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Abstract. — In this paper the problem of defining some tools in ovder to capture
the intuitive concept of «shape of an object» is studied and some approaches
and solutions are considered together with some of their properties.

Introduction.

The ordinary tools of (algebraic) topology do not yet allow an auto-
matic and satisfactory treatment of «shape» in the intuitive, ordinary
sense, as pointed out for example in [J]: everyone considers different the
shapes of a dumbbell and of a sphere although the manifolds that they
represent are diffeomorphic. Nevertheless, homotopy is one of the most
successful theories in the study of topological spaces, and particularly of
manifolds. This paper is intended to try to bridge the gap, by considering
length and other real functions as additional ingredients in the defini-
tion of some equivalence relations for loops and ordered k-tuples of
points. The objects treated here are compact submanifolds of Euclidean
spaces. There aren’t any compelling reasons for treating embedded
manifolds and not simply Riemannian manifolds but we prefer to pro-
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ceed so for two motives. The first one is that the intuitive concept of
shape is not independent of the considered immersion in the environ-
ment space: no one would say that the surface of a bowling ball and the
one of a sphere with some protuberances have the same shape, also in
the case that they are isometric. Anyway, not all the tools proposed in
this paper will be so powerful to take the immersion into consideration.
The second reason is that this procedure simplifies the exposition. The
nature of the equivalence classes is studied: their finiteness in the most
interesting cases and their topological characteristics. We point out that
the knowledge of the number of such equivalence classes (that is the
functions f%, fV, 2 that will be defined in this paper respectively for the
relation of L-, V- and D-homotopy) for two manifolds allows a quantita-
tive evaluation of the difference between the shapes of such manifolds
measured by using a suitable distance (which will be described in a
forthcoming paper). However the purpose of this paper is not that of il-
lustrating the usefulness of this approach to the problem but that of
defining the necessary concepts and of studying their properties by in-
serting the treatment in a general context. A longer term goal is to en-
dow the sets of equivalence classes with some sort of structure, to be
compared with the classical ones (homotopy groups, regions of constant
sign curvature ...). Section 1 contains the general definitions. Section 2
treats the L-homotopy of loops and the related function f L. Section 3 is
the core of the paper: it provides theorems on the L-homotopy of suffi-
ciently close loops, on the finiteness of the set of ¥ — L-homotopy classes,
on the existence of minimal loops in each class, on the relation of L-ho-
motopy with geodesics (much in the spirit of [Kl, 2.1.3], [Ha, section 37])
and on the L-homotopy of the even-dimensional orientable manifolds
with sectional curvature everywhere positive. Section 4 uses discrete
sets of points instead of loops, substituting length with either volume or
diameter. Section 5 points out results and examples concerning this last
approach to the problem.

1. - The general approach to the problem.

In order to construct a method to distinguish the shapes of two mani-
folds in accordance with the intuitive coneept of shape we can proceed in
the following way. First of all we can consider a topological space 3
linked with the studied manifold 91 in a way that we choose arbitrarily
(in this paper we shall illustrate some possible choices) and define on J a
continuous real function ¢. Then for every x € R we can define 3, as the
set {ueS: p(u) <x}. Furthermore for every y R we can define the
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equivalence relation ®, on J by saying that for u, ve J we have uR, v if
and only if either u = v or a continuous function H,,:[0, 11— 3 exists
such that H,,(0) =, H,,(1) = v and ¢(H,,(r)) <y for 7€ [0, 1]. Final-
ly we can define f(I1, x, y) as the number of equivalence classes in
which 3, is divided by ®,. Obviously the «complexity» of f(I1, -, -) is
linked with the «complexity» of the shape of 9T and this is the reason for
which we are interested in such a function (in this paper we shall also
study some properties of the function f and expose some examples). In
the following sections we shall use the above-mentioned method in order
to define the concepts of L-homotopy, V-homotopy and D-homotopy. In
L-homotopy 3 will be the set of all the piecewise C! loops in a manifold
JI with the topology induced by an opportune distance d and ¢ will be
the length function. In V-homotopy ¥ will be the set of all the ordered
(m + 1)-tuples of points of a manifold 9 c E™ with the topology induced
by an opportune distance d., and ¢ will be the oriented volume function
applied to the convex hulls of the considered (m + 1)-tuples. In D-homo-
topy < will be the set of all the ordered (k + 1)-tuples (k € N) of points of
a manifold oM c E™ with the topology induced by an opportune distance
d and @ will be the diameter function applied to the convex hulls of the
considered (k + 1)-tuples.

REMARK 1.1. As a matter of fact we could define the sets J, and the
relations &, in any way, without considering a topology on J and the
continuous functions ¢ and H and therefore we could apply such a
methodology also to study a set devoid of a topological structure.

2. - L-homotopy: definitions.

DEFINITION 2.1. Let ke N , k= 1. An n-dimensional topological sub-
manifold 91T, of E™ is said to be piecewise C* (or C* triangulable) if there
exist an n-dimensional PL manifold ¥, = |K, | (X, combinatorial mani-
fold) and a homeomorphism ¢: ¥, — 91, such that the restriction of ¢ to
|5| for every n-simplex s of K, is a diffeomorphism of class C*. ¢ will be
said to be a piecewise C* diffeomorphism. In this case if g is a function
from 91, to another C* manifold ,, such that gog is a continuous fune-
tion from V), to N, and the restriction of go¢ to |3| for every n-simplex s

“of K,, is a C* function then g will be said a piecewise C* function.

NoTE. Because of a well-known theorem every C ® compact manifold
is also piecewise C* (see [C] and [F])).



274 PATRIZIO FROSINI [4]

DEFINITION 2.2. Let 91 be a piecewise C ® n-submanifold (z > 0) of
E™ and let P(91) be the set of all piecewise C! (and therefore rectifiable)
loops as maps from I=[0, 1] to . We shall denote respectively by
d/dt * and dz/dt ~ the right and the left derivative of the loop & with re-

1
spect to the parameter ¢ and by £(x) = j
0

dr

Etj(t) ldt the length of x.
Then for every real number % we can define an equivalence relation on
P(91) and all its subsets: for every pair (a, B) in P(91)? we shall say that
a and B are y — L-homotopic if either they are the same loop ar a funec-
tion H(t, ) exists such that:

iy HeC*(I x 1, M),
i) H(t, 0) = a(t) and H(t, 1) = B(t) for every tel,
iii) H(0, ) = H(1, 1) for every tel,

iv) for every fixed rel, defining = .(t) = H(¢, t) for t eI, we have
that #,e P(ON) and L&(7w,) <y

In such a case we shall write a = ,6 and say that H is a y L-homo-
topy between a and . In the case y = £(a) the symbol a = B means, in

plain words, that we can «transform with continuity a into [3 without ex-
ceeding the length y».

On P(sn) we can define a distance: for every pair (a, 8) e P(I1)? we
set d(a, B) = sup |lat) — ).

tel

REMARK 2.1. In this paper the distance on I will be always the one
induced by the Euclidean metric in E™ (obviously the topology that we
obtain this way is equal to the one induced by the geodetic distance).
Furthermore we point out that d(a, B) indicates the sup not of the
geodetic but the Euclidean distances between corresponding points in
the loops a and 8. Moreover we observe that the function length is not
continuous with respect to the topology induced by the distance d. In
spite of this fact we shall use the distance d: the reason is that Lemma
8.2 in the following section does not need a stronger distance in order to
work.

DEFINITION 2.3. Let 2 and y be real numbers. Let us denote by
P(91, x) the subset of P(J1) containing the loops of length less than or
equal to x. Let us denote by fL(am, «, y) the number of equivalence
classes into which P(9, x) is divided by the relation of y — L-homotopy
if such a number is finite, + c« otherwise.
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Fig. 2.1.

NoTE. The usefulness of the index «1» in the symbol «f¥ (91, x, y)»
will be clear in section 3, Remark 3.4.

REMARK 2.2. Of course if =0 and >y then f{(9, %, y) = + =
and if x < 0 then f¥ (9, x, y) =0. The values f¥ are interesting for 0 <
<z <y. However it is possible that f{ (9%, z, y) = + « also in the case
0 <x =y, as the following example shows.

ExampLE 2.1. Let us consider the piecewise C *2-manifold 9%, c E?
obtained by the rotation around the z-axis of the curve represented in
figure 2.1. The equation of the right hand side curve (the left hand side
one is symmetrical) is the following:

1
+—-exp(— . )-sinz(—l-) forz#Oand:x:=—1—forz=0.
103-22 2 4

It is immediate to verify that f{ (3, z/2, 7/2) = + .
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REMARK 2.3. We prefer to study the length function and not the en-
ergy function of paths: this choice simplifies some results connecting the
function % to the possibility of measuring how different the shapes of
two manifolds are (See the Introduction).

3. - L-homotopy: basic results.

Theorem 3.1 will show that the situation is not as bad as it seems with
regard to the possibility that f¥ has + o as a value. In order to prove it
we must use the following Lemmas (3.1) and (3.2) and Corollary (3.1).
Furthermore in this section we will point out other useful results. The
following theorems are well-known under hypotheses similar to the ones
we are interested in and their proofs are given here only for seek of com-
pleteness although it is possible to adapt to our purposes methods and
results exposed, for instance, in[Kl] or M]. The reason for which we
don’t proceed this way is that the classical results concern the function
«energy» and not the function «length» (we have already explained why
we prefer to use the latter). Moreover they deal with the minima, not in
every single equivalence class in P(J1, #) with respect to y — L-homo-
topy, but globally either in P(I%, %) or in the homotopy classes of
P(an, x) (clearly we are interested in the first case). So, all things con-
sidered, it is simpler to use special proofs.

LEMMA 3.1. Let 91 be a piecewise C* n-submanifold of E™. If g: 1—
— 1 is a piecewise C* function with g(0) =0 and g(1) =1, 7, e P(I, x)

and mo=m, 00 then weP(IN,x) and ﬂl%ﬂg for every
Yy=x.

ProorF. It is trivial to verify that z, e P(I, «). Considering the x —
— L-homotopy H(t, ) =m,;(t-(1 —1)+ g(t)-7) we have that Jrl%:rz.
Therefore 4 % 7, for every y=zx. =

COROLLARY 3.1. For every me P(IN, x) with I piecewise C~ n-sub-
manifold of E™ there exists another loop weP(IM, x) that is x — L-

homotopic to m and such that <x+1 for Ae[0,1) and

d7 }
e (]
’d;w()

”C;—”_u) <w+1 for Ae(0, 1] (A parameter of 7).



(7] METRIC HOMOTOPIES 277

Proor. We can consider the funetion A.:[0,1]—[0, 1] so de-
fined:

Aa(l) =

£(n) +1

This function is continuous and invertible (because it is a monotone in-
creasing function). Moreover, by calling ¢, ..., t;_; the points where A4,
is not differentiable and setting {,=0 and £, =1, we have that the
restriction of A, to every closed interval [t;,¢;,;] for 0<sj<k -1
is C'! with positive derivative. So its inverse function ¢ (1) is also contin-
uous (because the domain of 1, is compaet) and its restriction to every
closed interval [A,(t;), A,(t;,1,] for 0<j<k—1 is C! with positive
derivative. Therefore t, is a piecewise C' diffeomorphism. Moreover

t.(0)=0and {,(1)=1 and by Lemma 3.1 we have n%ﬁ if we define

. dn
TI=mnot,. We can verify that ‘—ﬂ:(ﬂ,)H<£(n)+1 <z +1 for every

ﬁ”—(ﬂn(i)) =

[ o] ceam /(HH_M(UH)
g™

+€[0,1) |in fact we observe that if [0, 1] then

2ol 2

<L(m)+1|

Likewise, we have that if A< (0, 1] then

”-—(l) <P +l=E86+1, L

LEMMA 3.2, For every closed (i.e. compact and without boundary)
C~ submanifold I of E™ and every pair (e, ) with €e>0,x=0,a 6 =
= 0(I, e, x) > 0 exists such that if two loops a and B tn P(IN, x) are dis-
tant less than & with respect to the distance d(a, B) = sup ||a(t) — B(?)]

tel

defined on P(I) then they are y — L-homotopic for every y = x + ¢.

REMARK 3.1. Before proving the lemma, if we consider an n-dimen-
sional PL manifold V¥, = |K, | (K, combinatorial manifold), we observe
that if ., 7, P(%,, ) and for every tel m,(¢) and m,(t) belong to the
space |5| of the same n-simplex s of K, then ; and 7, are x — L-homo-
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topic (and therefore also « — L-homotopic for every y > ) because the
function H , ,,(t, 7) = 7,(t) (1 — 1)+ m,(t) 7 is an x — L-homotopy be-
tween 7, and 7, in 9, (in fact £(H , ,,(t, 7)) S L(w) (1 —7) + L(7wy):
-7 < & for every rel). therefore Lemma 3.2 is not anti-intuitive, in spite
of the fact that the distance d does not involve the derivatives of the
paths.

PrROOF OF LEMMA 3.2. Because of the compactness of 9N a 6,;>0
exists such that if two points P, @ of I are distant less than &, then
there exists one and only one minimal geodesic y(P, Q): I— I with
y(P, @)X0) =P and y(P, @)1) = @ which depends smoothly on its end-
points P, @ (See [M], Ch. II, section 10, Corollary 10.8, p. 62). Therefore
if d(a,B)<d6; we can define H,:IxI—=>M as H 4t 1) =
= y(a(t), B(t))(7) for t, T eI and say, since a and § are piecewise C', that
H,; is a piecewise C' function. In particular H . is continuous and,
defining 7, (t) = H ,5(t, 7) for (, ) e[ X 1, it results 7, € P(9) for every
fixed Tel. Now let us study the length of &, for every rel. For every
n >0 we have:

i) Since H .4 is piecewise C' on the compact I x I we can choose a
finite set {to, t1, ..., tx} for which
k=1
) S (L) 2 [|Hopltirr, ©) = Hepllss D
’L:

for every tel.

ii) Because of the properties of the geodesics a &, exists with
0 <52-<-..(51 such that if d(a, ﬁ) <0, then

IH o5(tis1, 7) = H gt DI <
< (1 + ) (altisy) — alt) (1= + BEi 1) — BE))-Tl
for every tel. So, if d(a, f) <6, then by i) and ii) we have

k-

1
L)< (1+ n)z-iZO [(at ;1) —at)) (1—1)+ (BEir1) LS

k-1 k-1
<@t (1-0 S lattis - att]+ 7 3, IBttie = el ) <

(14 17)2-((1 —)La)+r-LB))<=(1+ n?x.

For n<V1+¢/x—1 we obtain that £(n,)sx+e¢ and therefore
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H, is an (x + ¢)— L-homotopy. For &(JN, e, ) =0, the thesis is
proved. =

REMARK 3.2. Lemma 3.2 implies that for y >« every equivalence
class in P(I, x) / % is a closed and open set in P(I, x) with respect to
the topology induced by the distance d(a, 8) = sup ||la(t) — B(t)].

Moreover we observe that if C is an equivaienéfaﬂclass in P(t, x) / %
and for every positive natural number k C; is the equivalence class in
PO, x)/ " Jr%/k) that contains C then C = kDIC . and so C is a closed set
because all the sets C; are closed.

THEOREM 3.1. If I is a closed C ™ submanifold of E™ and x < y then
fEOM, ®, y) < + .

PROOF (INDIRECT). Let us suppose f4 (91, , ) = + «. Then =0
and there is an infinite set S of loops in P(I1K, x) pairwise non-y — L-ho-
motopic. By using Corollary 3.1 (that is replacing every loop 7 with &) we
can suppose that all the loops in S have right and left derivative of norm
less than @ + 1 and therefore that the loops in S are equiuniformly con-
tinuous. Therefore (by recalling also that 91T is compact) we can use the
generalized Arzeld’s theorem with respect to the distance d(a, 8) =
= sup |la(t) — B(t)|| (See [KF], Ch. II, Section 18, Theorem 7) and say that

tel :
there is a sequence of loops of S that converges in C * (I, ) with respect

to the topology indueed by the above-mentioned distance. This fact econ-
tradicts Lemma 3.2. =

THEOREM 3.2. Let I be a closed C* submanifold of E™. Then, for
chosen x, yeR with x =0, every equivalence class of P(IN, x) with
respect to y — L-homotopy contains at least one loop T which is a global
minimum point in the considered class for the function £(x) (length

of 7).

Proor. If x>y the thesis is trivial because every equivalence class
contains only one loop. On the opposite, if x < y, we shall prove the exis-
tence of a global minimum point for £ in the considered class by con-
structing a sequence of loops converging to such a point. We proceed so:
for every y — L-homotopy class C of P(I1, ) we can choose in it a se-
quence (7 ;); . of loops such that for every i e Nz, is ¥y — L-homotopic to
T;.1and zll)rrol° £(m;) = w, where o is the inf of the lengths of the loops in

the considered class. Unfortunately this is not the «right» sequence yet
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because it may not converge to a piecewise C' loop but now we shall use
it to define another sequence (7;);.n (Whose loops will be obtained re-
placing «little ares» of the z;’s with geodetic arcs) which will converge to
a global minimum point for £ in C. First of all by Corollary 3.1 we can re-
place every z; with 7;: however, for the sake of simplicity, we shall con-
tinue to use the symbol ¢ for the parameter and the symbol z; for the
loop.

If y>ux let us proceed in the following way. Let us consider 6 =
=0(IM, (y—x)/2, x) such as in Lemma 3.2 and the points ¢;= (j-6/2) /(x+1)
(j e N) such that 0 <¢; < 1. Moreover, if ¢, is the greatest of the consid-
ered points ¢; and is not 1, set )., =1: let T be the set of the points ¢,
included in [0, 1]. For every loop &; and every ;= [¢;, t;.,] with ¢,
t;+1€T we choose in 9T a C™ path B%:[0, 11— I of minimum length
such that 84(0) = ;(¢;) and B4(1) = m;(t;): it will exist because of the
compactness of I (see [B], Ch. VII, Section 7, Lemma 7.8 and Theorem
7.7). If 8% is not econstant we shall suppose that it is parameterized by the
parameter 7; = s /£(B%) where s ; and £(8%) are respectively the curvi-
linear abscissa and the length of B%: so it will be a geodesic. For the
properties of paths of minimum length and geodesics see [B]. Then for
every ie Nift;,¢;.,e T we define 7;(¢) = B4 ((t — t;) /(t; .. —t;)) for t e
eL. Since it results ||7;(t) — 7;(t)|| < 6 for tel (in fact, because of our
choice of 6 and the chosen parameterization of the loops 7;, it results
l7;(8) — 7;(¢;)| < 6/2 and |[7,(¢) — 7,(¢,)|| < 6/2, and moreover we have
7i(t;) =m;(t;) for every t,e T, tel;), we can say that the loops 7;(t) are
all ¥ — L-homotopic by using Lemma 3.2.

Finally, if ¥ = « we can observe that there are two possibilities: either
all the loops m; have the least length in their equivalence class in
P(I1, x) with respect to y — L-homotopy or not. In the first case the the-
sis of theorem 3.2 is trivial, in the second one we can repeat the same
above-showed argument after replacing & with £(x;) <z for a great
enough & and the sequence (i7;); .y With the sequence (71; . 4 )icx. So we
can suppose that we are not in the trivial case and that the loops 7;(t)
are all ¥ — L-homotopic. Moreover we have lim £(7;) = lim £(7;) = 0,

) i—>x
because for every @ £(7;) < £(;). Now we can extract from (7;);.~
a subsequence (7; ),.n such that the corresponding sequences
(B4, (t:))ken and ((d/dr i) B, (E;))yen converge for every t;e T In fact
we know that geodesics are smooth paths (see [B], Ch. VII, Section 5)
and therefore that the functions 3% , are right-derivable at every t;eT
with 0 <t;<1. The subsequence exists becaues I is compact and be-
cause |(d/dz ;) B4, ()|l = £(B,) <« for every ke N and ¢, T with 0 <
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<t; <1 (for B, non-constant the reason is in the chosen parameterization
;) and therefore the above-mentioned sequences are both bounded.
For the sake of simplicity we shall continue to call (7;);. the extracted
subsequence. Now let us consider the loop 7 so defined: for every t;eT
with 0 <t;<1 let #7:[0, 1]— 91 be the C* path that is solution of the
system of differential equations that defines geodesics with the initial
conditions B7(0) = tlingo Bi(t;) and (d/dt;)p7(0) = il_i_)r{.lc (d/d i) Bilt;)
(t; is the parameter of the solution /). By using the theorem about the
dependence of the solution of a system of differential equations on the
initial conditions (see [Hu] and [B]) we can prove that for every j with
t;eT and 0<t;<1 (Bi)n converges uniformly to f’ in I and
((d/dt}) B%)ier converges uniformly to (d/dz;") p? in L. Therefore by
setting 7(t) =B’ ((t—t;) /(t;+1—1;)) for tel; we have that (;);en con-
verges uniformly to 7 in I, that 7 € P(9%) and that £(7) = lll)n; £(7@;) =
= w. So, by Lemma 3.2 (which implies the closure in P(I, x) of the class
of y — L-homotopy of the paths 7;) 7 is ¥ — L-homotopic to every loop
in the sequence (7;); .~ and 7 is the wanted global minimum point for £
inC. =

THEOREM 38.3. Let I be a C ™ n-submanifold without boundary of
E". If0 <z <y and a e P(IN, x) has the minimum length in its equiva-
lence class of P91, )/ % then o 18 © — L-homotopic to a closed geodesic
obtained by a reparameterization of o.

ProorF. If a is constant then it is already a closed geodesic. Let us ex-
amine the case of a non-constant. We know that, by setting

t

1
t — ‘
9(t) s J

da
du”

(w) || du

(i.e a multiple of cumi%inew abscissa), a loop 8 € P(IK, x) exists such that
B-g = a. It results a = § by Lemma 3.1 because g is piecewise C Lg(0)=
=0and g(1) = 1. Now let us prove that § is a geodesic. First of all we ob-
serve that because of the compactness of I a 6 > 0 exists such that if two
points P, @ whichever of 9 are distant less than ¢ with respect to the
distance induced by the Euclidean distance on E™ then there exists one
and only one minimal geodesic y(P, Q): [— I with y(P, @)(0) =P and
v(P, Q)1) = @ which depends smoothly on its endpoints P, @ (cf. [M],
Ch. II, Section 10, Corollary 10.8, p. 62). If § were not a geodesic then (in
case by translating of a constant modulus 1 the parameter ¢) there would
be two numbers t; and t, with 0 <, <ty <1 and ||8(¢,) — B(®)|| < & for
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te[t,, t2] such that

ﬂ 2 (t)”dt > f
tq 0

dt
(see [B], Ch. VII, Section 7, Corollary 7.5).
So, by defining

%y(ﬁ(tl), B(t )W) H du

-

B(t) =
% v(B(t 1), ﬁ(tz_))((t“h)/(tz“tl)) if t,stst,,
B(t) it either 0 <t <t, or ty,<t<t,

we could say that B eP(91, ). Moreover, by defining
H(t, 1) =

y(B(t ), Bty + T+ (Es =t = t1) [(o(E5 — 1))
= iftlstst1+r(t2_tl) and0<1"-<..1,

B(t) iteither 0<t<t,ort;+7-(,—t;))<t<l or =0

we would have that H is an « — L-homotopy between g and B. This fact
would be a contradiction because £2(8) < £(8) and we have supposed that
B is a global minimum point for the function £ in its equivalence class in

P(o, x) / % So B is the wanted geodesic. ®

Note. We point out that for y = x the existence of a y — L-homotopy
between 5 and B shown in the previous proof cannot be simply derived
from Lemma 3.2 by using the fact that d(8, ) is small, because that lem-
ma does not work for ¥ = x. So we had to produce a slightly more compli-
cated proof.

PROPOSITION 3.1. Let I be a closed C* n-submanifold of E™. If
G(I, x) is the set of the closed geodesics in I with length less than or
equal to x, then for 0 s x <y P(IN, x) / % and G(IN, x) % have the same
cardinality.

Proor. By theorems 3.2 and 33. =

REMARK 3.3. By Proposition 3.1, in order to study the function
L(am, x, y) we may study the closed geodesics in 1. Therefore it is in-
teresting to consider results about the number of closed geodesics on a
manifold. For some examples we refer to [T] and [BH]. In [S] Sou¢ek has
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proved that the set I' of lengths of all closed geodesics on a real-analytic
ecompact Riemann manifold is always a discrete set. By Proposition 3.1
this fact proves that if I is real-analytic and compact then the set of the
discontinuity points of f¥ (9%, @, ), as a function of x, is discrete for
every fixed y.

Now as an example of the usefulness of the results mentioned in this
section we can compute f¥ (9, x, y) when I is orientable, even-dimen-
sional and has everywhere positive Gauss curvature with respect to
every bidimensional direction.

PRrROPOSITION 3.2. Let 9N be a smooth, orientable, closed, even-di-
mensional and connected submanifold of E™ with Gauss curvature
everywhere positive with respect to every bidimensional direction.
Then we hove that

0 if #<0,
fron, @, 9) =41 if 0<e<y,
+o if x=20 and x>y.

Proor. Because of Remark 2.2 we have to consider only the case
0=zx<y. Since for 0 =z <y every equivalence class in P(JK, =)/ %
contains at least a global minimum point that is a geodesic (see theorems
32 and 3.3), by using the Synge’s Lemma (see [GKM], Section 7.5) we
can say that such a minimum point is a constant path. Since two constant
paths on a connected manifold are always 0 — L-homotopie, we have that
in the case 0 sz <y PO, x)/ % contains only one equivalence class

and therefore fX (9, z,y)=1. =

REMARK 3.4. The concept of L-homotopy can be generalized by sub-
stituting loops with piecewise C! functions from S* to the manifold 1
(k =1 fixed) and the function length with the more general function vol-
ume. This procedure leads in a natural way to the function f% (9, z, %)
(which generalizes the function f7(9%, %, )). We skip the obvious
definitions.

4. - V-homotopy and D-homotopy.

L-homotopy is a natural development of homotopy but is a non-sim-
ple tool to use. In fact it is difficult to compute the equivalence classes
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Fig. 4.1.

with respect to L-homotopy even though we can use, for example, results
like Proposition 3.1. However it is possible to define other relations simi-
lar to L-homotopy but simpler to study in the concrete, although less
naturally correlated to classical homotopy theory.

In this paragraph we shall present two of these relations, which we
shall call V-homotopy and D-homotopy, but before we define them we
shall expose their motivation. Let us consider the surface N obtained by
the rotation around the y-axis of the curve represented in fig. 4.1.: we
have a sphere with two hollows. It is impossible «to grasp» .\ by a loop
because N is isometric to S? and so, for Proposition 3.2, every loop of
length A on N (as it happens in S?) is 4 — L-homotopic to a constant loop,
but it is possible «to grasp» N by two of our (or a robot’s) fingers in such
a way that the tips of our fingers cannot be joined if first they don’t move
apart. On the contrary we cannot «grasp» S? by two fingers. So N and
S? are undistinguishable for L-homotopy but not «for our fingers»: L-ho-
motopy does not consider the immersion as a part of the concept of
«shape» and this may be a fault (compare with what has been pointed out
in the introduction of this paper). Moreover we observe that the proce-
dure of «grasping by our fingers» can be used also to study 1-manifolds
while L-homotopy is trivial and useless in this case. These are the rea-
sons for which we want to formalize the above-mentioned idea of grasp-
ing an object «by using our fingers». The first formalization that we ex-
pose is V-homotopy.
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DEFINITION 4.1. Let 9 be a piecewise C * n-submanifold (n > 0)
of E™ and let us consider the set ™ *! of all ordered (m + 1)-tuples
of points in . then for every real number y we can define an equiva-
lence relation on I™*! and all its subsets: for every pair
Py, ..., P,.), (@, ... @) in M™F1x ™*! we shall say that
(Py,...,P,) and (Qq, ..., @,,) are y — V-homotopic if either they are
the same ordered (m + 1)-tuple or a function H(i, r) exists such
that:

iy HeC°({0, ..., m} x I, 9n) where 1=[0, 1] (the topology on
{0....,m} xIcE?® is that induced by the Euclidean topology on
E?),

ii) H(i, 0) = P; and H(i, 1) =Q; for every ie {0, ..., m},

iii) for every rel wol((H(0,7,), H(Q1,7), ..., H@E, 1), ..,
Him, 1))) <y, vol being the function that takes every ordered (m + 1)-
tuple into the value that the form (1 /m!) dx; Adxs A ... Adx,, takes on
the ordered m-tuple of vectors of R™(H(1, 7)— H(0, ), H(2, 7) -
—H(0, 1), ..., Hom,t)— H(0,7)). In such a case we shall write

AP g ooy ) %(QO, ooy @) and say that H is a y — V-homotopy be-

wween (P, ..., P,) and (Qq, ..., @,,). On M™*! we can define a dis-
tance d,,: for every pair (P, ..., Ppn),(Qoy - @ ) el b o g
we set &, (Poy ooy Py (@oy ooy @) = max [P —Qll.

0sism

In the case G 2Pal T s vy P ) the symbol
(P gy eneg P o) %(QO, ..., &@,,) means, in plain words, that we can «trans-

form (P, ..., P,,) into (Q,, ..., @ ,,) without exceeding the volume y».
Volume can be thought of as a real function defined on M™*'. Ay — V-
homotopy is actually just a path in 9™+, where no point of the path has
a value greater than y.

DEFINITION 4.2. Let x and y be real numbers. Let us denote by
(™1 the subset of M™*! containing the ordered (m + 1)-tuples on
which the function vol takes a value less than or equal to «. Let us de-
note by f v(9M, %, y) the number of equivalence classes into which
(m™*1Y is divided by the relation of y — V-homotopy if such a number is
finite, + o otherwise.

REMARK 4.1. it is interesting to notice that some results and state-
ments exposed in Section 3 for L-homotopy still hold for V-homotopy. In
particular if we replace «P(I)» by «I™*1», «P(IM, #)» by (™ 1)»,
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«f I» by «f ¥ », the word «loop» by the expression «ordered (m + 1)-tuple
of points», the length function £ by the function vol, the distance d be-
tween loops by the distance d,, between ordered (m + 1)-tuples of
points, the hypothesis z = 0 by the hypotesis  greater than or equal to
the minimum of vol on ™! and the set G(9, z) of the closed geodesics
of 91 with length less than or equal to by the set C,, . (I, ) of the or-
dered (m + 1)-tuples of points of N that vol takes into a number less
than or equal to x and that are local minima for vol then Remark 3.2,
Lemma 3.2 (with 6 not depending on ), Theorems 3.1 and 3.2 and Propo-
sition 8.1 still hold. Actually, the corresponding proofs are simpler.

Another formalization of the idea described at the beginning of this
section can be the one that we obtain by substituting in the above-men-
tioned definitions the concept of (m + 1)-tuple by the one of (k + 1)-tu-
ple (with k& generic natural number) and the function vol by the function
A which takes every ordered (% + 1)-tuple into the diameter of its convex
hull (by the way we point out that another possible choice could be the k-
dimensional volume). We shall eall D-homotopy the corresponding the-
ory. This procedure leads in a natural way to the function f Pm, x, y)
(which corresponds naturally to the function fY, (9K, z, y)). The results
mentioned in Remark 4.1 can be extended also to D-homotopy. We give
in the following the exact formalization of the above-mentioned con-
cepts.

DEFINITION 4.3. Let 91 be a piecewise C * n-submanifold (n > 0) of
E™ and let us consider the set ¢! of all ordered (k + 1)-tuples of
points in 9M(k € N). Then for every real number y we can define an equiv-
alence relation on JI**! and all its subsets: for every pair
((Pg, ... Pi)y(Qoy ..., @) in IMMF*Ixom**! we shall say that
(Pg, ..., Py), and (Qq, ..., Q) are y — D-homotopic if either they are
the same ordered (k+1)-tuple or a function H(z, r) exists such
that:

i) HeC°({0, ..., k} x 1, M) where I=[0, 1] (the topology on
{0, ..., k} x IcE? is that induced by the Euclidean topology on E?),
ii) H(3,0)=P; and H(i, 1) =Q; for every ie {0, ..., k},

iii) for every rel 4((H(0, z,), H(1, ©), ..., H(i, ©), ..., H(k, 7)) <
<y, A being the function that takes every ordered (k + 1)-tuple into the
diameter of the convex hull of the (k + 1)-tuple. In such a case we shall

write (Pg, ..., Pi) %(QO, ..., @) and say that H is a y — D-homotopy
between (P, ..., P;) and (Qq, ..., @%). On M™*! we can define a dis-
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tance d: for every pair (Pg, ..., Pi)y(Qq, ..., @4)) e MET1 x 9F 1 we
set dk((PO’ --~’P!c),(Q0’ vy Qk))= max ”Pz_Qlll

0=sisk

Obviously the diameter we spoke about in the previous definition
is the one inherited from the embedding of M in E™. In the case
¥ = APy, ..., P}) the symbol (Py, ..., P}) =(Qu, .., @) means, in
plain words, that we can «transform (Pg, ..., Py) into (Q¢, ..., @)
without exceeding the diameter y». Diameter can be thought of as a real
function defined on IM**!. A y — D-homotopy is actually just a path in
#&°~1, where no point of the path has a value greater than y.

DEFINITION 4.4. Let x# and y be real numbers. Let us denote by
(D the subset of 9M“*! containing the ordered (k + 1)-tuples on
which the function A takes a value less than or equal to . Let us denote
by f2(91, x, y) the number of equivalence classes into which (J1**1)? is
divided by the relation of y — D-homotopy if such a number is finite, + o
otherwise.

REMARK 4.2. It is easy to prove that if a manifold N c E™ is obtained
by a manifold McE™ by a direct similarity of ratio ~ then we have
FiWN, Brw, hry) =fR(m, 2, ),  fu(N, ™z, h™y) =fY (M, 2, y),
F2UN, ke, hy) = fR(9N, x, y), for every value of the numerical vari-
ables. This yields an obvious sufficient condition for two manifolds to be
non-similar.

REMARK 4.3. Let 91 be a closed, connected and piecewise C * n-sub-
manifold of E™. Let 4 and M be respectively the minimum and the maxi-
mum of the funetion vol on 9™ ! (obviously M = —u) and let @ be the
diameter of 91, We point out that, because of the given definitions, the
following statements hold: if x>y and (y,2)N[u, M]=6 then
frm, e, y)=+w,if y=M and 2=y then f} (M, z,y) =1 and if
r<u then fY(am, x,y) =0. Moreover, in D-homotopy, if x>y and
(y, z]N [0, @] # @ then fP(IM, x, y) = + =, if eithery = D and 2 = 0 or
y = =0then f (9, x, y) = 1 and if x < 0 then f7 (I, =, y) = 0. So the
values of ¥ and f¥ are interesting respectively for either u <x <y or
u =z and for 0 < x < y. By considering suitable manifolds with infinitely
many undulations we could give examples in which f}, and f7 take +
as a value also for ¢ =y (cf. Example 2.1 for L-homotopy).
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5. — Results and examples about V-homotopy and D-homotopy.

In the following we shall give some results and examples that will
point out some properties of V-homotopy (and incidentally some of D-ho-
motopy and some differences between these two approaches to the prob-
lem of distinguishing shapes).

PROPOSITION 5.1. Let I be a piecewise C* submanifold of E™. Then
R, @, y) 2fRON, @, y) for every keN and z, yeR.

Proor. It follows immediat%ly from definition of D-homotopy, by ob-
serving that (P, Pl_,b.., Py) =(Qo, Qu, -, Qi) e gk *! if and only if
(P(]aPO:Pl"-"Pk)?(QO’QO’Qh-"’Qk)EmZk+2' u

So if the D-homotopy of a manifold 91 is not trivial by considering or-
dered (k + 1)-tuples then it is not trivial either by considering ordered
(k + 2)-tuples.

PROPOSITION 5.2. Let 9% be a polyhedron in E™. Every ordered (m +
+ 1)-tuple (Py, ..., P,,) e W™ is vol (Py, ..., P m—V))-homotopic to
an ordered (m + 1)-tuple of vertices of IN.

ProorF. The thesis follows by considering that vol is a linear function
(and therefore a econcave function) in every variable and that so it ecannot
have a strict local minimum in a point of the interior of a face of J1. This
condition allows us to construct (in an obvious way) the wanted
vol((Py, ..., P,)) — V-homotopy. ®

REMARK 5.1, Proposition 5.2 simplifies the computation of V-homo-
topy for a polyhedron 91 by reducing everything to the study of ordered
(m + 1)-tuples of vertices of 9. The analogous for D-homotopy of such
statement is not true because the function 4 is not concave in its vari-
ables. For instance if I is the boundary of an equilateral triangle we see
that every ordered triple (P, P, P) of central points of the sides of 1t
is a local minimum point for A that is not A((P,, P, P3)) — D-homo-
topic to an ordered triple of vertices of JK.

LEMMA b.1. Let I be a piecewise C*, closed and connected n-sub-
manifold of E™. If in an ordered (m + 1)-tuple (Pg, ..., P ) e W™ we
have P ;= P, for a pair (i, j) of distinct indices then for every point Q of
M is results (Poy ooy Poy) %(Q, e, Q) et

Proor. Let us consider m + 1 piecewise C! curves ygo, Y1, -+s Ym!



[19] METRIC HOMOTOPIES 289

[0, 1]— 3% such that y;=y;, yx(0)=P, and y,(1)=@Q for every k
(they exist because I is connected for hypothesis). Then the function
H(k,7)=v,(r) is a 0-V-homotopy between (P, ..., P,) and
(@, ..., Q) because vol (H(0, 1), ..., H(m, 7)) =0 for every 7e[0, 1]
(since H(0, 7), ..., H(m, 1) belong to a linear manifold of dimension not
greater than m—1). =

PROPOSITION 5.3. If N is a piecewise C* boundary of a convex sub-
set of E™ then for 0 <x <y it results 1 (M, x, y) = 1.

ProOF. Let us consider an ordered (m + 1)-tuple whichever
(Po, Py, ..., P,,) e (™ 1YY with 2 = 0. Let H be the so defined fune-
tion from {0, 1, ..., m} x [0, 1] to 9n: H(O, 7) = y(r) and H(i, 1) = P;
for ¢ # 0, where y is a piecewise smooth curve on J such that y(0) = P,
y(1) = P, and the distance between y(r) and the linear hull I7 of the
points P, ..., P,, is never increasing in 7. Such a curve exists because
JK is the piecewise C * boundary of a convex set. Two cases are possible:
either vol (Py, Py, ..., P,,)) 20 or not. In the first case we have that
vol ((H(0, 7), H(1, 1), ..., H(m, 7))) is a non-increasing function in 7,
in the second case it results vol (H(0, 7), H(1, 1), ..., Him, 7)) <0
for every te[0,1]. In every case, since x=0, H is an x— V-
homotopy between the two (m + 1)-tuples (P, P, Py, ..., P,) and
(%, e P g sl

Therefore, chostgn a point @ e M whichever, by Lemma 5.1 we obtain
5 45 smei L ) ?(Q, @, ...Q). So the ordered (m + 1)-tuples of
(m™*1)Y are all y — V-homotopic to (@, @, ..., @) for 0 <x <y: this
means that £, (9, x, y) =1 for every x with 0 <z<y. =

REMARK 5.2. Proposition 5.3 does not say that f, is always trivial for
a piecewise smooth boundary of a convex. In fact the function f), gives
information also for negative values of its variables (on the contrary of f%
and f2): as an example we refer to the values of f§(}j, , ) computed in
Proposition 5.5. The analogous for D-homotopy of Proposition 5.3 is not
true. In order to understand this it is sufficient to observe that an or-
dered triple (P,, P, P) constituted by the central points in the sides of
an equilateral triangle J of side 1 cannot be changed inside the perimeter
into the triple (P, P, P,) without the diameter taking the value 1/3 /2.
So for ¥ <V/3/2 we have f2(J, 1/2, y) > 1.

PRrROPOSITION 5.4. Let 9N be a polyhedron in E™ with r vertices
and let x, yeR, x<y. If r<m+1 then fL (9, z,y)=1 for x=0
and fr(m,xz,y)=0 for £<0. If r=2m+1 then fL(M, x,y) <
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<fr—m—-1)1+1 for =0 and f7,(0, z, y) S1/2-71/(r—m—1)!
for x<0.

Proor. The first statement follows from the fact if »<m +1 then
the dimension of the linear hull of every (P, Py, ..., Pp) € g™+ is not
greater than m — 1 and therefore it results vol ((Poy Piy wees Porp))=0.
The second statement follows from Proposition 52 and Lemma 5.1.
In fact for =0 we can upperly bound f% (9, z, y) by the number
of ordered (m + 1)-tuples of pairwise distinet vertices of I (that is
r/(r-=m—1)!) plus 1 (which represents the equivalence class con-
taining every (m + 1)-tuple whose points are not all pairwise distinct).
On the other hand in case x <0 we can upperly bound f, (I, %, ¥)
by 1/2-r!/(r —m — 1)! because it is a number greater than or equal to
the number of ordered (m + 1)-tuples on which the function vol takes
a negative value, since for every ordered (m +1)-tuple (P,, Pj,
P,, ..., P,) of points of 9 we have vol((Py, Py, P2, ..., Pp))=—
—wol ((Py, Py, Poy oora Pig)). B

Now, in order to illustrate what we have pointed out in this section
we want to compute the function f3(J, , ¥) where J is the boundary of
an equilateral triangle of side 1 embedded in EZ. Obviously J can be con-
sidered embedded also in E™ for m >2 but in this case f},(J, %, ¥) is
trivial and not interesting.

PROPOSITION 5.5.

0 i’fx<_i4—§,

3
3 ifw=—% and Yy <z,

V3 V3

+w fy<x and (y,x)ﬂ[——,—]#ﬂ,
fg(gyx:y)=7
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PrROOF. The non-trivial values 5 (cf. Remark 4.3) are obtained by
considering Proposition 5.2 and the following statement. Calling A, B
and C the vertices of j (listed clockwise) we claim that —1/3/16 is the

least number % such that (A, B, C) L1 (B, C, A). Our assertion is proved
in the following way. If (4, B, C) ?(B, C, A). then there exist three

continuous functions P(t), Q(t) and R(¢) from [0, 1] to  with P(0) = A,
P(1)=B, @O0)=B, Q1)=C, RO0)=C, R(1)=A and
vol ((P(t), Q(t), R(t))) < h for every te [0, 1]. Because of the continuity
of P(t), Q(t) and R(t) there exists at least a f such that either P(f) = Q(t)
(and so vol (P@), Q(©), R®))) =0) or the line s joining P(f) and Q(?) is
parallel to the side AC and R(f) is below s (and therefore, as is easy to
prove, vol((P(), Q®), R(})))= —V/3/16). So in both the cases if
vol (P(t), Q(t), R(t))) <h for every te[0, 1] then it must be A= —
—1/3/16. On the other hand if we define P(t) = (1 —1)-A +1-B, Q(t) =
=(1=t)B+t-C,Rt)=(1-1t)-C+t-A for 0<t<1 we have that the
greatest value of vol (P(t), Q(t), R(t))) varying t is —1/3/16. This fact
proves our statement. =

It might be interesting to study connections of V- and D-homotopy
with Morse Theory. The main difficulty seems to consist in the often un-
avoidable degeneracy of critical points of diameter and volume.
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