∈ ∆+, let
(

~l,~b
)

be the only admissible pair such

that (~u,~v) = (s~l+~b, t~l+~b) ∈ π(~l,~b). Let moreover ϕ(~u,~v) : X → R be the continuous

filtering function defined by setting

ϕ(~u,~v)(x) = min
i
li ·max

i

ϕi(x)− bi
li

.
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Then X〈~ϕ � ~u〉 = X〈(mini li)
−1ϕ(~u,~v) ≤ s〉. Therefore

β~ϕ(~u,~v) = β(mini li)−1ϕ(~u,~v)
(s, t) .

Finally, the most important property of our foliation is that it allows us to
obtain an analogue of the distance dmatch for the multidimensional case, denoted
by Dmatch, having a particularly simple form, yet yielding the desired stability
result.

Dmatch was introduced in [6] (see also [2]), although in the narrower setting of
max-tame filtering functions, and can be rewritten as follows.

Definition 3.9 Let X,Y be triangulable spaces endowed with continuous functions
~ϕ : X → R

n, ~ψ : Y → R
n. The (extended) multidimensional matching distance

Dmatch between β~ϕ and β~ψ is defined as

Dmatch

(

β~ϕ, β~ψ

)

= sup
(~u,~v)∈∆+

dmatch
(

βϕ(~u,~v)
, βψ(~u,~v)

)

. (2)

We are now ready to state our result about the stability of multidimensional
PBNs with respect to function perturbations.

Theorem 3.10 If X is a triangulable space, then Dmatch is a distance on the set
{β~ϕ | ~ϕ : X → R

n continuous}. Moreover,

Dmatch

(

β~ϕ, β~ψ

)

≤ max
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞
.

Roughly speaking, this theorem states that small changes in a vector-valued
filtering function induce small changes in the associated multidimensional PBNs,
with respect to the distance Dmatch.

4 Stability with respect to domain perturbations

In this section we describe how PBNs changes when the topological space is
changed due to sampling or noise. This is as much important as the stability
with respect to the change of measuring functions. First we will see that studying
a submanifold of a Euclidean space through a finite sampling still conveys signif-
icant information about the PBNs of the submanifold itself. Then we show that
by a change in perspective we can also achieve stability of PBNs with respect to
domain perturbations.

4.1 Estimating multidimensional persistent homology

through a finite sampling

An exact computation of the persistent Betti numbers of a submanifold X of a
Euclidean space is possible only in a theoretical setting. In practical situations,
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only a finite sample of X is available. We show that, under suitable density
conditions, it is possible to estimate the multidimensional persistent Betti numbers
of X from the ones of a union of balls centered on the sample points; this even
yields the exact value in restricted areas of the domain. The proofs of the results
presented in this section can be found in [11]. A similar study was performed in
[15, Sect. 4].

Throughout this Section, X will be a compact Riemannian (triangulable) sub-
manifold of Rm. We want to get information on X out of a finite set of points.
First, the points will be sampled on X itself, then even in a (narrow) neighbor-
hood. In both cases, the idea is to consider a covering of X made of balls centered
on the sampling points.

What we get, using a result of [33], is a double inequality which yields an
estimate of the PBNs of X within a fixed distance from the discontinuity sets of
the PBNs (meant as integer functions on ∆+) of the union U of the balls of the
covering, but even offers the exact value of it at points sufficiently far from the
discontinuity sets.

Definition 4.1 Let ~ϕ : Rm → R
n be a continuous function. Then, for ε ∈ R

+,
the modulus of continuity Ω(ε) of ~ϕ is:

Ω(ε) = max
j=1,...,n

sup
{

|ϕj(~p)− ϕj(~p′)| : ~p, ~p′ ∈ R
m, ‖~p− ~p′‖ ≤ ε

}

.

In other words Ω(ε) is the maximum over all moduli of continuity of the single
components of ~ϕ.

A condition number 1
τ
is associated with a compact Riemannian submanifold

X of Rm.

Definition 4.2 τ is the largest number such that every open normal bundle B
about X of radius s is embedded in R

m for s < τ .

Theorem 4.3 Let δ <
√

3
5 τ and let L = {l1, . . . , lk} be a set of points of X such

that for every p ∈ X there exists an lj ∈ L for which ‖p− lj‖ < δ
2 . Let U be the

union of the balls B(lj , δ) of radius δ centered at lj, j = 1, . . . , k.
If (~u,~v) is a point of ∆+ and if ~u + ~ω(δ) ≺ ~v − ~ω(δ), where ~ω(δ) =

(Ω(δ), . . . ,Ω(δ)) ∈ R
n , then

β~ϕ|U
(~u− ~ω(δ), ~v + ~ω(δ)) ≤ β~ϕ|X

(~u,~v) ≤ β~ϕ|U
(~u+ ~ω(δ), ~v − ~ω(δ)).

When we foliate the domain ∆+ of the PBNs as in Section 3.2 — or simply
when n = 1 — the discontinuity sets are (possibly infinite) line segments, and the
regions of ∆+ where only the inequality holds appear as strips around them (which
we colloquially call “blind strips”). The width of such strips is a representation of
the approximation error, in that it is directly related to Ω(δ), where 1/δ represents
the density of the sampling.
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Figure 6: The circle of radius 4, X , covered by the ball union U .

The following examples show how Theorem 4.3 can be used for applications.
Let X be a circle of radius 4 in R

2; we observe that τ is exactly the radius of X ,

so τ = 4. In order to create a well defined approximation we need that δ <
√

3
5τ .

In the first example we have taken δ = 0.5. Now, to satisfy the assumptions of
Theorem 4.3 (that for every p ∈ X there exists an lj ∈ L such that ‖p− lj‖ < δ

2 ),
we have chosen 64 points lj on X. Moreover we have sampled X uniformly, so that
there is a point every π

32 radians (Figure 6). We stick to the monodimensional
case, choosing ϕ : R2 → R, with ϕ(x, y) = |y|. U is the resulting ball union.

Figures 7 and 8 represent the PBN functions at degree zero of X and U respec-
tively. In Figure 7 there is only a big triangle where the value 2 signals the two
different connected components generated by ϕ|X . The two connected components
collapse to one at value 4. In Figure 8 there is also a big triangle representing the
two connected components, but they collapse at value 3.53106. Moreover there
are 4 other very small triangles near the diagonal, representing more connected
components generated by the balls that are furthest from the x-axis. In the last
figure (Figure 9) the blind strips around the discontinuity lines of βϕ|U

are shown.
The width of these strips, since Ω(δ) = 0.5, is equal to 2Ω(δ) = 1. This figure il-
lustrates the idea underlying Theorem 4.3. Taken a point (u, v) outside the strips,
the values of the PBNs of U at (u − Ω(δ), v + Ω(δ)) and (u + Ω(δ), v − Ω(δ)) are
the same. So also the value of the PBNs of X at (u, v) is determined.

So far we have approximated X by points picked up on X itself, but it is also
possible to choose the points near X , by respecting some constraints. Once more,
this is possible thanks to a result of [33].

Theorem 4.4 Let L = {l1, . . . , lk} be a set of points in the tubular neighborhood
of radius s around X and U =

⋃

j=1,...,k B(lj , δ) be the union of the balls of Rm

centered at the points of L and with radius δ. If for every points p ∈ X, there
exists a point lj ∈ L such that ‖p− lj‖ < s, then U is a deformation retract of X,

for all s < (
√
9−

√
8)τ and δ ∈

(

(s+τ)−
√
s2+τ2−6sτ
2 , (s+τ)+

√
s2+τ2−6sτ
2

)

.

If (~u,~v) is a point of ∆+ and if ~u+ ~ω(δ + s) ≺ ~v − ~ω(δ + s), where ~ω(δ + s) =
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Figure 7: The representation of
βϕ|X

, the 0-PBNs of X .

Figure 8: The representation of
βϕ|U

, the 0-PBNs of the ball
union U

Figure 9: The blind strips of βϕ.

(Ω(δ + s), . . . ,Ω(δ + s)) ∈ R
n , then

β~ϕ|U
(~u − ~ω(δ + s), ~v + ~ω(δ + s)) ≤ β~ϕ|X

(~u,~v) ≤ β~ϕ|U
(~u + ~ω(δ + s), ~v − ~ω(δ + s)).

In [11, Sect. 5] a similar double inequality, relating the PBNs of X with the
ones of a simplicial complex derived from U , can also be found.

4.2 Stability of persistent Betti numbers with respect to

noisy domains

In this section we propose a general approach to the problem of stability of per-
sistent homology groups with respect to domain perturbations. The proofs of the
results presented in this section can be found in [28].

Changes of the space under study can be measured in a number of different
ways. Indeed, according to the kind of noise producing the perturbation, some
distances are more suitable than other to compare sets. For example, the Haus-
dorff distance is useful to measure distortions of the domain, while the symmetric
difference distance can cope with the presence of outliers.

Our main idea is to reduce the problem of stability with respect to changes of
the topological space to that of stability with respect to changes of the measuring
functions. This is achieved by substituting the domain K we are interested in
with an appropriate function fK defined on a fixed set X containing K, so that
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the perturbation of the set K becomes a perturbation of the function fK . As
a consequence, the original measuring function ~ϕ|K : K → R

n is replaced by a

new measuring function ~Φ : X → R
n+1, ~Φ = (fK , ~ϕ). Persistent Betti numbers

of (X, ~Φ) can be compared using the multidimensional matching distance. In
this way we can obtain robustness of persistent homology groups under domain
perturbations.

In particular, we use this strategy when sets are compared by the Hausdorff
distance δH . In this case, taking fK equal to the distance function from K, we
show that the multidimensional matching distance between the PBNs associated
with two compact sets K1 and K2 is always upperly bounded by the Hausdorff
distance δH(K1,K2) between K1 and K2 (Theorem 4.5). At the same time, we
show that, in our approach, the information about the original domain K and
its original measuring function ~ϕ|K is fully maintained in the persistent homology

groups of (X, ~Φ) (Theorem 4.6).
Given two domains K1 and K2, and two functions ~ϕ1, ~ϕ2 : X → R

n, our
first result relates the distance Dmatch between the new pairs (X, ~Φ1), (X, ~Φ2) to
the change of the measuring functions ~ϕ1 and ~ϕ2, and to the Hausdorff distance
between the original sets K1, K2. More precisely, it states stability with respect to
both set and function perturbations. Indeed, the change in the distance Dmatch is
shown to be never greater than the maximum among the change in the Hausdorff
distance between the domains K1 and K2 and the change in the sup-norm between
the measuring functions ~ϕ1 and ~ϕ2. In particular, if ~ϕ1 and ~ϕ2 coincide then
the change in the distance Dmatch is never greater than the Hausdorff distance
δH(K1,K2) between K1 and K2.

Theorem 4.5 Let K1,K2 be non-empty closed subsets of a triangulable subspace
X of Rm. Let dK1 , dK2 : X → R be their respective distance functions. Moreover,

let ~ϕ1, ~ϕ2 : X → R
n be vector-valued continuous functions. Then, defining ~Φ1, ~Φ2 :

X → R
n+1 by ~Φ1 = (dK1 , ~ϕ1) and ~Φ2 = (dK2 , ~ϕ2), the following inequality holds:

Dmatch

(

β~Φ1
, β~Φ2

)

≤ max {δH(K1,K2), ‖~ϕ1 − ~ϕ2‖∞} .

An example illustrates this result. We work with the binary digital image
represented in Figure 10 (left), and we corrupt this image by adding noise, as
shown in Figure 10 (right).

Black pixels of left and right images represent the sets K1, K2 under study,
respectively, whereas in both cases the rectangle of black and white pixels together
constitute the set X . The so obtained noisy set K2 is close to the original set K1

with respect to the Hausdorff distance. A graph structure based on the local 4-
neighbors adjacency relations of the digital points is used in order to topologize
the images.

Fixed the point c ∈ X corresponding to the center of mass of K1, the chosen
measuring function for both instances is ϕ : X → R, ϕ(p) = −‖p− c‖.

Confining ourselves to zeroth homology, Figure 11 (left) shows the persistence
diagram of the 1-dimensional 0th PBNs βϕ|K1

. It displays eight relevant points in
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Figure 10: Two binary images of an octopus. The image on the right is a noisy
version of that on the left.

the persistence diagram, corresponding to the eight tentacles of the octopus. Only
one of these points is at infinity (and therefore depicted by a vertical line rather
than by a circle) since K1 has only one connected component. As for βϕ|K2

, due
to the presence of a great quantity of connected components in the noisy octopus,
its persistence diagram has a very large number of points at infinity, and a figure
showing them all would be hardly readable. For this reason Figure 11 (right)
shows only a small subset of its persistence diagram. However it is sufficient to
perceive how dissimilar it is from βϕ|K1

.
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Figure 11: Left: The persistence diagram of βϕ|K1
corresponding to the original

octopus image. Right: A detail of the persistence diagram of βϕ|K2
corresponding

to the noisy octopus image.

As suggested by Theorem 4.5, if instead we compare K1 and K2 by means of
the PBNs β~Φ1

and β~Φ2
, where ~Φ1 : X → R

2, ~Φ1 = (dK1 , ϕ), and ~Φ2 : X → R
2,

~Φ2 = (dK2 , ϕ), we can see the similarity between K1 and K2 modulo the added
noise.

Since the domain of β~Φ1
and β~Φ2

is in R
2 × R

2, we explore these PBNs by
means of the foliation method, allowing for a one-dimensional reduction. To this
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end, we consider the functions F
~Φi

(~l,~b)
: X → R defined by setting, for every x ∈ X ,

F
~Φi

(~l,~b)
(x) = max

{

dKi
(x) − b1
l1

,
ϕ(x) − b2

l2

}

,

for i = 1, 2, and the number µ = min{l1, l2}.
The stability of our approach is illustrated in Figure 12. In Figure 12 (a)-(b),

we show the PBNs β~Φ1
and β~Φ2

both restricted to the half-plane π(~l,~b), with
~l =

(0.1483, 0.9889) and ~b = (13.0434,−13.0434), that is the half-plane of the foliation
containing the point ((0,−100), (3,−80)). The considered half-plane has been
chosen so that it contains points where PBNs take non-trivial values. Formally

speaking, Figure 12 (a)-(b) shows the PBNs of F
~Φ1

(~l,~b)
and F

~Φ2

(~l,~b)
, respectively. We

can already appreciate their similarity, even if their distance is not necessarily
smaller than the Hausdorff distance between K1 and K2. In Figure 12 (c)-(d),

we show the PBNs of µ · F ~Φ1

(~l,~b)
and µ · F ~Φ2

(~l,~b)
, that are the functions appearing in

the definition of Dmatch. This change of functions corresponds to “rescaling up”
the domain of the PBNs. The stability of Dmatch guarantees that the distance
between these two PBNs is not greater than the Hausdorff distance between K1

and K2.

Until now, we have shown that we can obtain the wanted stability with re-
spect to perturbation of the space by considering suitable vector-valued filtering
functions. One could think that this is done at the price of forgetting information
about the original problem. On the contrary, our method allows to retrieve the
PBNs invariants of (K, ~ϕ|K) from the PBNs of (X, ~Φ), with ~Φ = (dK , ~ϕ). This
is stated in the next key result, showing that for any sufficiently small value of
η ∈ R there exists a sufficiently small value ε ∈ R with 0 ≤ ε < η such that
β~ϕ|K

(~u,~v) = β~Φ ((ε, ~u), (η,~v)).

Theorem 4.6 Let K be a non-empty triangulable subset of a triangulable subspace
X of Rm. Moreover, let ~ϕ : X → R

n be a continuous function. Setting ~Φ : X →
R
n+1, ~Φ = (dK , ~ϕ), for every ~u,~v ∈ R

n with ~u ≺ ~v, there exists a real number
η̂ > 0 such that, for any η ∈ R with 0 < η ≤ η̂, there exists a real number ε̂ = ε̂(η),
with 0 < ε̂ < η, for which

β~ϕ|K
(~u,~v) = β~Φ ((ε, ~u), (η,~v)) ,

for every ε ∈ R with 0 ≤ ε ≤ ε̂. In particular,

β~ϕ|K
(~u,~v) = lim

η→0+
β~Φ ((0, ~u), (η,~v)) .
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Figure 12: (a) The PBNs β~Φ1
restricted to the half-plane π(~l,~b), with ~l =

(0.1483, 0.9889) and ~b = (13.0434,−13.0434), that is the half-plane of the foli-
ation containing the point ((0,−100), (3,−80)). (b) The PBNs β~Φ2

restricted to
the same half-plane. (c)-(d) The same restrictions as in (a)-(b), respectively, but
rescaled by µ = min{l1, l2}.

Many applications require that the presence of single outliers does not affect
the evaluation of similarity. In these cases, always assuming K triangulable, it
is sufficient to study the closure of the interior of K instead of K itself. Indeed,
applying Theorems 4.5 and 4.6 with the closure of the interior of K instead of
K, we obtain a result of stability of persistent homology groups with respect to
the perturbations of the studied set and a reconstruction result for the original
persistent homology groups modulo perturbations of zero measure.

We underline once more that the results of this section are based on the idea of
translating the problem of stability with respect to set perturbations into that of
stability with respect to function perturbations. Therefore, the use of the distance
function is only one among many ways to achieve this end and has the advantage
of working well when sets are compared using the Hausdorff distance. One could
conceive different ways, in connection with other methods to compare sets.
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