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Mathematical setting

Let f = (f1, f2),g = (g1,g2) be two continuous maps from a finitely
triangulable topological space M to the real plane R2.

We consider the persistence diagrams Dgm(f ∗(a,b)), Dgm(g∗(a,b))
associated with the admissible line r(a,b), where

f ∗(a,b) := max

{
min{a,1−a}

a
· (f1−b),

min{a,1−a}
1−a

· (f2 +b)

}
,

g∗(a,b) := max

{
min{a,1−a}

a
· (g1−b),

min{a,1−a}
1−a

· (g2 +b)

}
.

Let Λ+ and P(Λ+) be the set of lines with finite positive slope in R2

and the set ]0,1[×R parameterizing these lines, respectively.
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Mathematical setting

Let βf and βg be the persistent Betti numbers functions of f and g ,
respectively.

We recall that the 2-dimensional matching distance Dmatch(βf ,βg ) is
then defined as

Dmatch(βf ,βg ) = sup
P(Λ+)

dB(Dgm(f ∗(a,b)),Dgm(g∗(a,b))),

with dB(Dgm(f ∗(a,b)),Dgm(g∗(a,b))) denoting the bottleneck distance

between the normalized persistence diagrams Dgm(f ∗(a,b)) and

Dgm(g∗(a,b)).
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Mathematical setting

The following result will be of use.

Lemma

If (a,b) ∈P(Λ+) then
∥∥∥f ∗(a,b)−g∗(a,b)

∥∥∥
∞

≤ ‖f −g‖∞.

Remark

The normalization of the functions f(a,b),g(a,b) is crucial here. Indeed,
the bottleneck distance dB(Dgm(f ∗(a,b)),Dgm(g∗(a,b))) is stable against
functions’ perturbations when measured by the sup-norm, while this is
not true for the distance dB(Dgm(f(a,b)),Dgm(g(a,b))).
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The phenomenon of persistent monodromy

We recall what we said in lecture 1 about monodromy in 2D
persistent homology.

We have seen that if we turn around a singular point in the parameter
space ]0,1[×R, some points in the persistence diagram Dgm(f ∗(a,b))
may exchange their position. In other words, a loop around the
singular point induces a permutation on the persistence diagram.

Therefore, a monodromy group is associated with the function f . In
order to properly define this group, we have to give a precise definition
of the path followed by a point p ∈ Dgm(f ∗(a,b)) when (a,b) moves.
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Some technical assumptions

Let f = (f1, f2) be a smooth map from a closed C∞-manifold M of
dimension r ≥ 2 to the real plane R2. Choose a Riemannian metric on
M so that we can define gradients for f1 and f2.

The Jacobi set J(f ) is the set of all points p ∈M at which the
gradients of f1 and f2 are linearly dependent, namely
∇f1(p) = λ∇f2(p) or ∇f2(p) = λ∇f1(p) for some λ ∈ R. In particular,
if λ ≤ 0 the point p ∈M is said to be a critical Pareto point for f .
The set of all critical Pareto points of f is denoted by JP(f ).
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The Jacobi set
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Critical Pareto points
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Some technical assumptions

In order to proceed we will assume that our filtering functions
f : M → R2 are pretty regular, in the sense described in this slide.

We assume that

(i) No point p ∈M exists such that both ∇f1(p) and ∇f2(p) vanish;

(ii) J(f ) is a smoothly embedded 1-manifold in M, consisting of
finitely many circles;

(iii) JP(f ) is a 1-dimensional closed manifold with boundary in J(f ).

We also consider the set JC (f ) of cusp points of f , that is, points of
J(f ) at which the restriction of f to J(f ) fails to be an immersion. In
other words JC (f ) is the subset of J(f ) at which both ∇f1 and ∇f2
are orthogonal to J(f ) (hence JC (f )⊆ JP(f )).
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Some technical assumptions

We also assume that (iv) the connected components of JP(f )\JC (f )
are finite in number, each one being not a circle. The previous
properties (i),(ii),(iii),(iv) are generic in the set of smooth maps
from M to R2.

Property (iv) implies that the connected components of JP(f )\JC (f )
are open, or closed, or semi-open arcs in M. Following the notation
used in previous literature, they will be referred to as critical intervals
of f . If an endpoint p of a critical interval actually belongs to that
critical interval, that is, p is not a cusp point, then it is a critical
point for either f1 or f2. Along each critical interval, f1 increases when
f2 decreases, and vice versa.
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The extended Pareto grid

Our purpose is to establish a formal link between the position of
points of Dgm(f ∗(a,b)) for a function f and the intersections between

the admissible line r(a,b) with a particular subset of the plane R2,
called the extended Pareto grid of f , which we will define in the next
slides.
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The extended Pareto grid

Let us list the critical points p1, . . . ,ph of f1 and the critical points
q1, . . . ,qk of f2 (our assumption (i) guarantees that
{p1, . . . ,ph}∩{q1, . . . ,qk}= /0). Consider the following half-lines: for
each critical point pi of f1 (resp. each critical point qj of f2), the
half-line {(x ,y) ∈ R2|x = f1(pi ),y ≥ f2(pi )} (resp. the half-line
{(x ,y) ∈ R2|x ≥ f1(qj),y = f2(qj)}).

The extended Pareto grid Γ(f )Γ(f )Γ(f ) will be the union of f (JP(f )) with
these half-lines. The closures of the images of critical intervals of f
will be called proper contours of f , while the half-lines will be known
as improper contours of f . We observe that every contour is a closed
set. For each point p ∈ R2, we say that the number of (proper or
improper) contours containing p is the multiplicity of p with respect
to the function f . (This definition should not be confused with the
definition of multiplicity for points in persistence diagrams.)
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The extended Pareto grid

The torus endowed with the filtering function f (p) := (x(p),z(p)).

16 of 55



The extended Pareto grid

The extended Pareto grid for the torus endowed with the filtering
function f (p) := (x(p),z(p)). The images of the critical intervals are
in red, the vertical half-lines with abscissa equal to a critical value of
f1 are in purple, and the horizontal half-lines with ordinate equal to a
critical value of f2 are in orange. A blue admissible line r(a,b) is also
represented.
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Assumptions about the extended Pareto grid

We recall that, by definition, a pair (a,b) ∈]0,1[×R is singular for f if
and only if the persistence diagram Dgm(f ∗(a,b)) contains at least one
point not belonging to ∆ with multiplicity strictly greater than 1. A
pair (a,b) that is not singular is called regular.

Definition

We say that the function f : M → R2 is normal if

1. The number of proper and improper contours in Γ(f ) is finite;

2. The number of multiple points of Γ(f ) is finite;

3. Each multiple point of Γ(f ) is double;

4. No line r(a,b) contains more than two multiple points of Γ(f );
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Assumptions about the extended Pareto grid

Definition

5. Let ik∗ be the map Hk(Mu−ε,v−ε )→ Hk(Mu+ε,v+ε )
induced by the inclusion Mu−ε,v−ε ↪→Mu+ε,v+ε . Every
contour γ of Γ(f ) is associated with a pair
(d(γ),s(γ)) ∈ Z×{−1,1} such that at each internal
point (u,v) of γ the following properties hold for every
small enough ε > 0:

• If k 6= d(γ), ik∗ is an isomorphism;
• If k = d(γ) and s(γ) = 1, ik∗ is injective and

rank(Hk(Mu+ε,v+ε ) = rank(Hk(Mu−ε,v−ε ) + 1;
• If k = d(γ) and s(γ) =−1, ik∗ is surjective and

rank(Hk(Mu+ε,v+ε ) = rank(Hk(Mu−ε,v−ε )−1.
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Assumptions about the extended Pareto grid

In plain words, property 5 guarantees that the passage across a
contour γ just creates (if s(γ) = 1) or destroy (if s(γ) =−1) one
homological class in degree d(γ).
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The Position Theorem

With the concept of extended Pareto grid at hand, we can state and
prove the following result, which gives a necessary condition for P to
be a point of Dgm(f ∗(a,b)).

We recall that

f ∗(a,b) := max

{
min{a,1−a}

a
· (f1−b),

min{a,1−a}
1−a

· (f2 +b)

}
.

Theorem (Position Theorem)

Let (a,b) ∈P(Λ+), P ∈ Dgm(f ∗(a,b))\∆. Then, for each finite

coordinate c of P a point (x ,y) ∈ r(a,b)∩Γ(f ) exists, such that

c = min{a,1−a}
a · (x−b) = min{a,1−a}

1−a · (y +b).
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Using the extended Pareto grid

The Position Theorem suggests a way to find the possible positions
for points of Dgm(f ∗(a,b)). It consists in drawing the extended Pareto

grid Γ(f ) and considering its intersections (x1,y1), . . . ,(xl ,yl) with the
admissible line r(a,b). For each proper point of Dgm(f ∗(a,b)), both its
coordinates belong to the set{

min{a,1−a}
a

· (xi −b) =
min{a,1−a}

1−a
· (yi +b)

}
1≤i≤l

∪{∞}.
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Using the extended Pareto grid

Each coordinate of a point in Dgm(f ∗(a,b)) equals min{a,1−a}
a · (x−b),

where (x ,y) is a green point.
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Using the extended Pareto grid

Note that when b < 0 and |b| is sufficiently large, the admissible line
r(a,b) may intersect Γ(f ) only at the vertical half-lines. In this case,

f ∗(a,b) := min{a,1−a}
a · (f1−b), and the values x1, . . . ,xl are the critical

values of f1. Similarly, when b > 0 and |b| is large enough, r(a,b)

intersects Γ(f ) only at the horizontal half-lines. Then

f ∗(a,b) := min{a,1−a}
1−a · (f2 +b), and the values y1, . . . ,yl are the critical

values of f2. (See next slide)

24 of 55



Using the extended Pareto grid
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Using the extended Pareto grid

The Position Theorem allows us to deduce where singular pairs can
be in P(Λ+).

Proposition

If (a,b) ∈P(Λ+) is a singular pair for f , then r(a,b) contains two
double points of Γ(f ).

Corollary

The set of singular pairs in P(Λ+) for f is finite.
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Singular pairs

Figure: A line r(ā,b̄) associated with a singular pair (ā, b̄) ∈P(Λ+). Parts of
four proper contours are displayed in red.
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Creation and distruction of points in Dgm(f ∗(a,b)) when

(a,b) varies in P(Λ+)

The Position Theorem allows us to deduce at which points of ∆
points of Dgm(f ∗(a,b)) can be created or destroyed.

Proposition

Let (a(t),b(t)) be a continuous curve in P(Λ+) such that the
distance between Dgm(f ∗(a,b))\∆ and (c ,c) ∈∆ tends to 0 for t→ t̄.
Then two contours γ1,γ2 of f exist, such that γ1,γ2 have a common

extremum E = (x̄ , ȳ) and c = min{a,1−a}
a · (x̄−b) = min{a,1−a}

1−a · (ȳ +b).

In plain words, the previous result shows that points of Dgm(f ∗(a,b))
can be created or destroyed just when the line r(a,b) goes across a
common extremum of two contours.
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Distruction of a point in Dgm(f ∗(a,b))

Figure: A point of Dgm(f ∗(a,b)) reaches the diagonal ∆ and disappears.
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Ghost points

Definition

If two contours γ1,γ2 like the ones cited in the previous proposition
are given, and the line r(a,b) does not meet γ1,γ2 at two of their
internal points, then we set D(a,b)(E ) := (c ,c) ∈∆ with

c = min{a,1−a}
a · (x̄−b) and call D(a,b)(E ) a ghost point of E at (a,b).

The set of all ghost points at (a,b) varying the contours γ1,γ2 is
denoted by the symbol ∆(a,b)(f ).

The concept of ghost point allows us to follow points in the
persistence diagrams Dgm(f ∗(a,b)) while (a,b) varies in the parameter

space P(Λ+), even after these points have reached the diagonal ∆.
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Mathematical setting

Extended Pareto Grid

The coherent 2-dimensional matching distance CDU

The distance CDU is achieved at a = 1/2
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The coherent 2-dimensional matching distance

Our next step is the definition of the coherent 2-dimensional
matching distance.
The existence of monodromy implies that each loop in the set Reg(f )
of all regular pairs for f induces a permutation on Dgm(f ∗(a,b)). In

other words, it is not possible to establish which point in Dgm(f ∗(a,b))

corresponds to which point in Dgm(f ∗(a′,b′)) for (a,b) 6= (a′,b′), since

the answer depends on the path that is considered from (a,b) to
(a′,b′) in the set Reg(f ). As a consequence, different paths going
from (a,b) to (a′,b′) might produce different results while
“transporting” a matching σ(a,b) : Dgm(f ∗(a,b))→ Dgm(g∗(a,b)) to

another point (a′,b′) ∈P(Λ+).
Despite this problem, it is possible to define a notion of coherent
2-dimensional matching distance.
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Transporting a matching along a path

First, we need to specify the concept of transporting a point
X ∈ Dgm(f ∗(a(0),b(0))) along a path (a(t),b(t)) in Reg(f ).

Definition (Induced path)

A continuous path P : [0,1]→ R2 is said to be induced by the path
π : [0,1]→ Reg(f ) if for every t ∈ [0,1] it holds that
P(t) ∈ (Dgm(f ∗

π(t))\∆)∪∆π(t)(f ).

Proposition

Let π = (a,b) : [0,1]→ Reg(f ) be a continuous path. For every point
X ∈ (Dgm(f ∗

π(0))\∆)∪∆π(0)(f ), a unique path P : [0,1]→ R2

induced by π exists, such that P(0) = X .
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Transport of points and matchings

With reference to the previous Proposition, we say that π transports
X to X ′ = P(1) with respect to f and write T f

π (X ) = X ′. Now, we
need to define the concept of transporting a matching along a path
π : [0,1]→ Reg(f )∩Reg(g) with π(0) = (a,b). Let σ(a,b) be a
matching between Dgm(f ∗(a,b)) and Dgm(g∗(a,b)), with (a,b) an

element of Reg(f )∩Reg(g). We can naturally associate to σ(a,b) a
matching σπ(1) : Dgm(f ∗

π(1))→ Dgm(g∗
π(1)). Suppose that

σ(a,b)(X ) = Y . We set σπ(1)(X ′) = Y ′ if and only if π transports X
to X ′ with respect to f and Y to Y ′ with respect to g . We also say
that π transports σ(a,b) to σπ(1) along π with respect to the pair
(f ,g). The transported matching will be denoted by the symbol

T
(f ,g)
π (σ(a,b)).
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Transport of points

The next property trivially follows from the definition of transport.

Proposition

Let π1,π2 be two continuous paths in Reg(f ), with π1(1) = π2(0). Let
π1 ∗π2 be their composition, i.e. the loop π1 ∗π2 : [0,1]→ Reg(f )
defined by setting π1 ∗π2(t) := π1(2t) for 0≤ t ≤ 1/2 and
π1 ∗π2(t) := π2(2t−1) for 1/2≤ t ≤ 1. Then T f

π2
◦T f

π1
= T f

π1∗π2
.
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Continuity of the transport w.r.t. the path

By using the 1-dimensional Stability Theorem and the Position
Theorem, we can prove that the transport along a path in Reg(f ) is
continuous with respect to the path, as stated by the following
proposition.

Proposition

Let X ∈Dgm(f ∗
π(0)). The function T f

π (X ) is continuous in the variable

π, when π varies in the set S f
(ā,b̄)

of the paths in Reg(f ) starting from

a fixed point (ā, b̄) and S f
(ā,b̄)

is endowed with the uniform

convergence metric.
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Each loop in Reg(f ) induces a permutation on
Dgm(f ∗

(ā,b̄)
)

From the previous proposition the next result immediately follows.

Proposition

If two paths π1,π2 in Reg(f ) are homotopic to each other relatively to
their common extrema, then T f

π1
≡ T f

π2
.

Corollary

The map T f taking each equivalence class [π] to the permutation T f
π

is a well-defined homomorphism from the fundamental group of
Reg(f ) at (ā, b̄) to the group of permutations of Dgm(f ∗

(ā,b̄)
).
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Turning twice around a singular point produces the
identical permutation on persistence diagrams

The following interesting property holds.

Proposition

Let π : [0,1]→ Reg(f ) be a loop turning once around exactly one
singular pair. Then T f

π is either a transposition or the identity.
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Turning twice around a singular point produces the
identical permutation on persistence diagrams

Figure: A loop around a singular pair in P(Λ+). Parts of four proper
contours are displayed in red. The lines r(a,b) are in blue.
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Computing permutations on persistence diagrams

Proposition

For each singular pair (ai ,bi ) let us choose a loop πi starting at a
regular pair (ā, b̄) and turning once only around (ai ,bi ). The image of
T f is generated by the permutations T f

πi
.

Remark

The previous proposition implicitly gives a simple method to compute
the image of T f . We know that if G is a subgroup of the symmetric
group Sn and G is generated by m transpositions, then |G | ≤ (m+ 1)!.
It follows that the cardinality of the image of T f is bounded by the
factorial of the number of singular pairs in P(Λ+) plus one.
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Coherent bouquets of matchings

The idea of coherent matchings consists in requiring that the
matchings at close points in P(Λ+) are close to each other. We have
already seen that monodromy prevents us from transporting single
matchings in a coherent way. Fortunately, this can be done for
bouquets of matchings. We start by fixing a connected open subset U
of P(Λ+) and defining ΦU,cΦU,cΦU,c as the set of all continuous functions
f : M → R2 such that Reg(f )⊇ U and the minimal distance between
two points of Dgm(f ∗(a,b))\∆ is strictly greater than 2c > 0 for every

(a,b) ∈ U. Let us assume that f ,g ∈ ΦU,c .

Remark

The definition of the set ∆(a,b) implies that if f ∈ ΦU,c then the
minimal distance between two points of (Dgm(f ∗(a,b))\∆)∪∆(a,b) is

strictly positive for every (a,b) ∈ U.
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Bouquets of matchings

Definition

Let σ(ā,b̄) be a matching between Dgm(f ∗
(ā,b̄)

) and Dgm(g∗
(ā,b̄)

), with

(ā, b̄) ∈ U. The bouquet BqU(σ(ā,b̄)) of σ(ā,b̄) is the set of all
matchings we obtain by transporting σ(ā,b̄) along any loops in U

based at (ā, b̄). In symbols, if we denote the set of all continuous
paths π : [0,1]→ U with π(0) = π(1) = (ā, b̄) by LU

(ā,b̄)
, we define

BqU(σ(ā,b̄)) :=

{
T

(f ,g)
π (σ(ā,b̄))

∣∣∣∣π ∈ LU
(ā,b̄)

}
.

42 of 55



The independence property

If BqU(σ(ā,b̄)) is a bouquet of matchings at (ā, b̄) ∈ U, then for every

(a,b) ∈ U we can take a continuous path γ from (ā, b̄) to (a,b) in U
and define the set

T
(f ,g)

(ā,b̄)7→(a,b)

(
BqU(σ(ā,b̄))

)
:=
{
T

(f ,g)
γ (σ) | σ ∈ BqU(σ(ā,b̄))

}
.

It is easy to prove the following property.

Independence property: The set T
(f ,g)

(ā,b̄)7→(a,b)

(
BqU(σ(ā,b̄))

)
is a

bouquet of matchings at (a,b). It does not depend on the chosen
path γ in U from (ā, b̄) to (a,b), but only on its endpoints.
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Coherent families of bouquets of matchings

Definition

A family of bouquets of matchings
{
BqU(σ(a,b))

}
(a,b)∈U that are

obtained by transporting a bouquet of matchings BqU(σ(ā,b̄)) all over
the set U is said to be coherent in U for the pair (f ,g). The set of all
family of bouquets of matchings that are coherent in U for the pair
(f ,g) will be denoted by the symbol CohU(f ,g).
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Composition of coherent families of bouquets of
matchings

It is easy to show that the following definition is well-posed.

Definition

Let f ,g ,h ∈ ΦU,c . If BqU(σ(a,b)) and BqU(τ(a,b)) are two bouquets of
matchings in U for (f ,g) and (g ,h) (respectively), we can define their
composition BqU(τ(a,b))◦BqU(σ(a,b)) as the bouquet at (a,b) for
(f ,h) given by the set {τ ◦σ : σ ∈ BqU(σ(a,b)),τ ∈ BqU(τ(a,b))}. If
two coherent families of bouquets in U of matchings
E =

{
BqU(σ(a,b))

}
(a,b)

and F =
{
BqU(τ(a,b))

}
(a,b)

for (f ,g) and

(g ,h) (respectively) are given, we can define the coherent family
F ◦E by taking at each point (a,b) ∈ U the composition of the
bouquets for E and F at that point.
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Stability of the transport of points

The next result will be of use.

Lemma

Let f ,g ∈ ΦU,c with ‖f −g‖∞ < c . If π is a continuous path in U,
and X ∈Dgm(f ∗

π(0)), Y ∈Dgm(g∗
π(0)) are two points whose distance is

less than ‖f −g‖∞, then ‖T g
π (Y )−T f

π (X )‖ ≤ ‖f −g‖∞.
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The definition of the coherent matching distance

Definition

The cost of a bouquet BqU(σ(a,b)) of matchings at (a,b) ∈ U is the
value cost

(
BqU(σ(a,b))

)
:= maxσ∈BqU(σ(a,b)) cost(σ).

Definition

Let E be a coherent family
{
BqU(σ(a,b))

}
(a,b)∈U of bouquets in U of

matchings for (f ,g). We set cost(E ) := sup(a,b)∈U cost
(
BqU(σ(a,b))

)
.

We observe that the set CohU(f ,g) can be constructed by taking
each possible bouquet in U of matchings at an arbitrarily fixed point
(ā, b̄) ∈ U and extending these bouquets to coherent families of
bouquets of matchings.
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The coherent 2-dimensional matching distance

Definition

The coherent 2-dimensional matching distance between βf and βg is
defined as

CDU(βf ,βg ) = inf
E∈CohU(f ,g)

cost(E ).

Proposition

CDU(βf ,βg ) is a pseudo-distance.
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Stability of the coherent 2-dimensional matching
distance

The next result shows that the coherent 2-dimensional matching
distance is stable, in a suitable sense.

Theorem

If f ,g ∈ ΦU,c and ‖f −g‖∞ < c then CDU(βf ,βg )≤ ‖f −g‖∞.

49 of 55



Mathematical setting

Extended Pareto Grid

The coherent 2-dimensional matching distance CDU

The distance CDU is achieved at a = 1/2
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The distance CDU is achieved at a = 1/2

Definition

Let (ā, b̄) be a point of the line l 1
2

of equation a = 1/2 in P(Λ+), and

assume that (ā, b̄) ∈ U is a regular pair. Let
σ : Dgm(f ∗

(ā,b̄)
)→ Dgm(g∗

(ā,b̄)
) be a matching. The function γσ that

associates each (a,b) ∈ U ∩ l 1
2

to the bouquet of matchings obtained

by transporting σ to (a,b) in U will be called the coherent family of
bouquets of matchings of σ on l 1

2
(note that transporting σ may

require to move out of l 1
2
). We define cost γσ as the maximum cost

of the bouquets of matchings in the image of γσ .

Definition

Let C 1
2

be the set of coherent families of bouquets of matchings on l 1
2
.
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The distance CDU is achieved at a = 1/2

From the independence property the next result easily follows.

Proposition

The set C 1
2

does not depend on the basepoint (ā, b̄) ∈ l 1
2
.

Definition

We set CD 1
2
(βf ,βg ) := infγ∈C 1

2

cost γ.

Theorem

CDU ≡ CD 1
2
.
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Conclusions

In this lecture we have presented a new approach to metric
comparison in 2D persistent homology, introducing the concept of
coherent matching distance and studying some of its properties. In
order to do that, we have also introduced the concept of extended
Pareto grid and shown its use to manage the phenomenon of
monodromy. Finally, we have proved a theorem that makes clear the
importance of filtrations associated with lines of slope 1 in 2D
persistent homology.
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Further research

In our opinion, many problems should deserve further research. First
of all, it would be interesting to extend the presented concepts to
filtering functions taking values in Rm with m > 2. Secondly, the
genericity of our assumptions concerning the extended Pareto grid
should be possibly proved. Finally, methods for the efficient
computation of the coherent matching distance should be developed.
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