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Let us recall what a persistence diagram is

The persistence diagram Dgm(ϕ) is a collection of points of R2

associated with a continuous filtering function ϕ : X → R. Each point
(b,d) ∈ Dgm(ϕ) describes the time of birth b and the time of death
d of a homological class. For technical reasons, every point (x ,x) is
added to the persistence diagram.
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Persistence diagram ↔ persistent Betti numbers

Under suitable technical assumptions (the use of Čech homology),
persistence diagrams are equivalent to persistent Betti numbers
functions. The persistent Betti numbers function of ϕ is the function
βϕ : {x < y}→ N∪{∞} that counts how many points of Dgm(ϕ) are
on the left and above the point (x ,y).
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Persistent Betti numbers functions

Equivalently, we can give this other definition:

Definition

βϕ (u,v) is the dimension of the persistent homology group computed
at point (u,v), that is the rank of the homomorphism
ik : Hk(Xu)→ Hk(Xv ) induced by the inclusion
Xu := {p ∈ X : ϕ(p)≤ u} ↪→ Xv := {p ∈ X : ϕ(p)≤ v}, for u < v .
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The matching distance dmatch

Persistence diagrams can be compared by a matching distance dmatch.

Roughly speaking, dmatch quantifies the minimum cost of the
matchings between two persistence diagrams, when the movements of
points are measured by the maximum norm ‖(x ,y)‖∞ = max(|x |, |y |).
By definition, the movements along the diagonal x = y have cost 0.
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Persistent Betti numbers functions

What can we do in the case f : X → R2?

If a function f : X → R2 is given, we can still consider its persistent
Betti numbers function βf .

Definition

βf ((u1,u2),(v1,v2)) is the dimension of the persistent homology
group computed at point ((u1,u2),(v1,v2)), that is the rank of the
homomorphism ik : Hk(X(u1,u2))→ Hk(X(v1,v2)) induced by the
inclusion X(u1,u2) := {p ∈ X : f1(p)≤ u1, f2(p)≤ u2} ↪→ X(v1,v2) := {p ∈
X : f1(p)≤ v1, f2(p)≤ v2}, for u1 < v1,u2 < v2.
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Persistence diagram associated with the pair (P ,w)

The approach based on persistent Betti numbers functions is
equivalent to another approach based on an infinite family of
persistence diagrams.

This has been proved in the paper

[A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in
multidimensional persistent homology are stable functions,
Mathematical Methods in the Applied Sciences, vol. 36 (2013),
1543-1557].

We recall this idea in the next slides.

9 of 34



Persistence diagram associated with the pair (P ,w)

If we have a bifiltration given by a function f = (f1, f2) : X → R2, we
can consider a unit vector (w.r.t. ‖ · ‖1) w = (a,1−a) with a positive
slope, and a point P = (b,−b). Every choice of P and w defines a
filtration {Xt} of X , where Xt is the set of points of X that are both
under and on the left of the point P + tw . As a consequence, each
choice of P and w defines a persistence diagram.
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The normalized function f ∗(a,b)

If we set (x ,y) = P + tw = (at +b,(1−a)t−b) and define the

function f(a,b)(p) := max
{

f1(p)−b
a , f2(p)+b

1−a

}
, we can write

Xt = {p ∈ X : f1(p)≤ x , f2(p)≤ y} as the set {p ∈ X : f(a,b)(p)≤ t}.
As a consequence, the filtration {Xt} of X leads us to consider the
persistence diagram Dgm(f(a,b)) of the function f(a,b).
In order to get a stability theorem we have to normalize f(a,b) by
setting

f ∗(a,b)(p) := min{a,1−a} · f(a,b)(p).

The persistence diagram Dgm(f ∗(a,b)) can be obtained by multiplying

the persistence diagram Dgm(f(a,b)) by the value min{a,1−a}.
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Stability of Dmatch

We can define a 2D matching distance Dmatch (βf ,βg ) between the
persistent Betti number functions βf and βg by setting

Dmatch (βf ,βg ) := sup(a,b) dmatch

(
Dgm(f ∗(a,b)),Dgm(g∗(a,b))

)
.

Theorem (Stability Theorem)

Dmatch (βf ,βg )≤ ‖f −g‖∞.

Remark: The previous theorem strongly depends on the normalization
of persistence diagrams.

The distance Dmatch has been introduced in the paper [S. Biasotti, A.
Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional size functions
for shape comparison, Journal of Mathematical Imaging and Vision,
vol. 32 (2008), n. 2, 161-179.]
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Computation of the 2D matching distance

An algorithm to compute the 2D matching distance exists:

• S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, A new algorithm for
computing the 2-dimensional matching distance between size
functions, Pattern Recognition Letters, vol. 32 (2011), n. 14,
1735-1746

• A. Cerri, P. Frosini, A new approximation algorithm for the
matching distance in multidimensional persistence, AMS Acta,
2971 (2011)
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Computation of the 2D matching distance

Remarks:

• In principle, 2D persistent homologies can be also compared by
using the interleaving distance ([M. Lesnick, The theory of the
interleaving distance on multidimensional persistence modules,
Foundations of Computational Mathematics, vol. 15 (2015), n. 3,
613-650]). Unfortunately, as noted in that paper, the question of if
and how the interleaving distance on multidimensional persistence
modules can be computed remains open. This fact justifies the
interest in the 2D matching distance Dmatch, which is easily
computable.

• As for the visualization of 2D persistence modules we point out the
interesting paper [M. Lesnick, M. Wright, Interactive Visualization
of 2-D Persistence Modules, arXiv:1512.00180].
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Some experiments in 3D shape comparison

Let us have a look at some pictures illustrating some results that we
have obtained in 3D shape comparison by means of the 2D matching
distance. The objects that we compare are displayed on the left of
each figure. The color at the point (a,b) represents the value

dmatch

(
Dgm(f ∗(a,b)),Dgm(g∗(a,b))

)
. The largest values are in red and

brown, the lowest ones are in blue. The values at points (a,b) with
|b| large are not displayed, since they just represent the 1-dimensional
persistence of the two components of f = (f1, f2) and are not relevant
for our exposition. We recall that we are interested in Dmatch(βf ,βg ),

i.e. the supremum of dmatch

(
Dgm(f ∗(a,b)),Dgm(g∗(a,b))

)
, for 0 < a< 1

and b ∈ R.
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Some experiments in 3D shape comparison

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a,b) with a≈ 1/2.
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An interesting question

In our experiments, it seems that all the relevant information is given
at points (a,b) with a = 1/2, i.e. in correspondence of lines with slope
1. At the beginning we thought that this phenomenon was just a
coincidence. So we looked for other examples, showing global maxima
at points (a,b) with a 6= 1/2, but our search was unsuccessful.

A natural question arises: Is there any interesting principle hidden in
the results of our experiments?
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Some difficulties in our problem

Unfortunately, we are not able to directly answer this question,
because of the lack of geometrical properties in the definition of
Dmatch. Furthermore, we observe that while the metric Dmatch is rather
simple to define and compute by considering a suitable family of
filtering functions associated with lines having a positive slope, it has
two main drawbacks.

• First, it forgets the natural link between the homological properties
of filtrations associated with lines that are close to each other, so
that part of the interesting homological information is lost.

• Second, its intrinsically discontinuous definition makes it difficult
to study its properties.
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A näıve (and wrong) solution to our problem

Our first (and näıve) idea was the one of defining a new distance,
focusing on COHERENT matchings, i.e. matchings σ(a,b) that
depend continuously on a and b. In order to build coherent matchings
we tried to follow this approach:

• We should fix a pair (ā, b̄) and a matching σ(ā,b̄) between the
persistence diagrams Dgm(f ∗

(ā,b̄)
),Dgm(g∗

(ā,b̄)
);

• Then we should construct a coherent family of matchings σ(a,b)

between the persistence diagrams Dgm(f ∗(a,b)),Dgm(g∗(a,b)), by

“transporting σ(ā,b̄) to any other point (a,b) in the parameter
space by continuity”;

• This transportation would use the stability of the normalized
persistence diagrams Dgm(f ∗(a,b)),Dgm(g∗(a,b)), i.e. the fact that
they depend continuously on a and b.
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A näıve (and wrong) solution to our problem

The previously proposed approach has a problem. If along the
transportation we meet a point (a′,b′) at which one of the two
normalized persistence diagrams contains a multiple point, then our
transportation is not well-defined. Indeed, during “collisions” the
identity of points is not preserved and we are not able to follow them.
The consequent natural idea is the one of following the movements of
points of Dgm(f ∗(a,b)) and Dgm(g∗(a,b)) avoiding the pairs (a′,b′) for
which points with multiplicity greater than one exist. We call these
pairs singular. The other pairs are called regular.
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A key difficulty in our näıve solution

Unfortunately, the previous approach still has a problem.
Indeed, the definition of transport depends on the choice of the path
γ that we follow in the parameter space. Precisely, this definition
depends on the homotopy class of γ relative to the startpoint (ā, b̄)
and the endpoint (a,b).

We call this fact the monodromy phenomenon in 2-dimensional
persistent homology.

For more details about the monodromy phenomenon in 2-dimensional
persistent homology we refer to the paper
[A. Cerri, M. Ethier, P. Frosini, A study of monodromy in the
computation of multidimensional persistence, Proceedings of the 17th
IAPR International Conference on Discrete Geometry for Computer
Imagery, LNCS 7749, 2013, 192-202].
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An example of monodromy in 2D persistent homology

Let us see what happens if we consider the function
f = (f1, f2) : R2→ R2 obtained by setting

f1(x ,y) = x

f2(x ,y) :=


−x , for y = 0
−x + 1, for y = 1
−2x , for y = 2
−2x + 5

4 , for y = 3

f2(x ,y) then being extended linearly for every x on the segment
joining (x ,0) with (x ,1), (x ,1) with (x ,2), and (x ,2) to (x ,3). On
the half-lines {(x ,y) ∈ R2 : y < 0} and {(x ,y) ∈ R2 : y > 3} f2 is then
being taken with constant slope 1 in the variable y .
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An example of monodromy in 2D persistent homology

The graph of the function f2:

MonodromyVisualizer.jar
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An example of monodromy in 2D persistent homology
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An example of monodromy in 2D persistent homology

We have seen that if we turn around the point (1/4,0) in the
parameter space ]0,1[×R, two points in the persistence diagram
Dgm(f ∗(a,b)) exchange their position. In other words, a loop around

the singular point (1/4,0) induces a permutation on the persistence
diagram.

Therefore, a monodromy group is associated with the function f . In
order to properly define this group, we have to give a precise
definition of the path followed by a point p ∈ Dgm(f ∗(a,b)) when (a,b)

moves (and also when p meets ∆!) We will make this point precise in
the next lecture.
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Monodromy group of a function f

However, roughly speaking,

Definition

The persistent monodromy group of f : M → R2 is the group of the
permutations of Dgm(f ∗(a,b)) induced by loops in the parameter space

]0,1[×R.

Theorem

For every group of permutations G , a function f : R2→ R2 exists
such that its persistent monodromy group is G .

(Joint work with Nicolas Vercheval)
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a = 1/2?

The existence of monodromy implies that different paths going from
(ā, b̄) to (a,b) can “transport matchings in different ways”.

Does monodromy prevent us from proceeding in our research and
from defining a coherent 2-dimensional matching distance?

Fortunately, the answer is no, as we will show in the next lecture.

In the next lecture we will also come back to our question

a = 1/2?
In order to face this problem we will have to introduce some
mathematical machinery.
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Conclusions

• In this lecture we have illustrated the phenomenon of monodromy
in 2D persistent homology, which has been discovered in the
attempt to prove the conjecture “a = 1/2”.

• Beyond the intrinsic interest of this phenomenon, it is also an
obstruction to define a coherent matching distance between 2D
persistent Betti numbers functions.

• In the next lecture we will see how we can manage this problem.
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