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An example in shape comparison

Figure: Examples of letters A,D,O,P,Q,R represented by functions
ϕA,ϕD,ϕO,ϕP,ϕQ,ϕR from R2 to the real numbers. Each function
ϕY : R2→ R describes the grey level at each point of the topological space
R2, with reference to the considered instance of the letter Y . Black and
white correspond to the values 0 and 1, respectively (so that light grey
corresponds to a value close to 1).
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A letter O

Figure: Part of the graph of a function representing a letter O.
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Key observation

Persistent homology is invariant with respect to ANY
homeomorphism!

Figure: These functions share the same persistent homology.
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Main question

How can we use persistent homology to distinguish these letters?

We have to restrict the invariance of persistent homology.
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Couldn’t we maintain classical persistent homology?

One could think of using other filtering functions, possibly defined on
different topological spaces. For example, we could extract boundaries
of letters and consider the distance from the center of mass of each
boundary. This approach presents some drawbacks:

1. It “forgets” most of the information contained in the image
ϕ : R2→ R that we are considering, confining itself to examine the
boundary of the letter represented by ϕ.

2. It usually requires an extra computational cost (e.g., to extract the
boundaries of the letters).

3. It can produce a different topological space for each new filtering
function (e.g., this happens for letters).

4. ABOVE ALL: It is not clear how we can translate the invariance
that we need into the choice of new filtering functions defined on
new topological spaces.

8 of 101



Let us insert our goal in a general framework

Therefore, we need a more general method than just extracting
boundaries and applying classical persistent homology.

Before proceeding in the generalization of persistent homology,
let us extend our perspective and consider these two questions:

• What is our precise goal? Can we describe it formally?

• Can we measure in a metric way to which extent we have
reached our objective?

In order to answer these questions, we need a geometrical model
for shape comparison.
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The key role of the observer 1/3

Shape comparison is based on comparing properties of
perceptions.

Every comparison of properties involves the presence of

• an observer perceiving the properties

• a methodology to compare the properties

It follows that shape comparison is affected by subjectivity.
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The key role of the observer 2/3

Truth often depends on the observer:
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The key role of the observer 3/3

Truth often depends on the observer:
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Our formal setting

• In shape comparison objects are not accessible directly, but only
via measurements made by an observer.

• The comparison of two shapes is usually based on a family Φ of
“measuring functions”, which are defined on a set M (set of
measurements) and take values in a set V (set of measurement
values). Each function in Φ represents a measurement obtained via
a measuring instrument.

• In most cases, the family Φ of measuring functions is invariant
with respect to a given group G of transformations, that depends
on the type of measurement we are considering.

• A G -invariant pseudo-metric dG is usually available for the set Φ,
so that we can quantify the difference between the measuring
functions in Φ. (pseudo-metric = metric without the property
d(x ,y) = 0 =⇒ x = y)
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The role of the observer in our formal setting

In our formal setting the choice of the observer is represented by the
choice of the family Φ of functions (including its metric structure)
and of the invariance given by the group G .

Indeed, different observers can

• get different perceptions/signals from the same phenomenon;

• see different equivalences between signals (i.e., refer to different
invariance groups).
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Example 1

A first way of “measuring” the vases: perceiving the color of each point

• M is the vase surface, V = R3 (the set of colors);
• Every ϕ ∈ Φ is a function associating each point of M with its

color (represented by a triple (r ,g ,b) of real numbers);
• G is the set of rotations of M around the z-axis (we observe that

Φ◦G = Φ);
• We can set dG (ϕ1,ϕ2) = infg∈G supx∈M ‖ϕ1(x)−ϕ2(g(x))‖.
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Example 2

A different way of “measuring” the vases: taking pictures

• M = S1, V = {the set of pictures}
• Every ϕ ∈ Φ is a function associating each point of S1 with a

picture.
• G is the set of rotations around the z-axis, and Φ◦G = Φ
• We can set dG (ϕ1,ϕ2) = infg∈G supx∈M ‖ϕ1(x)−ϕ2(g(x))‖
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Example 3

A third way of “measuring” the vases: weighing them

• M = a singleton {x̄}, V = R
• Every ϕ ∈ Φ is a function associating the point in the singleton

with a weight.
• G contains just the identity, and Φ◦G = Φ
• We set

dG (ϕ1,ϕ2) = infg∈G supx∈M ‖ϕ1(x)−ϕ2(g(x))‖= |ϕ1(x̄)−ϕ2(x̄)|
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Our shape pseudo-distance dG (formal definition)

Assume that the following objects are given:

• A set M, representing the set of measurements that we make.

• A set V , representing the values that can be taken by each
measurement.

• A set Φ of functions from M to V . Each function ϕ ∈ Φ describes
a possible set of results for all measurements in M.

• A group G acting on M, such that Φ is invariant with respect to G
(i.e., for every ϕ ∈ Φ and every g ∈ G we have that ϕ ◦g ∈ Φ).

• A pseudo-metric dG defined on the set Φ, that is invariant under
the action of the group G (in other words, if ϕ1,ϕ2 ∈ Φ and g ∈ G
then ϕ2 ◦g ∈ Φ and dG (ϕ1,ϕ2) = dG (ϕ1,ϕ2 ◦g)).

In some sense, the pair (Φ,dG ) represents the observer.
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An interesting case 1/2

It often happens that M is a topological space and V is a metric
space, endowed with a metric dV . In this case the functions in F are
assumed to be continuous, and the group G is assumed to be a
subgroup of the group of all self-homeomorphisms of M. As an
example, let us think of a CT scanning.
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An interesting case 2/2

In this example

• M = S1 represents the topological space of all directions that are
orthogonal to a given axis;

• V = R represents the metric space of all possible quantities of
matter encountered by the X-ray beam in the considered direction.

• Every ϕ ∈ Φ is a function taking each direction in S1 to the
quantity of matter encountered by the X-ray beam along that
direction.

• G is the group of the rotations of S1 (Φ◦G = Φ).

We can set dG (ϕ1,ϕ2) = infg∈G supx∈M |ϕ1(x)−ϕ2(g(x))| for
ϕ1,ϕ2 ∈ Φ.
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Other interesting cases

If V = Rk we can use the pseudo-metric

dG (ϕ1,ϕ2) = inf
g∈G

sup
x∈M
‖ϕ1(x)−ϕ2(g(x))‖

∞

for ϕ1,ϕ2 ∈ Φ. The functional supx∈M ‖ϕ1(x)−ϕ2(g(x))‖
∞

quantifies
the change in the measurement induced by the transformation g .

The pseudo-metric dG is produced by the attempt of minimizing this
functional, varying the transformation g in the group G , and is called
natural pseudo-distance.
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Our assumptions 1/2

In the rest of this lecture we will assume that

1. M is a topological space X ;

2. V is the metric space R;

3. The functions ϕ : X → R in Φ are continuous.

These assumptions allow us to require that if two measurements are
close to each other (in some reasonable sense), then the values
obtained by these measurements are close to each other, too.
Without this kind of stability, our approach could not be of use in
practical applications.

The group G will be assumed to be a subgroup of the group
Homeo(M) of all self-homeomorphisms of M.
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Natural pseudo-distance associated with a group G

We consider the case that our filtering functions are real-valued.

Definition

Let X be a compact space. Let G be a subgroup of the group
Homeo(X ) of all homeomorphisms f : X → X . The pseudo-distance
dG : C 0(X ,R)×C 0(X ,R)→ R defined by setting

dG (ϕ,ψ) = inf
g∈G

max
x∈X
|ϕ(x)−ψ(g(x))|

is called the natural pseudo-distance associated with the group G .

In plain words, the definition of dG is based on the attempt of finding
the best correspondence between the functions ϕ,ψ by means of
homeomorphisms in G .
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Remark

PLEASE PAY ATTENTION:
THE TOPOLOGICAL SPACE X IS
NOT “THE OBJECT” WE ARE

STUDYING! IT IS JUST THE SPACE
OF MEASUREMENTS.
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Natural pseudo-distance associated with a group G

G -invariant persistent homology

G -invariant non-expansive operators
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We will not use Equivariant Homology

We need to apply persistent homology in a way that is invariant under
the action of G ⊂ Homeo(X ), but not under the one of Homeo(X ).

We could think of using the well known concept of Equivariant
Homology. In other words, in the case that G acts freely on X , one
could think of considering the topological quotient space X/G ,
endowed with the filtering functions ϕ̂, ψ̂ that take each orbit ω of
the group G to the maximum of ϕ and ψ on ω, respectively.

We observe that this approach would not be of help in the case that
the action of the group G is transitive (as happens for group of
rotations of S1), because in that case the quotient of X/G is just a
singleton. As a consequence, if we considered two filtering functions
ϕ,ψ : X → R with maxϕ = maxψ, the persistent homology of the
induced functions ϕ̂, ψ̂ : X/G → R would be the same.
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Filtering functions on a chain complex

Let (C ,∂ ) be a chain complex over a field K (so that each group of
n-chains Cn is a vector space).

Definition

Assume a function ϕ̄ :
⋃

n Cn→ R∪{−∞} is given, such that

i) ϕ̄ takes the null chain 0 ∈ Cn to −∞, for every n ∈ Z;

ii) ϕ̄(∂ c)≤ ϕ̄(c) for every c ∈
⋃

n Cn;

iii) ϕ̄(λ c) = ϕ̄(c) for every c ∈
⋃

n Cn, λ ∈K, λ 6= 0;

iv) ϕ̄(c1 + c2)≤max(ϕ̄(c1), ϕ̄(c2)) for every c1,c2 ∈ Cn

with n ∈ Z.

We shall say that ϕ̄ is a filtering function on the chain complex (C ,∂ ).
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G -chain complexes

Let us recall the definition of G -chain complex.

Definition

Let us assume that a group G is given, such that G acts linearly on
each vector space Cn and its action commutes with ∂ , i.e.,
∂ ◦g = g ◦∂ for every g ∈ G (in particular, every g ∈ G is a chain
isomorphism from C to C ). The chain complex (C ,∂ ) will be said a
G -chain complex.
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Chain subcomplex associated with a value u ∈ R

Now, let us assume that (C ,∂ ) is a G -chain complex, endowed with a
filtering function ϕ̄.
For every u ∈ R we can consider the chain subcomplex C ϕ̄≤u of C
defined by setting C

ϕ̄≤u
n := {c ∈ Cn : ϕ̄(c)≤ u} and restricting ∂ to

C ϕ̄≤u. C ϕ̄≤u is a subcomplex of C because of the properties in the
definition of filtering function on a chain complex (in particular,

∂ (C
ϕ̄≤u
n+1 )⊆ C

ϕ̄≤u
n ). We observe that C ϕ̄≤u will not be a G -chain

complex, since g(C
ϕ̄≤u
n ) 6⊆ C

ϕ̄≤u
n , in general.

Definition

The chain complex
(
C ϕ̄≤u,∂

)
will be called the chain subcomplex of

(C ,∂ ) associated with the value u ∈ R, with respect to the filtering
function ϕ̄.
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G -invariant persistent homology group of ϕ̄

Definition

If u,v ∈ R and u < v , we can consider the inclusion i of the chain
complex C ϕ̄≤u into the chain complex C ϕ̄≤v . Such an inclusion
induces a homomorphism i∗ : Hn

(
C ϕ̄≤u

)
→ Hn

(
C ϕ̄≤v

)
. We shall call

the group PH
ϕ̄
n (u,v) := i∗

(
Hn

(
C ϕ̄≤u

))
the n-th persistent homology

group of the G -chain complex C , computed at the point (u,v) with

respect to the filtering function ϕ̄. The rank ρ
ϕ̄
n (u,v) of this group

will be called the n-th persistent Betti number function (PBNF) of
the G -chain complex C , computed at the point (u,v) with respect to
the filtering function ϕ̄.
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PH
ϕ̄
n is invariant under the action of G

The key property of PH
ϕ̄
n is the invariance expressed by the following

result.

Theorem

If g ∈ G and u,v ∈ R with u < v, the groups PH
ϕ̄◦g
n (u,v) and

PH
ϕ̄
n (u,v) are isomorphic.

The previous theorem justifies the name G -invariant persistent
homology, showing that the PBNFs of a G -chain complex do not
change if we replace the filtering function ϕ̄ with the function ϕ̄ ◦g ,
for g ∈ G .
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A method to construct a suitable G -chain complex
(C̄ ,∂ ), endowed with a filtering function ϕ̄

Let X and (S(X ),∂ ) be a triangulable space and its singular chain
complex over a field K, respectively.

We recall that, by definition, every singular n-simplex in X is a
continuous function from the standard n-simplex ∆n into X .

Assume that a subgroup G of Homeo(X ) and a continuous function
ϕ : X → R are chosen.

For every u ∈ R, let us set X ϕ≤u := {x ∈ X : ϕ(x)≤ u}.

Let us consider the action of G on S(X ) defined by setting
g(σ) := g ◦σ for every g ∈ G and every singular simplex σ in X , and
extending this action linearly on S(X ).

(S(X ),∂ ) is a G -chain complex.
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Let us take a G -chain subcomplex (C̄ ,∂ ) of the
singular G -chain complex (S(X ),∂ )

Now, let us assume that we are able to find a non-trivial G -chain
subcomplex (C̄ ,∂ ) of the singular G -chain complex (S(X ),∂ ).
This corresponds to select some special chains in (S(X ),∂ ). This
choice is a key point in our procedure.

In this case we can show that there is a natural way to endow (C̄ ,∂ )
with a filtering function ϕ̄.
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We can endow C̄ with a filtering function

Let {σn
j }j∈J be the set of all (distinct) singular n-simplexes in X .

We can endow the chain complex C̄ with a filtering function ϕ̄ in the
following way.

If c equals the null chain in C̄n, we set ϕ̄(c) :=−∞.

If c is a non-null singular n-chain, we can write c = ∑
m
r=1 arσn

jr
∈ C̄n

with ar ∈K, ar 6= 0 for every index r , and jr ′ 6= jr ′′ for r ′ 6= r ′′. This
representation is said to be reduced. Now, we set ϕ̄(c) equal to the
smallest value u such that the corresponding sublevel set X ϕ≤u

contains the image of each singular simplex σn
jr

involved in the reduced
representation of c that we have considered. We observe that this
representation is unique up to permutations of its summands, so that
ϕ̄ is well defined. We shall say that the function ϕ̄ is induced by ϕ.
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An important assumption

We observe that, for every topological subspace Y of X ,
(C̄ ∩S(Y ),∂ ) is a chain complex over the field K.
(The symbol C̄ ∩S(Y ) denotes the chain complex whose n-chains are
the singular n-chains in Y that belong to C̄n.)

Before proceeding, we require that C̄ ∩S(Y ) verifies the property (∗)
that is described in the following slide.
This property will allow us to prove the finiteness of the persistent
Betti number functions of the G -chain complex C̄ .
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An important assumption

In order to avoid “wild” chain complexes, we also make this
assumption:

(∗) If X ′ and X ′′ are two closed subsets of X with
X ′ ⊆ int(X ′′), then a topological subspace X̂ of X exists
such that X ′ ⊆ X̂ ⊆ X ′′ and the homology group
Hn(C̄ ∩S(X̂ )) is finitely generated for every
non-negative integer n.

We wish to avoid chain complexes like the one where the 0-chains are
all the usual singular 0-chains of X and the only 1-chain is the
singular zero 1-chain of X .
We observe that (∗) is not as much an assumption about the
regularity of the topological space X , but rather an assumption about
the regularity of the G -chain complex.
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Finiteness of the persistent Betti number functions

Property (∗) allows to prove the next result, which is analogous to the
finiteness result proven for classical persistent homology.

Proposition

Assume (∗) holds. For every n ∈ Z the n-th persistent Betti number

function ρ
ϕ̄
n (u,v) of the G-chain complex (C̄ ,∂ ), endowed with the

filtering function ϕ̄, is finite at each point (u,v) in its domain.
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The importance of assumption (∗)

Remark

We stress the importance of the assumption (∗). It allows us to avoid
chain complexes like the one where the 0-chains are all the usual
singular 0-chains of X and the only 1-chain is the singular zero 1-chain
of X . Obviously, this is a G -chain complex for any subgroup G of
Homeo(X ). In this case, for any pair (P1,P2) of distinct points of the
topological space X , there is no singular 1-chain whose boundary is
the singular 0-chain P2−P1. Since the boundary homomorphism
from 1-chains to 0-chains is zero, no non-zero 0-chain is a boundary.
Hence the homology group H0(C̄ ) is not finitely generated, in general,
and the property (∗) does not hold. For example, it does not hold for
X ′ = X ′′ = X , independently of the regularity of the space X (unless
X is a finite set). It is easy to check that persistent Betti numbers are
not finite for the chain complex we have just described.
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Stability of G -invariant persistent homology 1/2

From now on, in order to avoid technicalities that are not relevant in
this lecture, we shall consider two PBNFs equivalent if they differ in a
subset of their domain that has a vanishing measure.

A standard way of comparing two classical persistent Betti number
functions is the matching distance dmatch, a.k.a. bottleneck distance.
(Here we identify persistent Betti number functions with the
corresponding persistent diagrams.) It is important to observe that, in
order to define it, we need the finiteness of the persistent Betti
number functions.

This distance can be applied without any modification to the case of
the persistent Betti number functions of the G -chain complex C̄ ,
because of the previously stated finiteness.
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Stability of G -invariant persistent homology 2/2

The following theorem shows that the matching distance between
persistent Betti number functions of the G -chain complex C̄ is a
lower bound for the natural pseudo-distance dG . In other words, a
small change of the filtering function with respect to dG produces just
a small change of the corresponding persistent Betti number function
with respect to dmatch. This property allows the use of PBNFs in real
applications, where the presence of noise is unavoidable.

Theorem

For every n ∈ Z, let us consider the n-th persistent Betti number
functions ρ

ϕ̄
n , ρ

ψ̄
n of the G-chain complex (C̄ ,∂ ), endowed with the

filtering functions ϕ̄ and ψ̄ induced by ϕ : X → R and ψ : X → R,
respectively. Then

dmatch(ρ
ϕ̄
n ,ρ ψ̄

n )≤ dG (ϕ,ψ)≤ did(ϕ,ψ) = ‖ϕ−ψ‖∞.
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An example illustrating our method 1/9

Let us consider an experimental setting where a robot is in the middle
of a room, measuring its distance from the surrounding walls by a
sensor, for each oriented direction. This measurement can be
formalized by a function ξ : S1→ R, where ξ (v) equals minus the
distance from the wall in the oriented direction represented by the
unit vector v , for each v ∈ S1.
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An example illustrating our method 2/9

Here are two instances ϕ and ψ of the function ξ for two different
shapes of the room.
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An example illustrating our method 3/9

Let R(S1) denote the group of orientation-preserving rigid motions of
S1 ⊂ R2. We observe that a homeomorphism f : S1→ S1 exists, such
that ϕ = ψ ◦ f and f /∈ R(S1). It follows that dHomeo(S1)(ϕ,ψ) = 0, so
that the direct application of classical persistent homology does not
give a positive lower bound for dR(S1)(ϕ,ψ), while we will see that
dR(S1)(ϕ,ψ) > 0.
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An example illustrating our method 4/9

We can consider the chain complex C̄ whose n-chains are all the
singular n-chains c ∈ Sn(S1) for which the following property holds:

(P) If a singular simplex σn
i appears in a reduced representation of c

with respect to the basis {σn
j } of Sn(S1), then the antipodal simplex

s ◦σn
i appears in that representation with the same multiplicity of σn

i ,
where s is the antipodal map s : S1→ S1.

In other words, in C̄ we accept by definition only the singular chains

in S1 that can be written in the form ∑
m
r=1 ar

(
σn

jr
+ s ◦σn

jr

)
.

It easy to check that (C̄ ,∂ ) is a R(S1)-chain subcomplex of the
complex (S(S1),∂ ). Every rotation ρ ∈ R(S1) commutes with the
antipodal map s and is a chain isomorphism from C̄ to C̄ .
Property (∗) holds for the R(S1)-chain complex that we have defined.
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An example illustrating our method 5/9

Referring to the two-rooms example, let us consider the birth of the
first homology class in the homology groups H0

(
C̄ ϕ̄≤t

)
and

H0

(
C̄ ψ̄≤t

)
, respectively, when the parameter t increases.

While the group H0

(
C̄ ϕ̄≤t

)
becomes non-trivial when t reaches the

value t0 = minϕ = minψ, the group H0

(
C̄ ψ̄≤t

)
becomes non-trivial

when t reaches a value t̄ > minϕ = minψ.

This is due to the fact that the sublevel set {x ∈ S1 : ϕ(x)≤ t0}
contains two pairs of antipodal points, while the sublevel set
{x ∈ S1 : ψ(x)≤ t0} contains no pair of antipodal points (see next
figure).
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An example illustrating our method 6/9
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An example illustrating our method 7/9

Therefore, the only points at infinity in the persistence diagrams
associated with the 0-th persistent homology groups of the G -chain
subcomplex C̄ of S(S1) with respect to ϕ̄ and ψ̄ are (t0,∞) and
(t̄,∞), respectively.

It follows that the matching distance between the 0-th persistent
Betti number functions of the R(S1)-chain complex C̄ with respect to
the filtering functions ϕ̄ and ψ̄ is at least t̄− t0 > 0.

By applying the Stability Theorem, we obtain the inequality
dR(S1)(ϕ,ψ)≥ t̄− t0. In other words, G -invariant persistent homology
gives a non-trivial lower bound for dR(S1)(ϕ,ψ), while the matching
distance between the classical persistent Betti number functions with
respect to the filtering functions ϕ and ψ vanishes.
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A general procedure to construct C̄ 1/3

The procedure to construct the chain complex C̄ that we have
illustrated can be generalized to triangulable spaces different from S1

and invariance groups G that are different from the group of
rotations. The main idea consists in looking for another subgroup H
of Homeo(X ) such that

1. H is finite (i.e. H = {h1, . . . ,hr});

2. g ◦h ◦g−1 ∈ H for every g ∈ G and every h ∈ H.

Due to the finiteness of H, the property 2 implies that the restriction
to H of the conjugacy action of each g ∈ G is a permutation of H.
The legitimate n-chains in our chain complex C̄ are defined to be the
linear combinations of “elementary” singular chains c that can be
written as c = ∑

r
i=1 hi ◦σ , where σ : ∆n→ X is a singular n-simplex

in X .
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A general procedure to construct C̄ 2/3

Because of the property 2 and the linearity of the action of each
g ∈ G , g (∑

r
i=1 hi ◦σ) = ∑

r
i=1 g ◦hi ◦σ = ∑

r
i=1(g ◦hi ◦g−1)◦ (g ◦σ) =

∑
r
i=1 hi ◦ (g ◦σ) is another legitimate chain in our chain complex C̄ ,

so that C̄ results to be a G -chain complex.

In the two-rooms example, we have chosen H = {id ,s} ⊂ G = R(S1),
where s is the antipodal simmetry. We recall that the filtering
function ϕ : X → R induces a filtering function ϕ̄ on the set of
legitimate chains, where ϕ̄(c) is the smallest value u such that the
corresponding sublevel set X ϕ≤u contains the image of each singular
simplex involved in a reduced representation of c , for every non-null
chain c ∈ C̄n.
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A general procedure to construct C̄ 3/3

If G is Abelian, a simple way to get a subgroup H of Homeo(X )
verifying properties 1 and 2 consists in setting H equal to a finite
subgroup of G . This is exactly what we did in the two-rooms
example, setting H = {id ,s} ⊂ G = R(S1).
If G is finite, a trivial way to get a subgroup H of Homeo(X ) verifying
properties 1 and 2 consists in setting H = G . This choice leads to
consider the quotient space X/G , provided that G acts freely on X .
However, our approach is more general. Indeed, in the two-rooms
example, if we set G equal to the (Abelian and finite) group
generated by the reflections with respect to the coordinate axes, we
could choose H equal to the group generated by the rotation of 2π/m
radians. In this case, if the homeomorphism g reverses the
orientation, then the conjugacy action h 7→ g ◦h ◦g−1 is not the
identity, since it takes each h to its inverse h−1. Furthermore, H 6⊆ G .
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Natural pseudo-distance associated with a group G

G -invariant persistent homology

G -invariant non-expansive operators

GIPHOD
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G -invariant non-expansive operators

The previous method presents some drawbacks:

• It requires to find a suitable nontrivial group H, associated with G .
This group could be difficult to find or not exist at all.

• The computation of the persistent homology group in degree n
with respect to the filtering function ϕ̂ : X

H → R requires a fine
enough triangulation of X that is invariant under the action of H.
This triangulation could be difficult to find or not exist at all.
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G -invariant non-expansive operators

Fortunately, an alternative approach is available.

We will describe it in the next part of this lecture.

This part is based on an ongoing joint research project with

Grzegorz Jab loński and Marc Ethier
Jagiellonian University - Kraków
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G -invariant non-expansive operators

Informal description of our idea

Instead of changing the topological space X , we can get invariance
with respect to the group G by changing the “glasses” that we use
“to observe” the filtering functions. In our approach, these “glasses”
are G -operators Fi , which act on the filtering functions.
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G -invariant non-expansive operators

Let us consider the following objects:

• A triangulable space X with nontrivial homology in degree k .
• A set Φ of continuous functions from X to R, that contains the set

of all constant functions.
• A topological subgroup G of Homeo(X ) that acts on Φ by

composition on the right.
• The natural pseudo-distance dG on Φ with respect to G , defined

by setting dG (ϕ1,ϕ2) := infg∈G ‖ϕ1−ϕ2 ◦g‖∞ for every ϕ1,ϕ2 ∈ Φ.
• The distance d∞ on Φ, defined by setting

d∞(ϕ1,ϕ2) := ‖ϕ1−ϕ2‖∞. This is just the natural pseudo-distance
dG in the case that G is the trivial group I = {id}, containing only
the identical homeomorphism.

• A subset F of the set F all(Φ,G ) of all non-expansive G -operators
from Φ to Φ.
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The operator space F all(Φ,G )

In plain words, F ∈F all(Φ,G ) means that

1. F : Φ→ Φ

2. F (ϕ ◦g) = F (ϕ)◦g . (F is a G -operator)

3. ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞. (F is non-expansive)

The operator F is not required to be linear.

Some simple examples of F , taking Φ equal to the set of all
continuous functions ϕ : S1→ R and G equal to the group of all
rotations of S1:

• F (ϕ) := the constant function ψ : S1→ R taking the value maxϕ;

• F (ϕ) := max
{

ϕ
(
x− π

8

)
,ϕ
(
x + π

8

)}
;

• F (ϕ) := 1
2

(
ϕ
(
x− π

8

)
+ ϕ

(
x + π

8

))
.
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The pseudo-metric DF
match

For every ϕ1,ϕ2 ∈ Φ we set

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(ρk(F (ϕ1)),ρk(F (ϕ2)))

where ρk(ψ) denotes the persistent Betti number function (i.e. the
rank invariant) of ψ in degree k .

Proposition

DF
match is a G-invariant and stable pseudo-metric on Φ.

The G -invariance of DF
match means that

DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2) for every ϕ1,ϕ2 ∈ Φ and every
g ∈ G .
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An equivalence result

We observe that the pseudo-distance DF
match and the natural

pseudo-distance dG are defined in quite different ways.

In particular, the definition of DF
match is based on persistent homology,

while the natural pseudo-distance dG is based on the group of
homeomorphisms G .

In spite of this, the following statement holds:

Theorem

If F = F all(Φ,G ), then the pseudo-distance DF
match coincides with the

natural pseudo-distance dG on Φ.
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Our main idea

The previous theorem suggests to study DF
match instead of dG .

To this end, let us choose a finite subset F ∗ of F , and consider the
pseudo-metric

DF ∗
match(ϕ1,ϕ2) := max

F∈F ∗
dmatch(ρk(F (ϕ1)),ρk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ.

Obviously, DF ∗
match ≤ DF

match.

Furthermore, if F ∗ is dense enough in F , then the new
pseudo-distance DF ∗

match is close to DF
match.

In order to make this point clear, we need the next theoretical result.
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Compactness of F all(Φ,G )

The following result holds:

Theorem

If (Φ,d∞) is a compact metric space, then F all(Φ,G ) is a compact
metric space with respect to the distance d defined by setting

d(F1,F2) := max
ϕ∈Φ
‖F1(ϕ)−F2(ϕ)‖∞

for every F1,F2 ∈F .
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Approximation of F all(Φ,G )

This statement follows:

Corollary

Assume that the metric space (Φ,d∞) is compact. Let F be a subset
of F all(Φ,G ). For every ε > 0, a finite subset F ∗ of F exists, such
that ∣∣∣DF ∗

match(ϕ1,ϕ2)−DF
match(ϕ1,ϕ2)

∣∣∣≤ ε

for every ϕ1,ϕ2 ∈ Φ.

This corollary implies that the pseudo-distance DF
match can be

approximated computationally, at least in the compact case.
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Let us check what happens in practice

A RETRIEVAL EXPERIMENT

ON A DATASET OF CURVES
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Let us check what happens in practice

We have considered

1. a dataset of 10000 functions from S1 to R, depending on five
random parameters (#);

2. these three invariance groups:
◦ the group Homeo(S1) of all self-homeomorphisms of S1;
◦ the group R(S1) of all rotations of S1;
◦ the trivial group I(S1) = {id}, containing just the identity of S1.

Obviously,
Homeo(S1)⊃ R(S1)⊃ I(S1).

(#) For 1≤ i ≤ 10000 we have set ϕ̄i (x) = r1 sin(3x) + r2 cos(3x) + r3 sin(4x) + r4 cos(4x), with r1 , .., r4 randomly chosen
in the interval [−2,2]; the i-th function in our dataset is the function ϕi := ϕ̄i ◦ γi , where γi (x) := 2π( x

2π
)r5 and r5 is

randomly chosen in the interval [ 1
2 ,2].
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Let us check what happens in practice

The choice of Homeo(S1) as an invariance group implies that the
following two functions are considered equivalent. Their graphs are
obtained from each other by applying a horizontal stretching. Also
shifts are accepted as legitimate transformations.
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Let us check what happens in practice

The choice of R(S1) as an invariance group implies that the following
two functions are considered equivalent. Their graphs are obtained
from each other by applying a rotation of S1. Stretching is not
accepted as a legitimate transformation.

Finally, the choice of I(S1) = {id} as an invariance group means that
two functions are considered equivalent if and only if they coincide
everywhere.
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Theoretical results

What happens if we decide to assume

that the invariance group is the group Homeo(S1)

of all self-homeomorphisms of S1?

66 of 101



The results of an experiment: the group Homeo(S1)

If we choose G = Homeo(S1), to proceed we need to choose a finite
set of non-expansive Homeo(S1)-operators. In our experiment we
have considered these three non-expansive Homeo(S1)-operators:

• F0 = id (i.e., F0(ϕ) = ϕ);

• F1 =−id (i.e., F0(ϕ) =−ϕ);

• F2 = 1
5 · sup{−ϕ(x1) + ϕ(x2)− 1

2 ϕ(x3) + 1
2 ϕ(x4)−ϕ(x5) + ϕ(x6)},

(x1, . . . ,x6) varying among all the counterclockwise 6-tuples on S1.

This choice produces the Homeo(S1)-invariant pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤2
dmatch(ρk(Fi (ϕ1)),ρk(Fi (ϕ2))).
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An important remark

It is important to use several operators. The use of just one operator
still produces a pseudo-distance DF ∗

match that is invariant under the
action of the group G , but this choice is far from guaranteeing a good
approximation of the natural pseudo-distance dG .

As an example in the case G = Homeo(S1), if we use just the identity
operator (i.e., we just apply classical persistent homology), we cannot
distinguish these two functions ϕ1,ϕ2 : S1→ R, despite the fact that
they are different for dG :
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The results of an experiment: the group Homeo(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group Homeo(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group Homeo(S1)

Here is the first retrieved function with respect to DF ∗
match:

71 of 101



The results of an experiment: the group Homeo(S1)

Here is the query function after aligning it to the first retrieved
function by means of a shift (in red).
The first retrieved function is represented in black.
The figure shows that the retrieved function is approximately
equivalent to the query function, by applying a shift and a stretching.
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The results of an experiment: the group Homeo(S1)

Here is the query function after aligning it to the first four retrieved
functions by means of a shift (in red).
The first four retrieved functions are represented in black.

73 of 101



Theoretical results

What happens if we decide to assume

that the invariance group is the group R(S1)

of all rotations of S1?
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The results of an experiment: the group R(S1)

If we choose G = R(S1), in order to proceed we need to choose a
finite set of non-expansive R(S1)-operators. Obviously, since F0, F1

and F2 are Homeo(S1)-invariant, they are also R(S1)-invariant. In our
experiment we have added these five non-expansive R(S1)-operators
(which are not Homeo(S1)-invariant) to F0, F1 and F2:
• F3(ϕ) := max{ϕ(x),ϕ(x + π)}
• F4(ϕ) := 1

2 ·
(
ϕ(x) + ϕ(x + π

4 )
)

• F5(ϕ) := max{ϕ(x),ϕ(x + π/10),ϕ(x + 2π

10 ),ϕ(x + 3π

10 )}
• F6(ϕ) := 1

3 ·
(
ϕ(x) + ϕ(x + π

3 ) + ϕ(x + π

4 )
)

• F7(ϕ) := 1
3 ·
(
ϕ(x) + ϕ(x + π

3 ) + ϕ(x + 2π

3 )
)

This choice produces the R(S1)-invariant pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤7
dmatch(ρk(Fi (ϕ1)),ρk(Fi (ϕ2))).
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The results of an experiment: the group R(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group R(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group R(S1)

Here is the first retrieved function with respect to DF ∗
match:
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The results of an experiment: the group R(S1)

Here is the query function after aligning it to the first retrieved
function by means of a shift (in red).
The first retrieved function is represented in black.
The figure shows that the retrieved function is approximately
equivalent to the query function, via a shift.
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The results of an experiment: the group R(S1)

Here is the query function after aligning it to the first four retrieved
functions by means of a shift (in red).
The first four retrieved functions are represented in black.
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Theoretical results

Finally, what happens if we decide to assume

that the invariance group is the group I(S1) = {id}

containing only the identity of S1?

This means that the “perfect” retrieved function

should coincide with our query.
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The results of an experiment: the group I(S1)

If we choose G = I(S1) = {id}, in order to proceed we need to choose
a finite set of non-expansive operators (obviously, every operator is an
I(S1)-operator).
In our experiment we have considered these three non-expansive
operators (which are not R(S1)-operators):
• F8(ϕ) := sin(x)ϕ(x)

• F9(ϕ) :=
√

2
2 sin(x)ϕ(x) +

√
2

2 cos(x)ϕ(x + π

2 )
• F10(ϕ) := sin(2x)ϕ(x)

We have added F8, F9, F10 to F1, . . . ,F7.

This choice produces the pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤10
dmatch(ρk(Fi (ϕ1)),ρk(Fi (ϕ2))).
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The results of an experiment: the group I(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group I(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group I(S1)

Here is the first retrieved function with respect to DF
match:
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The results of an experiment: the group I(S1)

The first retrieved function is represented in black.
As expected, no aligning shift is necessary here.
The figure shows that the retrieved function is approximately equal to
the query function.
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The results of an experiment: the group I(S1)

Here we show again the query function and the first four retrieved
functions (in black).
The figure shows that the retrieved functions are approximately
coinciding with the query function.
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An open problem

We have proven that if Φ is compact, then DF
match can be

approximated computationally.

However, this result does not say which set of operators allows for
both a good approximation of DF

match and a fast computation.

Further research is needed in this direction.
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Natural pseudo-distance associated with a group G

G -invariant persistent homology

G -invariant non-expansive operators

GIPHOD
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GIPHOD

GIPHOD: joint project with Grzegorz Jab loński and Marc Ethier
(Jagiellonian University - Kraków)
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

GIPHOD is an on-line demonstrator, allowing the user to choose an
image and an invariance group. GIPHOD searches for the most similar
images in the dataset, with respect to the chosen invariance group.

Purpose: to show the use of G -invariant persistent homology for
image comparison.

Dataset: 10.000 grey-level images obtained by adding randomly
chosen bell-shaped functions.

GIPHOD SHOULD BE AVAILABLE IN THE NEXT FEW
MONTHS.
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

We are going to show the results of an experiment where the
invariance group G is the group of isometries:

Some data about the pseudo-metric DF
match in this case:

• The images are coded as functions from R2→ [0,1];

• Mean distance between images: 0.35752;

• Standard deviation of distance between images: 0.14881;

• Number of GINOs that have been used: 12.
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

List of GINOs that have been used in the following image
retrievals, where the invariance group G is the group of
isometries:

• F (ϕ) = ϕ.
• F (ϕ) := constant function taking each point to the value∫

R2 ϕ(x) dx.
• F (ϕ) defined by setting

F (ϕ)(x) :=
∫

R2
ϕ(x−y) ·β (‖y‖2) dy

where β : R→ R is an integrable function with∫
R2 |β (‖y‖2)| dy ≤ 1. Four GINOs of this kind have been used.

• The opposite operators −F of the six previous GINOs.
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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Conclusions

In this lecture we have shown that

• Persistent homology can be adapted to proper subgroups of the
group of all self-homeomorphisms of a triangulable space, in two
different ways. Both of these methods are stable with respect to
noise.

• In particular, the approach based on non-expansive G -operators
can be used for any subgroup G of Homeo(S1). Two experiments
concerning this method have been illustrated, showing the possible
use of this approach for data retrieval.
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