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cDISMI, Università di Modena e Reggio Emilia, via Amendola 2 - Pad. Morselli,

I-42100 Reggio Emilia, Italia

Abstract

This paper studies the properties of a new lower bound for the natural pseudo-
distance. The natural pseudo-distance is a dissimilarity measure between shapes,
where a shape is viewed as a topological space endowed with a real-valued continuous
function. Measuring dissimilarity amounts to minimizing the change in the functions
due to the application of homeomorphisms between topological spaces, with respect
to the L∞-norm. In order to obtain the lower bound, a suitable metric between size
functions, called matching distance, is introduced. It compares size functions by
solving an optimal matching problem between countable point sets. The matching
distance is shown to be resistant to perturbations, implying that it is always smaller
than the natural pseudo-distance. We also prove that the lower bound so obtained
is sharp and cannot be improved by any other distance between size functions.

Key words: Shape comparison, shape representation, reduced size function,
natural pseudo-distance
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1 Introduction

Shape comparison is a fundamental problem in shape recognition, shape clas-
sification and shape retrieval (cf., e.g., [24]), finding its applications mainly
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in Computer Vision and Computer Graphics. The shape comparison prob-
lem is often dealt with by defining a suitable distance providing a measure of
dissimilarity between shapes (see, e.g., [25] for a review of the literature).

Over the last fifteen years, Size Theory has been developed as a geometrical-
topological theory for comparing shapes, each shape viewed as a topological
space M, endowed with a real-valued continuous function ϕ [15]. The pair
(M, ϕ) is called a size pair, while ϕ is said to be a measuring function. The
role of the function ϕ is to take into account only the shape properties of the
object described by M that are relevant to the shape comparison problem at
hand, while disregarding the irrelevant ones, as well as to impose the desired
invariance properties.

A measure of the dissimilarity between two size pairs is given by the natural
pseudo-distance. The main idea in the definition of natural pseudo-distance
between size pairs is to minimize the change in the measuring functions due to
the application of homeomorphisms between topological spaces, with respect
to the L∞-norm: The natural pseudo-distance between (M, ϕ) and (N , ψ)
with M and N homeomorphic is the number

inf
h

max
P∈M

|ϕ(P ) − ψ(h(P ))|,

where h varies in the set H(M,N ) of all the homeomorphisms between M
and N . In other words, the variation of the shapes is modeled by the infinite-
dimensional group of homeomorphisms and the cost of warping an object’s
shape into another is measured by the change of the measuring functions. An
important feature of the natural pseudo-distance is that it does not require
the choice of parametrizations for the spaces under study nor the choice of
origins of coordinate, which in image applications would be arbitrarily driven.

The main aim of this paper is to provide a new method to estimate the natural
pseudo-distance, motivated by the intrinsic difficulty of a direct computation.
Since the natural pseudo-distance is defined by a minimization process, it
would be natural to look for the optimal transformation that takes one shape
into the other, as usual in energy minimization methods. In our case, however,
the existence of an optimal homeomorphism attaining the natural pseudo-
distance is not guaranteed.

Earlier results about the natural pseudo-distance can be divided in two classes.
One class provides constraints on the possible values taken by the natural
pseudo-distance between two size pairs. For example, if the considered topolog-
ical spaces M and N are smooth closed manifolds and the measuring functions
are also smooth, then the natural pseudo-distance is an integer sub-multiple of
the Euclidean distance between two suitable critical values of the measuring
functions [8]. In particular, this integer can only be either 1 or 2 in the case
of curves, while it can be either 1, 2 or 3 in the case of surfaces [9]. The other
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class of results furnishes lower bounds for the natural pseudo-distance [7], [18].
In particular it is possible to estimate the natural pseudo-distance by using
the concept of size function [7]. Indeed, size functions can reduce the com-
parison of shapes to the comparison of certain countable subsets of the real
plane (cf. [10], [13] and [16]). This reduction allows us to study the space of all
homeomorphisms between the considered topological spaces, without actually
computing them. The research on size functions has led to a formal setting,
which has turned out to be useful, not only from a theoretical point of view,
but also on the applicative side (see, e.g., [1], [3], [5], [6], [14], [19], [21]).

This paper investigates into the problem of obtaining lower bounds for the
natural pseudo-distance using size functions.

To this aim, we first introduce the concept of reduced size function. Reduced
size functions are a slightly modified version of size functions based on the
connectedness relation instead of path-connectedness. This new definition is
introduced in order to obtain both theoretical and computational advantages
(see Rem. 3 and Rem. 9). However, the main properties of size functions are
maintained. In particular, reduced size functions can be represented by sets of
points of the (extended) real plane, called cornerpoints.

Then we need a preliminary result about reduced size functions (Th. 25). It
states that a suitable distance between reduced size functions exists, which
is continuous with respect to the measuring functions (in the sense of the
L∞-topology). We call this distance matching distance, since the underlying
idea is to measure the cost of matching the two sets of cornerpoints describing
the reduced size functions. The matching distance reduces to the bottleneck
distance used in [4] for comparing Persistent Homology Groups when the mea-
suring functions are taken in the subset of tame functions. We underline that
the continuity of the matching distance implies a property of perturbation
robustness for size functions allowing them to be used in real applications.

Having proven this, we are ready to obtain our main results. Indeed, the sta-
bility of the matching distance allows us to prove a sharp lower bound for the
change of measuring functions under the action of homeomorphisms between
topological spaces, i.e. for the natural pseudo-distance (Th. 29). Furthermore,
we prove that the lower bound obtained using the matching distance not only
improves the previous known lower bound stated in [7], but is the best possible
lower bound for the natural pseudo-distance obtainable using size functions.
The proof of these facts is based on Lemma 30. This lemma is a crucial re-
sult stating that it is always possible to construct two suitable measuring
functions on a topological 2-sphere with given reduced size functions and a
pseudo-distance equaling their matching distance. On the basis of this lemma,
in Th. 32 and Th. 34 we prove that the matching distance we are considering
is, in two different ways, the best metric to compare reduced size functions.
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This paper is organized as follows. In Section 2 we introduce the concept of
reduced size function and its main properties. In Section 3 the definition of
matching distance between reduced size functions is given. In Section 4 the
stability theorem is proved, together with some other useful results. The con-
nection with natural pseudo-distances between size pairs is shown in Section 5,
together with the proof of the existence of an optimal matching between re-
duced size functions. Section 6 contains the proof that it is always possible
to construct two size pairs with pre-assigned reduced size functions and a
pseudo-distance equaling their matching distance. This result is used in Sec-
tion 7 to conclude that the matching distance furnishes the finest lower bound
for the natural pseudo-distance between size pairs among the lower bounds
obtainable through reduced size functions. In Section 8 our results are briefly
discussed.

2 Reduced size functions

In this section we introduce reduced size functions, that is, a notion derived
from size functions ([15]) allowing for a simplified treatment of the theory. The
definition of reduced size function differs from that of size function in that it
is based on the relation of connectedness rather than on path-connectedness.
The motivation for this change, as explained in Remark 3, has to do with the
right-continuity of size functions.

In what follows, M denotes a non-empty compact connected and locally con-
nected Hausdorff space, representing the object whose shape is under study.

The assumption on the connectedness of M can easily be weakened to any
finite number of connected components without much affecting the follow-
ing results. More serious problems would derive from considering an infinite
number of connected components.

We shall call any pair (M, ϕ), where ϕ : M → R is a continuous function,
a size pair. The function ϕ is said to be a measuring function. The role of
the function ϕ is to take into account only the shape properties of the ob-
ject described by M that are relevant to the shape comparison problem at
hand, while disregarding the irrelevant ones, as well as to impose the desired
invariance properties.

Assume a size pair (M, ϕ) is given. For every x ∈ R, let M〈ϕ ≤ x〉 denote
the lower level set {P ∈ M : ϕ(P ) ≤ x}.

Definition 1 For every real number y, we shall say that two points P,Q ∈ M
are 〈ϕ ≤ y〉-connected if and only if a connected subset C of M〈ϕ ≤ y〉 exists,
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Fig. 1. (b) The reduced size function of the size pair (M, ϕ), where M is the curve
represented by a continuous line in (a), and ϕ is the function “distance from the
point P”.

containing both P and Q.

In the following, ∆ denotes the diagonal {(x, y) ∈ R
2 : x = y}; ∆+ denotes

the open half-plane {(x, y) ∈ R
2 : x < y} above the diagonal; ∆̄+ denotes the

closed half-plane {(x, y) ∈ R
2 : x ≤ y} above the diagonal.

Definition 2 (Reduced size function) We shall call reduced size function as-
sociated with the size pair (M, ϕ) the function ℓ∗(M,ϕ) : ∆+ → N, defined by
setting ℓ∗(M,ϕ)(x, y) equal to the number of equivalence classes into which the
set M〈ϕ ≤ x〉 is divided by the relation of 〈ϕ ≤ y〉-connectedness.

In other words, ℓ∗(M,ϕ)(x, y) counts the number of connected components in
M〈ϕ ≤ y〉 that contain at least one point of M〈ϕ ≤ x〉. The finiteness of
this number is an easily obtainable consequence of the compactness and local-
connectedness of M.

An example of reduced size function is illustrated in Fig. 1. In this example we
consider the size pair (M, ϕ), where M is the curve represented by a continu-
ous line in Fig. 1 (a), and ϕ is the function “distance from the point P”. The
reduced size function associated with (M, ϕ) is shown in Fig. 1 (b). Here, the
domain of the reduced size function is divided by solid lines, representing the
discontinuity points of the reduced size function. These discontinuity points
divide ∆+ into regions in which the reduced size function is constant. The
value displayed in each region is the value taken by the reduced size function
in that region.

For instance, for a ≤ x < b, the set {P ∈ M : ϕ(P ) ≤ x} has two connected
components which are contained in different connected components of {P ∈
M : ϕ(P ) ≤ y} when x < y < b. Therefore, ℓ∗(M,ϕ)(x, y) = 2 for a ≤ x < b
and x < y < b. When a ≤ x < b and y ≥ b, all the connected components
of {P ∈ M : ϕ(P ) ≤ x} are contained in the same connected component
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of {P ∈ M : ϕ(P ) ≤ y}. Therefore, ℓ∗(M,ϕ)(x, y) = 1 for a ≤ x < b and
y ≥ b. When b ≤ x < c and y ≥ c, all of the three connected components of
{P ∈ M : ϕ(P ) ≤ x} belong to the same connected component of {P ∈ M :
ϕ(P ) ≤ y}, implying that in this case ℓ∗(M,ϕ)(x, y) = 1.

As for the values taken on the discontinuity lines, they are easily obtained by
observing that reduced size functions are right-continuous, both in the variable
x and in the variable y.

Remark 3 The property of right-continuity in the variable x can easily be
checked and holds for classical size functions as well. The analogous property
for the variable y is not immediate, and in general does not hold for classical
size functions, if not under stronger assumptions, such as, for instance, that
M is a smooth manifold and the measuring function is Morse (cf. Cor. 2.1 in
[12]). Indeed, the relation of 〈ϕ ≤ y〉-homotopy, used to define classical size
functions, does not pass to the limit. On the contrary, the relation of 〈ϕ ≤ y〉-
connectedness does, that is to say, if, for every ǫ > 0 it holds that P and Q are
〈ϕ ≤ y + ǫ〉-connected, then they are 〈ϕ ≤ y〉-connected. To see this, observe
that connected components are closed sets, and the intersection

⋂

iKi of a
family of compact, connected Hausdorff subspaces Ki of a topological space,
with the property that Ki+1 ⊆ Ki for every i, is connected (cf. Th. 28.2 in
[26] p. 203).

Most properties of classical size functions continue to hold for reduced size
functions. For the aims of this paper, it is important that for reduced size func-
tions it is possible to define an analog of classical size functions’ cornerpoints
and cornerlines, here respectively called proper cornerpoints and cornerpoints
at infinity. The main reference here is [16].

Definition 4 (Proper cornerpoint) For every point p = (x, y) ∈ ∆+, let us
define the number µ(p) as the minimum over all the positive real numbers ǫ,
with x+ ǫ < y − ǫ, of

ℓ∗(M,ϕ)(x+ǫ, y−ǫ)−ℓ∗(M,ϕ)(x−ǫ, y−ǫ)−ℓ
∗
(M,ϕ)(x+ǫ, y+ǫ)+ℓ∗(M,ϕ)(x−ǫ, y+ǫ).

The finite number µ(p) will be called multiplicity of p for ℓ∗(M,ϕ). Moreover,
we shall call proper cornerpoint for ℓ∗(M,ϕ) any point p ∈ ∆+ such that the
number µ(p) is strictly positive.

Definition 5 (Cornerpoint at infinity) For every vertical line r, with equation
x = k, let us identify r with the pair (k,∞), and define the number µ(r) as
the minimum, over all the positive real numbers ǫ with k + ǫ < 1/ǫ, of

ℓ∗(M,ϕ)(k + ǫ, 1/ǫ) − ℓ∗(M,ϕ)(k − ǫ, 1/ǫ).

When this finite number, called multiplicity of r for ℓ∗(M,ϕ), is strictly positive,
we call the line r a cornerpoint at infinity for the reduced size function.
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Fig. 2. Cornerpoints of a reduced size function: in this example, p, q and r are the
only proper cornerpoints, and have multiplicity equal to 2 (p) and 1 (r, q). The
point s is not a cornerpoint, since its multiplicity vanishes. The line m is the only
cornerpoint at infinity.

Remark 6 The multiplicity of points and of vertical lines is always non neg-
ative. This follows from an analog of Lemma 1 in [16], based on counting the
equivalence classes in the set

{P ∈ M〈ϕ ≤ x2〉 :6 ∃Q ∈M〈ϕ ≤ x1〉 s.t. P ∼=ϕ≤y1 Q}

quotiented by the relation of 〈ϕ ≤ y1〉-connectedness, in order to obtain the
number

ℓ∗(M,ϕ)(x2, y1) − ℓ∗(M,ϕ)(x1, y1)

when x1 ≤ x2 < y1.

Remark 7 Under our assumptions on M, i.e. its connectedness, µ(r) can only
take the values 0 and 1, but the definition can easily be extended to spaces
with any finite number of connected components, so that µ(r) can equal any
natural number. Moreover, the connectedness assumption also implies that
there is exactly one cornerpoint at infinity.

As an example of cornerpoints in reduced size functions, in Fig. 2 we see that
the proper cornerpoints are the points p, q and r (with multiplicity 2, 1 and
1, respectively). The line m is the only cornerpoint at infinity.

The importance of cornerpoints is revealed by the next result, analogous to
Prop. 10 of [16], showing that cornerpoints, with their multiplicities, uniquely
determine reduced size functions.

The open (resp. closed) half-plane ∆+ (resp. ∆̄+) extended by the points at
infinity of the kind (k,∞) will be denoted by ∆∗ (resp. ∆̄∗), i.e.

∆∗ := ∆+ ∪ {(k,∞) : k ∈ R}, ∆̄∗ := ∆̄+ ∪ {(k,∞) : k ∈ R}.

Theorem 8 (Representation Theorem) For every (x̄, ȳ) ∈ ∆+ we have
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ℓ∗(M,ϕ)(x̄, ȳ) =
∑

(x,y)∈∆∗

x≤x̄,y>ȳ

µ((x, y)). (1)

The equality (1) can be checked in the example of Fig. 2. The points where
the reduced size function takes value 0 are exactly those for which there is no
cornerpoint (either proper or at infinity) lying to the left and above them. Let
us take a point in the region of the domain where the reduced size function
takes the value 3. According to the above theorem, the value of the reduced
size function at that point must be equal to µ(m) + µ(p) = 3.

Remark 9 By comparing Th. 8 and the analogous result stated in Prop. 10
of [16], one can observe that the former is stated more straightforwardly. As a
consequence of this simplification, all the statements in this paper that follow
from Th. 8 are less cumbersome than they would be if we applied size functions
instead of reduced size functions. This is the main motivation for introducing
the notion of reduced size function.

In order to make this paper self-contained, in the rest of this section we report
all and only those results about size functions that will be needed for proving
our statements in the next sections, re-stating them in terms of reduced size
functions. Proofs are omitted, since they are completely analogous to those
for classical size functions.

The following result, expressing a relation between two reduced size functions
corresponding to two spaces, M and N , that can be matched without changing
the measuring functions more that h, is analogous to Th. 3.2 in [14].

Proposition 10 Let (M, ϕ) and (N , ψ) be two size pairs. If f : M → N is
a homeomorphism such that maxP∈M |ϕ(P ) − ψ(f(P ))| ≤ h, then for every
(x̄, ȳ) ∈ ∆+ we have

ℓ∗(M,ϕ)(x̄− h, ȳ + h) ≤ ℓ∗(N ,ψ)(x̄, ȳ).

The next proposition, analogous to Prop. 6 in [16], gives some constraints on
the presence of discontinuity points for reduced size functions.

Proposition 11 Let (M, ϕ) be a size pair. For every point p̄ = (x̄, ȳ) ∈ ∆+,
a real number ǫ > 0 exists such that the open set

Wǫ(p̄) := {(x, y) ∈ R
2 : |x̄− x| < ǫ, |ȳ − y| < ǫ, x 6= x̄, y 6= ȳ}

is contained in ∆+, and does not contain any discontinuity point for ℓ∗(M,ϕ).

The following analog of Prop. 8 and Cor. 4 in [16], stating that cornerpoints
create discontinuity points spreading downwards and towards the right to ∆,
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Fig. 3. A reduced size function with cornerpoints accumulating onto the diagonal:
M is the space depicted on the left and ϕ measures the height of each point.

also holds for reduced size functions.

Proposition 12 (Propagation of discontinuities) If p̄ = (x̄, ȳ) is a proper
cornerpoint for ℓ∗(M,ϕ), then the following statements hold:

i) If x̄ ≤ x < ȳ, then ȳ is a discontinuity point for ℓ∗(M,ϕ)(x, ·);

ii) If x̄ < y < ȳ, then x̄ is a discontinuity point for ℓ∗(M,ϕ)(·, y).

If r̄ = (x̄,∞) is the cornerpoint at infinity for ℓ∗(M,ϕ), then the following state-
ment holds:

iii) If x̄ < y, then x̄ is a discontinuity point for ℓ∗(M,ϕ)(·, y).

The position of cornerpoints in ∆+ is related to the extrema of the measur-
ing function as the next proposition states, immediately following from the
definitions.

Proposition 13 (Localization of cornerpoints) If p̄ = (x̄, ȳ) is a proper cor-
nerpoint for ℓ∗(M,ϕ), then

p̄ ∈ {(x, y) ∈ R
2 : minϕ ≤ x < y ≤ maxϕ}.

If r̄ = (x̄,∞) is the cornerpoint at infinity for ℓ∗(M,ϕ), then x̄ = minϕ.

Prop. 12 and Prop. 13 imply that the number of cornerpoints is either finite
or countably infinite. In fact, the following result can be proved, analogous to
Cor. 3 in [16].

Proposition 14 (Local finiteness of cornerpoints) For each strictly positive
real number ǫ, reduced size functions have, at most, a finite number of corner-
points in {(x, y) ∈ R

2 : x+ ǫ < y}.

9



Therefore, if the set of cornerpoints of a reduced size function has an accumu-
lation point, it necessarily belongs to the diagonal ∆. An example of reduced
size function with cornerpoints accumulating onto the diagonal is shown in
Fig. 3.

Moreover, this last proposition implies that in the summation of Th. 8 (Rep-
resentation Theorem), only finitely many terms are different from zero.

3 Matching distance

In this section we define a matching distance between reduced size functions.
The idea is to compare reduced size functions by measuring the cost of trans-
porting the cornerpoints of one reduced size function to those of the other one,
with the property that the longest of the transportations should be as short
as possible. Since, in general, the number of cornerpoints of the two reduced
size functions is different, we also enable the cornerpoints to be transported
onto the points of ∆ (in other words, we can “destroy” them).

When the number of cornerpoints is finite, the matching distance may be re-
lated to the bottleneck transportation problem (cf., e.g., [11], [20]). In our
case, however, the number of cornerpoints may be countably infinite, because
of our loose assumption on the measuring function, that is only required to
be continuous. Nevertheless, we prove the existence of an optimal match-
ing. Under more tight assumptions on the measuring function, the number
of cornerpoints is ensured to be finite and a bottleneck distance can be more
straightforwardly defined. For example, in [4] a bottleneck distance for com-
paring Persistent Homology Groups is introduced under the assumption that
the measuring functions are tame. We recall that a continuous function is
tame if it has a finite number of homological critical values and the homology
groups of the lower level sets it defines are finite dimensional.

Although working with measuring functions that are continuous rather than
tame involves working in an infinite dimensional space, yielding many technical
difficulties in the proof of our results (for instance, compare our Matching
Stability Theorem 25 with the analogous Bottleneck Stability Theorem for
Persistence Diagrams in [4]), there are strong motivations for doing so. First
of all, in real applications noise cannot be assumed to be tame, so that the
perturbation of a tame function may happen to be not tame. In second place,
when working in the more general setting of measuring functions with values
in R

k instead of R, it is important that the set of functions is closed under the
action of the max operator, as shown in [2], whereas the set of tame functions
is not. Last but not least, working with continuous functions allows us to
relate the matching distance to the natural pseudo-distance, which is our final
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goal, without restricting the set of homeomorphism to those preserving the
tameness property.

Of course the matching distance is not the only metric between reduced size
functions that we could think of. Other metrics for size functions have been
considered in the past ([10], [13]). However, the matching distance is of partic-
ular interest since, as we shall see, it allows for a connection with the natural
pseudo-distance between size pairs, furnishing the best possible lower bound.
Moreover, it has already been experimentally tested successfully in [1] and [3].

In order to introduce the matching distance between reduced size functions we
need some new definitions. The following definition of representative sequence
is introduced in order to manage the presence in a size function of infinitely
many cornerpoints as well as that of their multiplicities. Moreover, it allows
us to add to the set of cornerpoints a subset of points of the diagonal.

Definition 15 (Representative sequence) Let ℓ∗ be a reduced size function.
We shall call representative sequence for ℓ∗ any sequence of points a : N → ∆̄∗,
(briefly denoted by (ai)), with the following properties:

(1) a0 is the cornerpoint at infinity for ℓ∗;
(2) For each i > 0, either ai is a proper cornerpoint for ℓ∗, or ai belongs to

∆;
(3) If p is a proper cornerpoint for ℓ∗ with multiplicity µ(p), then the cardi-

nality of the set {i ∈ N : ai = p} is equal to µ(p);
(4) The set of indexes for which ai is in ∆ is countably infinite.

We now consider the following pseudo-distance d on ∆̄∗ in order to assign a
cost to each deformation of reduced size functions:

d ((x, y) , (x′, y′)) := min

{

max {|x− x′|, |y − y′|} ,max

{

y − x

2
,
y′ − x′

2

}}

,

with the convention about ∞ that ∞−y = y−∞ = ∞ for y 6= ∞, ∞−∞ = 0,
∞
2

= ∞, |∞| = ∞, min{∞, c} = c, max{∞, c} = ∞.

In other words, the pseudo-distance d between two points p and p′ compares
the cost of moving p to p′ and the cost of moving p and p′ onto the diagonal
and takes the smaller. Costs are computed using the distance induced by the
max-norm. In particular, the pseudo-distance d between two points p and p′

on the diagonal is always 0; the pseudo-distance d between two points p and
p′, with p above the diagonal and p′ on the diagonal, is equal to the distance,
induced by the max-norm, between p and the diagonal. Points at infinity have
a finite distance only to other points at infinity, and their distance depends
on their abscissas.

Therefore, d(p, p′) can be considered a measure of the minimum of the costs
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of moving p to p′ along two different paths (i.e. the path that takes p directly
to p′ and the path that passes through ∆). This observation easily yields that
d is actually a pseudo-distance.

Remark 16 It is useful to observe what disks induced by the pseudo-distance
d look like. For r > 0, the usual notation B(p, r) will denote the open disk
{p′ ∈ ∆̄+ : d(p, p′) < r}. Thus, if p is a proper point with coordinates (x, y)
and y−x ≥ 2r (that is, d(p,∆) ≥ r), then B(p, r) is the open square centered
at p with sides of length 2r parallel to the axes. Whereas, if p has coordinates
(x, y) with y − x < 2r (that is, d(p,∆) < r), then B(p, r) is the union of the
open square, centered at p, with sides of length 2r parallel to the axes, with
the stripe {(x, y) ∈ R

2 : 0 ≤ y−x < 2r}, intersected with ∆̄+(see also Fig. 4).
If p = (x,∞) is a point at infinity then B(p, r) = {(x′,∞) ∈ ∆∗ : |x−x′| < r}.
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∆

Fig. 4. Disks induced by the pseudo-metric d (shaded). Left: d(p,∆) ≥ r. Right:
d(p,∆) < r.

In what follows, the notation Q(p, r) will refer to the open square centered
at the proper point p, with sides of length 2r parallel to the axes (that is,
the open disk centered at p with radius r, induced by the max-norm). Also,
when r > 0, Q̄(p, r) will refer to the closure of Q(p, r) in the usual Euclidean
topology, while Q̄(p, 0) := {p}.

Definition 17 (Matching distance) Let ℓ∗1 and ℓ∗2 be two reduced size func-
tions. If (ai) and (bi) are two representative sequences for ℓ∗1 and ℓ∗2 respectively,
then the matching distance between ℓ∗1 and ℓ∗2 is the number

dmatch(ℓ
∗
1, ℓ

∗
2) := inf

σ
sup
i
d(ai, bσ(i)),

where i varies in N and σ varies among all the bijections from N to N.

In order to illustrate this definition, let us consider Fig. 5. Given two curves,
their reduced size functions with respect to the measuring function distance
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from the center of the image are calculated. One sees that the top reduced
size function has many cornerpoints close to the diagonal in addition to the
cornerpoints r, a, b, c, d, e. Analogously, the bottom reduced size function
has many cornerpoints close to the diagonal in addition to the cornerpoints
r′, a′, b′, c′. Cornerpoints close to the diagonal are generated by noise and
discretization. The superimposition of the two reduced size functions shows
that an optimal matching is given by r → r′, a → a′, b → b′, c → c′, d → ∆,
e → ∆, and all the other cornerpoints sent to ∆. Sending cornerpoints to
points of ∆ corresponds to the annihilation of cornerpoints. Since the matching
c → c′ is the one that achieves the maximum cost in the max-norm, the
matching distance is equal to the distance between c and c′ (with respect to
the max-norm).

Fig. 5. Left: Two curves. Center: Their reduced size functions with respect to the
measuring function distance from the center of the image. Right: The superimposi-
tion of the two reduced size functions.

Proposition 18 dmatch is a distance between reduced size functions.

PROOF. It is easy to see that this definition is independent from the choice
of the representative sequences of points for ℓ∗1 and ℓ∗2. In fact, if (ai) and (âi)
are representative sequences for the same reduced size function ℓ∗, a bijection
σ̂ : N → N exists such that d(âi, aσ̂(i)) = 0 for every index i.

Furthermore, we have that dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) < +∞, for any two size pairs

(M, ϕ) and (N , ψ). Indeed, for any bijection σ : N → N such that σ(0) = 0,
it holds supi d(ai, bσ(i)) < +∞, because of Prop. 13 (Localization of corner-
points).

13



Finally, by recalling that reduced size functions are uniquely determined by
their cornerpoints with multiplicities (Representation Theorem) and by us-
ing Prop. 14 (Local finiteness of cornerpoints), one can easily see that dmatch
verifies all the properties of a distance. 2

We will show in Th. 28 that the inf and the sup in the definition of matching
distance are actually attained, that is dmatch(ℓ

∗
1, ℓ

∗
2) = minσ maxi d(ai, bσ(i)). In

other words, an optimal matching always exists.

4 Stability of the matching distance

In this section we shall prove that if ϕ and ψ are two measuring functions on M
whose difference on the points of M is controlled by ǫ (namely maxP∈M |ϕ(P )−
ψ(P )| ≤ ǫ), then the matching distance between ℓ∗(M,ϕ) and ℓ∗(M,ψ) is also con-
trolled by ǫ (namely dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(M,ψ)) ≤ ǫ).

For the sake of clarity, we will now give a sketch of the proof that will lead
to this result, stated in Th. 25. We begin by proving that each cornerpoint of
ℓ∗(M,ϕ) with multiplicity m admits a small neighborhood, where we find exactly
m cornerpoints (counted with multiplicities) for ℓ∗(M,ψ), provided that on M
the functions ϕ and ψ take close enough values (Prop. 20). Next, this local
result is extended to a global result by considering the convex combination
Φt = t

ǫ
ψ + ǫ−t

ǫ
ϕ of ϕ and ψ. Following the paths traced by the cornerpoints

of ℓ∗(M,Φt)
as t varies in [0, ǫ], in Prop. 21 we show that, along these paths,

the displacement of the cornerpoints is not greater than ǫ (displacements are
measured using the distance d, and cornerpoints are counted with their mul-
tiplicities). Thus we are able to construct an injection f , from the set of the
cornerpoints of ℓ∗(M,ϕ) to the set of the cornerpoints of ℓ∗(M,ψ) (extended to a
countable subset of the diagonal), that moves points less than ǫ (Prop. 23).
Repeating the same argument backwards, we construct an injection g from
the set of the cornerpoints of ℓ∗(M,ψ) to the set of the cornerpoints of ℓ∗(M,ϕ)

(extended to a countable subset of the diagonal) that moves points less than
ǫ. By using the Cantor-Bernstein theorem, we prove that there exists a bijec-
tion from the set of the cornerpoints of ℓ∗(M,ψ) to the set of the cornerpoints
of ℓ∗(M,ϕ) (both the sets extended to countable subsets of the diagonal) that
moves points less than ǫ. This will be sufficient to conclude the proof. Once
again, we recall that in the proof we have just outlined, cornerpoints are always
counted with their multiplicities.

We first prove that the number of proper cornerpoints contained in a suf-
ficiently small square can be computed in terms of jumps of reduced size
functions.

14



Proposition 19 Let (M, ϕ) be a size pair. Let p̄ = (x̄, ȳ) ∈ ∆+ and let η > 0
be such that x̄ + η < ȳ − η. Also let a = (x̄ + η, ȳ − η), b = (x̄ − η, ȳ − η),
c = (x̄+ η, ȳ + η), e = (x̄− η, ȳ + η). Then

ℓ∗(M,ϕ)(a) − ℓ∗(M,ϕ)(b) − ℓ∗(M,ϕ)(c) + ℓ∗(M,ϕ)(e)

is equal to the number of (proper) cornerpoints for ℓ∗(M,ϕ), counted with their

multiplicities, contained in the semi-open square Q̂η, with vertices at a, b, c, e,
given by

Q̂η := {(x, y) ∈ ∆+ : x̄− η < x ≤ x̄+ η, ȳ − η < y ≤ ȳ + η}.

PROOF. It easily follows from the Representation Theorem (Th. 8). 2

We now show that, locally, small changes in the measuring functions produce
small displacements of the existing proper cornerpoints and create no new
cornerpoints.

Proposition 20 (Local constancy of multiplicity) Let (M, ϕ) be a size pair
and let p̄ = (x̄, ȳ) be a point in ∆+, with multiplicity µ(p̄) for ℓ∗(M,ϕ) (pos-
sibly µ(p̄) = 0). Then there is a real number η̄ > 0 such that, for any real
number η with 0 ≤ η ≤ η̄, and for any measuring function ψ : M → R with
maxP∈M |ϕ(P )− ψ(P )| ≤ η, the reduced size function ℓ∗(M,ψ) has exactly µ(p̄)
(proper) cornerpoints (counted with their multiplicities) in the closed square
Q̄(p̄, η), centered at p̄ with side 2η.

PROOF. By Prop. 11, a sufficiently small real number ǫ > 0 exists such that
the set

Wǫ(p̄) = {(x, y) ∈ R
2 : |x̄− x| < ǫ, |ȳ − y| < ǫ, x 6= x̄, y 6= ȳ}

is contained in ∆+ (i.e. x̄+ ǫ ≤ ȳ− ǫ), and does not contain any discontinuity
point for ℓ∗(M,ϕ). Prop. 12 (Propagation of discontinuities) implies that p̄ is the
only cornerpoint in Q(p̄, ǫ).

Let η̄ be any real number such that 0 < η̄ < ǫ/2. For each real number η with
0 ≤ η ≤ η̄, let us take a sufficiently small positive real number δ with δ < η
and 2η + δ < ǫ, so that x̄+ 2η + δ < ȳ − 2η − δ.

We define a = (x̄+η+δ, ȳ−η−δ), b = (x̄−η−δ, ȳ−η−δ), c = (x̄+η+δ, ȳ+η+δ),
e = (x̄− η − δ, ȳ + η + δ).
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ce

Wǫ(p̄)

Q̂η+δ

p̄ = (x̄, ȳ)
(x̄+ δ, ȳ − δ)

(x̄+ 2η + δ, ȳ − 2η − δ)

ǫ

Fig. 6. The sets Wǫ(p̄) and Q̂η+δ used in the proof of Prop. 20.

If ψ : M → R is a measuring function such that maxP∈M |ϕ(P )− ψ(P )| ≤ η,
then by applying Prop. 10 twice,

ℓ∗(M,ϕ)(x̄+δ, ȳ−δ) ≤ ℓ∗(M,ψ)(x̄+η+δ, ȳ−η−δ) ≤ ℓ∗(M,ϕ)(x̄+2η+δ, ȳ−2η−δ).

Since ℓ∗(M,ϕ) is constant in each connected component of Wǫ(p̄), we have that

ℓ∗(M,ϕ)(x̄+ δ, ȳ − δ) = ℓ∗(M,ϕ)(a) = ℓ∗(M,ϕ)(x̄+ 2η + δ, ȳ − 2η − δ),

implying ℓ∗(M,ϕ)(a) = ℓ∗(M,ψ)(a). Analogously, ℓ∗(M,ϕ)(b) = ℓ∗(M,ψ)(b), ℓ
∗
(M,ϕ)(c) =

ℓ∗(M,ψ)(c), ℓ
∗
(M,ϕ)(e) = ℓ∗(M,ψ)(e). Hence, µ(p̄), i.e. the multiplicity of p̄ for ℓ∗(M,ϕ),

equals
ℓ∗(M,ψ)(a) − ℓ∗(M,ψ)(b) − ℓ∗(M,ψ)(c) + ℓ∗(M,ψ)(e).

By Prop. 19, we obtain that µ(p̄) is equal to the number of cornerpoints for
ℓ∗(M,ψ) contained in the semi-open square with vertices a, b, c, e given by

Q̂η+δ = {(x, y) ∈ ∆+ : x̄− η − δ < x ≤ x̄+ η + δ, ȳ − η − δ < y ≤ ȳ + η + δ}.

This is true for any sufficiently small δ > 0. Therefore, µ(p̄) is equal to the
number of cornerpoints for ℓ∗(M,ψ) contained in the intersection

⋂

δ>0 Q̂η+δ. It
follows that µ(p̄) amounts to the number of cornerpoints for ℓ∗(M,ψ) contained

in the closed square Q̄(p̄, η). 2

The following result states that if two measuring functions ϕ and ψ differ less
than ǫ in the L∞-norm, then it is possible to match some finite sets of proper
cornerpoints of ℓ∗(M,ϕ) to proper cornerpoints of ℓ∗(M,ψ), with a motion smaller
than ǫ.

Proposition 21 Let ǫ ≥ 0 be a real number and let (M, ϕ) and (M, ψ) be
two size pairs such that maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ. Then, for any finite
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set K of proper cornerpoints for ℓ∗(M,ϕ) with d(K,∆) > ǫ, there exist (ai)
and (bi) representative sequences for ℓ∗(M,ϕ) and ℓ∗(M,ψ) respectively, such that
d(ai, bi) ≤ ǫ for each i with ai ∈ K.

PROOF. The claim is trivial for ǫ = 0, so let us assume ǫ > 0.

Let Φt = t
ǫ
ψ + ǫ−t

ǫ
ϕ with t ∈ [0, ǫ]. Then, for every t, t′ ∈ [0, ǫ], we have

maxP∈M |Φt(P ) − Φt′(P )| ≤ |t− t′|.

Let K = {p1, . . . , pk}, let mj be the multiplicity of pj , for j = 1, . . . , k, and
m =

∑k
j=1mj. Then we can easily construct a representative sequence of points

(ai) for ℓ∗(M,ϕ), such that

a1 = p1, . . . , am1 = p1, am1+1 = p2, . . . , am1+m2 = p2, . . . ,

am1+...+mk−1
= pk−1, am1+...+mk−1+1 = pk, . . . , am = pk.

Now we will consider the set A defined as

{δ ∈ [0, ǫ] : ∃(aδi ) representative sequence for ℓ∗(M,Φδ) s.t. d(ai, a
δ
i ) ≤ δ, ∀ai ∈ K}.

In other words, if we think of the variation of t as the flow of time, A is the
set of instants δ for which the cornerpoints in K move less than δ itself, when
the homotopy Φt is applied to the measuring function ϕ.

A is non-empty, since 0 ∈ A. Let us set δ̄ = supA and show that δ̄ ∈ A. Indeed,
let (δn) be a sequence of numbers of A converging to δ̄. Since δn ∈ A, for each
n there is a representative sequence (aδni ) for ℓ∗(M,Φδn ) with d(ai, a

δn
i ) ≤ δn, for

each i such that ai ∈ K. Since δn ≤ ǫ, d(ai, a
δn
i ) ≤ ǫ for any i and any n.

Thus, recalling that d(K,∆) > ǫ, for each i such that ai ∈ K, it holds that
aδni ∈ Q̄(ai, ǫ) for any n. Hence, for each i with ai ∈ K, possibly by extracting
a convergent subsequence, we can define aδ̄i = limn a

δn
i . We have d(ai, a

δ̄
i ) ≤ δ̄.

Moreover, by Prop. 20 (Local constancy of multiplicity), aδ̄i is a cornerpoint
for ℓ∗(M,Φδ̄). Also, if r indexes j1, . . . , jr exist, such that aj1, . . . , ajr ∈ K and

aδ̄j1 = · · · = aδ̄jr =: q, then the multiplicity of q for ℓ∗(M,Φδ̄) is not smaller

than r. Indeed, since δn → δ̄, for each arbitrarily small η > 0 and for any
sufficiently great n, the square Q̄(q, η) contains at least r cornerpoints for
ℓ∗(M,Φδn ), counted with their multiplicities. But Prop. 20 implies that, for each

sufficiently small η, Q̄(q, η) contains exactly as many cornerpoints for ℓ∗(M,Φδn )

as the multiplicity of q with respect to ℓ∗(M,Φδ̄), if |δn − δ̄| ≤ η. Therefore, the
multiplicity of q for ℓ∗(M,Φδ̄) is greater than, or equal to, r.

The previous reasoning allows us to claim that if a cornerpoint q occurs r
times in the sequence (aδ̄1, . . . , a

δ̄
m), then the multiplicity of q for ℓ∗(M,Φδ̄) is at

least r.
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In order to conclude that δ̄ ∈ A, it is now sufficient to observe that (aδ̄1, . . . , a
δ̄
m)

is easily extensible to a representative sequence for ℓ∗(M,Φδ̄), simply by setting
a0 equal to the cornerpoint at infinity of ℓ∗(M,Φδ̄), and by continuing the se-
quence with the remaining proper cornerpoints of ℓ∗(M,Φδ̄) and with a countable
collection of points of ∆. So we have proved that supA is attained in A.

We end the proof by showing that maxA = ǫ. In fact, if δ̄ < ǫ, by us-
ing Prop. 20 once again, it is not difficult to show that there exists η > 0,

with δ̄ + η < ǫ, and a representative sequence (aδ̄+ηi ) for ℓ∗(M,Φδ̄+η), such

that d(aδ̄i , a
δ̄+η
i ) ≤ η for 1 ≤ i ≤ m. Hence, by the triangular inequality,

d(ai, a
δ̄+η
i ) ≤ δ̄ + η for 1 ≤ i ≤ m, implying that δ̄ + η ∈ A. This would

contradict the fact that δ̄ = maxA. Therefore, ǫ = maxA, and so ǫ ∈ A. 2

We now give a result stating that if two measuring functions ϕ and ψ differ
less than ǫ in the L∞-norm, then the cornerpoints at infinity have a distance
smaller than ǫ.

Proposition 22 Let ǫ ≥ 0 be a real number and let (M, ϕ) and (M, ψ) be
two size pairs such that maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ. Then, for each (ai) and
(bi) representative sequences for ℓ∗(M,ϕ) and ℓ∗(M,ψ), respectively, it holds that
d(a0, b0) ≤ ǫ.

PROOF. By Prop. 13 (Localization of cornerpoints), d(a0, b0) = |minϕ −
minψ|. Let minϕ = ϕ(Pϕ) and minψ = ψ(Pψ), with Pϕ, Pψ ∈ M. Since
maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ, then

ψ(Pψ) ≥ ϕ(Pψ) − ǫ, ϕ(Pϕ) ≥ ψ(Pϕ) − ǫ.

By contradiction, let us assume that d(a0, b0) > ǫ, that is, |ϕ(Pϕ)−ψ(Pψ)| > ǫ.
So either ϕ(Pϕ) < ψ(Pψ) − ǫ or ψ(Pψ) < ϕ(Pϕ) − ǫ. In the first case,

ψ(Pϕ) − ǫ ≤ ϕ(Pϕ) < ψ(Pψ) − ǫ,

in the latter case,

ϕ(Pψ) − ǫ ≤ ψ(Pψ) < ϕ(Pϕ) − ǫ.

Hence we would conclude that either Pψ is not a minimum point for ψ or Pϕ
is not a minimum point for ϕ. In both cases we get a contradiction. 2

Now we prove that it is possible to injectively match all the cornerpoints of
ℓ∗(M,ϕ) to those of ℓ∗(M,ψ) with a maximum motion not greater than the L∞-
distance between ϕ and ψ.
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Proposition 23 Let ǫ ≥ 0 be a real number and let (M, ϕ) and (M, ψ) be
two size pairs such that maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ. Then there exist (ai)
and (bi) representative sequences for ℓ∗(M,ϕ) and ℓ∗(M,ψ) respectively, and an
injection f : N → N such that d(ai, bf(i)) ≤ ǫ.

PROOF. The claim is trivial if ǫ = 0, so let us assume ǫ > 0.

Let H be the set of all the cornerpoints (both proper and at infinity) for
ℓ∗(M,ϕ). We can write H = K1 ∪K2, where K1 := {p ∈ H : d(p,∆) > ǫ} and
K2 := {p ∈ H : d(p,∆) ≤ ǫ}. The cardinality of K1 is finite, according to
Prop. 14 (Local finiteness of cornerpoints). Therefore, Prop. 21 and Prop. 22
imply that there exist (ai) and (bi) representative sequences of points for ℓ∗(M,ϕ)

and ℓ∗(M,ψ) respectively, such that d(ai, bi) ≤ ǫ for each ai ∈ K1 (it follows that
if ai ∈ K1 then, necessarily, bi /∈ ∆).

Now let us write N as the disjoint union of the sets I1 and I2, where we set
i ∈ I1, if ai ∈ K1, and i ∈ I2, if ai ∈ K2∪∆. We observe that, by the definition
of a representative sequence, there is a countably infinite collection of indices
j with bj contained in ∆. Thus, there is an injection β : I2 → N such that
bβ(i) ∈ ∆.

We define f by setting f(i) = i for i ∈ I1 and f(i) = β(i) for i ∈ I2. By
construction, f is injective and d(ai, bf(i)) ≤ ǫ for every i. 2

We recall the well-known Cantor-Bernstein theorem (cf. [23]), which will be
useful later.

Theorem 24 (Cantor-Bernstein Theorem) Let A and B be two sets. If two
injections f : A→ B and g : B → A exist, then there is a bijection l : A→ B.
Furthermore, we can assume that the equality l(a) = b implies that either
f(a) = b or g(b) = a (or both).

We are now ready to prove a key result of this paper. We shall use this result in
the next section in order to prove that the matching distance between reduced
size functions furnishes a lower bound for the natural pseudo-distance between
size pairs. Nevertheless, this result if meaningful by itself, in that it guarantees
the computational stability of the matching distance between reduced size
functions.

Theorem 25 (Matching Stability Theorem) Let (M, ϕ) be a size pair. For
every real number ǫ ≥ 0 and for every measuring function ψ : M → R, such
that maxP∈M |ϕ(P ) − ψ(P )| ≤ ǫ, the matching distance between ℓ∗(M,ϕ) and
ℓ∗(M,ψ) is smaller than or equal to ǫ.
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PROOF. Prop. 23 implies that there exist (ai) and (bi) representative se-
quences for ℓ∗(M,ϕ) and ℓ∗(M,ψ) respectively, and an injection f : N → N such
that d(ai, bf(i)) ≤ ǫ. Analogously, there exist (a′i) and (b′i) representative se-
quences for ℓ∗(M,ϕ) and ℓ∗(M,ψ) respectively, and there is an injection g′ : N → N,
such that d(b′i, a

′
g′(i)) ≤ ǫ for every index i. Hence another injection g : N → N

exists, such that d(bi, ag(i)) ≤ ǫ for every index i. Then the claim follows from
the Cantor-Bernstein Theorem, by setting A = B = N. 2

5 The connection between the matching distance and the natural

pseudo-distance

We recall that, given two size pairs (M, ϕ) and (N , ψ), with M and N homeo-
morphic, a measure of their shape dissimilarity is given by the natural pseudo-
distance.

As a corollary of the Matching Stability Theorem (Th. 25) we obtain the
following Th. 29, stating that the matching distance between reduced size
functions furnishes a lower bound for the natural pseudo-distance between
size pairs.

Definition 26 The natural pseudo-distance between two size pairs (M, ϕ)
and (N , ψ) with M and N homeomorphic is the number

inf
h

max
P∈M

|ϕ(P ) − ψ(h(P ))|,

where h varies in the set H(M,N ) of all the homeomorphisms between M
and N .

We point out that the natural pseudo-distance is not a distance because it
can vanish on two non-equal size pairs. However, it is symmetric, satisfies the
triangular inequality, and vanishes on two equal size pairs.

Remark 27 We point out that an alternative definition of the dissimilarity
measure between size pairs, based on the integral of the change of the mea-
suring functions, rather than on the max, may present some drawbacks.

For example, let us consider the following size pairs (M, ϕ), (N , ψ), (N , χ),
where M is a circle of radius 2, N is a circle of radius 1, and the measuring
functions are constant functions given by ϕ ≡ 1, ψ ≡ 1, χ ≡ 2. Let µ and ν
respectively denote the 1-dimensional measures induced by the usual embed-
dings of M and N in the Euclidean plane. By setting, for any homeomorphism
f : M → N ,

Θ̂(f) =
∫

M

|ϕ− ψ ◦ f | dµ,
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we have Θ̂(f) = 0. For any homeomorphism g : N → N , we have

Θ̂(g) =
∫

N

|ψ − χ ◦ g| dν = 2π.

On the other hand,

Θ̂(g ◦ f) =
∫

M

|ϕ− χ ◦ g ◦ f | dµ = 4π.

Hence, the inequality Θ̂(g◦f) ≤ Θ̂(f)+Θ̂(g) does not hold. This fact prevents
the function inff∈H(M,N ) Θ̂(f) from being a pseudo-distance, since we do not
get the triangular inequality. Furthermore this function is not symmetric for
all couples of size pairs.

Other dissimilarity measures based on some integral of the change of the
measuring functions are object of a on-going research. Preliminary results
on this subject can be found in [17].

For more details about natural pseudo-distances between size pairs, the reader
is referred to [7], [8] and [9].

Before stating the main result of this section (Th. 29), in Th. 28 we show
that the inf and the sup in the definition of matching distance are actu-
ally attained, that is to say, a matching σ exists for which dmatch(ℓ

∗
1, ℓ

∗
2) =

minσ maxi d(ai, bσ(i)). Every such matching will henceforth be called optimal.

Theorem 28 (Optimal Matching Theorem) Let (ai) and (bi) be two repre-
sentative sequences of points for the reduced size functions ℓ∗1 and ℓ∗2 respec-
tively. Then the matching distance between ℓ∗1 and ℓ∗2 is equal to the number
minσ maxi d(ai, bσ(i)), where i varies in N and σ varies among all the bijections
from N to N.

PROOF. By the definition of the pseudo-distance d, we can confine ourselves
to considering only the bijections σ, such that σ(0) = 0. In this way, by
Prop. 13 (Localization of cornerpoints), we obtain that supi∈N

d(ai, bσ(i)) <
+∞.

Let us first see that supi∈N d(ai, bσ(i)) = maxi∈N d(ai, bσ(i)), for any such bijec-
tion σ. This is true because proper cornerpoints belong to a bounded set, and
the accumulation points for the set of cornerpoints of a reduced size function
(if any) cannot belong to ∆+, but only to ∆ (see Prop. 14, Local finiteness of
cornerpoints). By definition, for any p and p′ in ∆, d(p, p′) = 0, and hence the
claim is proved.
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d = s

a(J1)

a(J2)

σ̄

∆

Fig. 7. The sets a(J1) and a(J2) of cornerpoints corresponding to the sets J1 and
J2 used in the proof of Th. 28. The sequence (ai) is represented by dots and the
sequence (bi) by crosses.

Let us now prove that infσ maxi d(ai, bσ(i)) = minσ maxi d(ai, bσ(i)). Let us set
s := infσ maxi d(ai, bσ(i)). According to Prop. 14, if s = 0, then the corner-
points of ℓ∗1 coincide with those of ℓ∗2, and their multiplicities are the same,
implying that the claim is true. Let us consider the case when s > 0. Let
J1 := {i ∈ N : d(ai,∆) > s} and J2 := {i ∈ N : d(ai,∆) ≤ s} (see Fig. 7).
By Prop. 14, J1 contains only a finite number of elements, and therefore there
exists a real positive number ǫ for which d(ai,∆) > s + ǫ for each i ∈ J1.

Let us consider the set Σ of all the injective functions σ : J1 → N such that
maxi∈J1 d(ai, bσ(i)) < s+ ǫ/2. This set is non-empty by the definition of s, and
contains only a finite number of injections because J1 is finite, and for each
i ∈ J1 the set {j ∈ N : d(ai, bj) < s + ǫ/2} is finite. Thus we can take an
injection σ̄ : J1 → N that realizes the minimum of maxi∈J1 d(ai, bσ(i)) as σ
varies in Σ. Obviously, maxi∈J1 d(ai, bσ̄(i)) ≤ s, by the definition of s.

Moreover, we can take an injection σ̂ : J2 → N such that maxi∈J2 d(ai, bσ̂(i)) ≤
s, because, for every i ∈ J2, we can choose a different index j, such that
bj ∈ ∆. Since N = J1∪J2 and Im(σ̄)∩Im(σ̂) = ∅, we can construct an injection
f : N → N such that each displacement between ai and bf(i) is not greater than
s, by setting f(i) = σ̄(i) for i ∈ J1, and f(i) = σ̂(i) for i ∈ J2. Analogously, we
can construct an injection g : N → N such that each displacement between bi
and ag(i) is not greater than s. Therefore, by the Cantor-Bernstein Theorem,
there is a bijection l : N → N such that d(ai, bl(i)) ≤ s for every index i, and
so the theorem is proved. 2

Theorem 29 Let ǫ ≥ 0 be a real number and let (M, ϕ) and (N , ψ) be two
size pairs with M and N homeomorphic. Then

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) ≤ inf

h
max
P∈M

|ϕ(P ) − ψ(h(P ))|,
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where h ranges among all the homeomorphisms from M to N .

PROOF. We begin by observing that ℓ∗(N ,ψ) = ℓ∗(M,ψ◦h), where h : M → N is
any homeomorphism between M and N . Moreover, for each homeomorphism
h, by applying Th. 25 with ǫ = maxP∈M |ϕ(P ) − ψ(h(P ))|, we have

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(M,ψ◦h)) ≤ max

P∈M
|ϕ(P ) − ψ(h(P ))|.

Since this is true for any homeomorphism h between M and N , it immediately
follows that dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(N ,ψ)) ≤ infh maxP∈M |ϕ(P ) − ψ(h(P ))|. 2

6 Construction of size pairs with given reduced size functions and

natural pseudo-distance

The following lemma states that it is always possible to construct two size pairs
such that their reduced size functions are assigned in advance, and their nat-
ural pseudo-distance equals the matching distance between the corresponding
reduced size functions.

This result evidently allows us to deduce that the lower bound for the natural
pseudo-distance given by the matching distance is sharp. Furthermore, in the
next section, we will exploit this lemma to conclude that, although other
distances between reduced size functions could in principle be thought of in
order to obtain a lower bound for the natural pseudo-distance, in practice it
would be useless since the matching distance furnishes the best estimate.

The proof of this lemma is rather technical, so we anticipate the underlying
idea. We aim at constructing a rectangle R and two measuring functions ϕ̃
and ψ̃ on R, such that ℓ∗(R,ϕ̃) = ℓ∗(M,ϕ) and ℓ∗

(R,ψ̃)
= ℓ∗(N ,ψ) for given (M, ϕ)

and (N , ψ). To this aim, we fix an optimal matching between cornerpoints of
ℓ∗(M,ϕ) and ℓ∗(N ,ψ) that achieves dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(N ,ψ)). We begin by defining ϕ̃

and ψ̃ as linear functions on R, with minima respectively at height minϕ and
minψ. Thus, the corresponding reduced size functions have cornerpoints at
infinity coinciding with those of ℓ∗(M,ϕ) and ℓ∗(N ,ψ) respectively, and no proper
cornerpoints. Next, for each proper cornerpoint (x, y) for ℓ∗(M,ϕ), considered
with its multiplicity, we modify the graph of ϕ̃ by digging a pit with bottom
at height x and top at height y (see Fig. 10). This creates a proper corner-
point for ℓ∗(R,ϕ̃) at (x, y). Of course, we take care that this occurs at different

points of R for different cornerpoints of ℓ∗(R,ϕ̃). Now we modify the graph of ψ̃
exactly at the same point of R as for ϕ̃, as follows. If the cornerpoint (x, y) for
ℓ∗(M,ϕ) is matched to a cornerpoint (x′, y′) of ℓ∗(N ,ψ), we dig a pit in the graph
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of ψ̃ with bottom at height x′ and top at height y′. This creates a proper
cornerpoint for ℓ∗

(R,ψ̃)
at (x′, y′). Otherwise, if the cornerpoint (x, y) for ℓ∗(M,ϕ)

is matched to a point of the diagonal, we construct a plateau in the graph
of ψ̃ at height x+y

2
. This does not introduce new cornerpoints for ℓ∗

(R,ψ̃)
. We

repeat the procedure backwards, for cornerpoints of ℓ∗(N ,ψ) that are matched
to points of the diagonal in ℓ∗(M,ϕ). Although this is the idea underlying the
construction of the measuring functions, in our proof of Lemma 30 we shall
confine ourselves to giving only their final definition.

Now, in order to show that dmatch(ℓ
∗
(R,ϕ̃), ℓ

∗
(R,ψ̃)

) is equal to the natural pseudo-

distance between (R, ϕ̃) and (R, ψ̃), we consider the identity function on R. We
measure the difference between ϕ̃ and ψ̃ at each point of R. By construction,
this difference is greater at pits and plateaux than elsewhere, that is to say,
corresponds to the matching of cornerpoints. Hence, the identity homeomor-
phism of R achieves a change in the measuring functions ϕ̃ and ψ̃ equal to the
matching distance between ℓ∗(R,ϕ̃) and ℓ∗

(R,ψ̃)
. This implies that the matching

distance is equal to the natural pseudo-distance between (R, ϕ̃) and (R, ψ̃),
and the identity function on R is exactly the homeomorphism attaining the
natural pseudo-distance.

The last step of the proof is to enlarge the rectangle R to a topological 2-sphere
and to extend the measuring functions to this surface, without modifying the
corresponding reduced size functions and the natural pseudo-distance.

Lemma 30 Let ℓ∗(M,ϕ) and ℓ∗(N ,ψ) be two reduced size functions. There always
exist two size pairs (M′, ϕ′) and (M′, ψ′), with M′ homeomorphic to a 2-
sphere, such that the following statements hold:

(1) ℓ∗(M′,ϕ′) = ℓ∗(M,ϕ);
(2) ℓ∗(M′,ψ′) = ℓ∗(N ,ψ);
(3) dmatch(ℓ

∗
(M′,ϕ′), ℓ

∗
(M′,ψ′)) = infh maxP∈M′ |ϕ′(P ) − ψ′(h(P ))|, h sweeping

the set H(M′,M′) of all self-homeomorphisms of M′, that is to say the
matching distance equals the natural pseudo-distance;

(4) infh maxP∈M′ |ϕ′(P ) − ψ′(h(P )| = maxP∈M′ |ϕ′(P ) − ψ′(P )|, that is to
say, the identity homeomorphism attains the natural pseudo-distance.

PROOF. Possibly by swapping the size pairs, we can assume that minϕ ≤
minψ.

Let (ai) and (bi) be two representative sequences for ℓ∗(M,ϕ) and ℓ∗(N ,ψ), respec-
tively. It is not restrictive to assume that the identical bijection i 7→ i is an
optimal matching such that dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(N ,ψ)) is attained. We define

I := {i ∈ N − {0} : ai /∈ ∆}, J := {j ∈ N − {0} : bj /∈ ∆}.
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Fig. 8. Case i ∈ I. Left: The graph of the function ϕ̃( 1
3i , y). Right: The graph of the

functions ϕ̃( 1
3i±1 , y).

For every i > 0, let ai = (xi, yi) and bi = (x′i, y
′
i). Then

lim
i→∞

(yi − xi) = 0, lim
i→∞

(y′i − x′i) = 0,

because of Prop. 14 (Local finiteness of cornerpoints).

We choose a real number S with S > max{maxϕ,maxψ}. Necessarily S >
minϕ. Moreover, we define (ǫi)i∈N−{0} to be a sequence of positive real number
tending to 0 and such that, for every i ∈ N − {0}, it holds that:

[

xi + yi
2

− ǫi,
xi + yi

2
+ ǫi

]

⊆ (minϕ, S).

Finally, let R := [0, 1] × [minϕ, S] ⊆ R
2.

We define ϕ̃ : R → R by the following conditions:

(i) Let i ∈ I and ai = (xi, yi). Then ϕ̃( 1
3i
, y) is the piecewise linear function in

the variable y ∈ [minϕ, S] whose graph, consisting of four segments, is repre-
sented in Fig. 8(left). Furthermore, ϕ̃( 1

3i−1
, y) and ϕ̃( 1

3i+1
, y) are the piecewise

linear functions in the variable y ∈ [minϕ, S], whose graph (the same) consists
of three segments, as represented in Fig. 8(right).

(ii) Let i ∈ J−I and bi = (x′i, y
′
i). Then ϕ̃( 1

3i
, y) and ϕ̃( 1

3i±1
, y) are the piecewise

linear functions in the variable y ∈ [minϕ, S] whose graph, consisting of three

segments, is represented in Fig. 9. Let us observe that
x′i+y

′
i

2
> minϕ, since we

are assuming minϕ ≤ minψ.

(iii) ϕ̃(0, y) and ϕ̃(1, y), as functions in the variable y ∈ [minϕ, S], are defined
as the identity function y 7→ y.

(iv) For any x ∈ [0, 1] where not already defined, ϕ̃(x, y) is defined by linear

25



m
in
ϕ

minϕ

x′i+y
′
i

2

x
′ i
+
y
′ i

2
−
ǫ i

x
′ i
+
y
′ i

2
+
ǫ i S

S

y

ϕ̃( 1
3i
, y), ϕ̃( 1

3i±1
, y)

Fig. 9. Case i ∈ J − I. The graph of the functions ϕ̃( 1
3i , y) and ϕ̃( 1

3i±1 , y).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
1.2

1.4
1.6

1.8
2

2.2
2.4

2.6
2.8

3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x ∈ [0, 1]
y ∈ [minϕ, S]

Fig. 10. A “pit” of the function ϕ̃ : R→ R.

extension with respect to the variable x.

The aspect of the graph of ϕ̃ in correspondence of a cornerpoint is represented
in Fig. 10.

Let us observe that, by construction, ϕ̃(x, y) is continuous everywhere in R,
except possibly at x = 0. Actually, ϕ̃(x, y) is continuous also at x = 0. Indeed,
when i tends to infinity, ǫi → 0 and (yi − xi) → 0. Thus the functions ϕ̃(1

i
, y)

with i > 0 tend to the identity function in the sup norm.

It is not difficult to check that ℓ∗(R,ϕ̃) = ℓ∗(M,ϕ).

Let us now analogously define the function ψ̃ : R → R, where R is still defined
as [0, 1] × [minϕ, S] ⊆ R

2, by means of the following conditions:

(i’) Let i ∈ J and bi = (x′i, y
′
i). Then ψ̃( 1

3i
, y) is the piecewise linear function
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in the variable y ∈ [minϕ, S] whose graph, constituted of four segments, is
represented in Fig. 11(left). Furthermore, ψ̃( 1

3i−1
, y) and ψ̃( 1

3i+1
, y) are the

piecewise linear functions in the variable y ∈ [minϕ, S] whose graph (the
same), constituted of three segments, is represented in Fig. 11(right).

(ii’) Let i ∈ I−J and ai = (xi, yi). Then, if xi+yi

2
> minψ, we take ψ̃( 1

3i
, y) and

ψ̃( 1
3i±1

, y) to be the piecewise linear functions in the variable y ∈ [minϕ, S],
whose graph, constituted of three segments, is represented in Fig. 12(left).
Otherwise, if xi+yi

2
≤ minψ, we take ψ̃( 1

3i
, y) and ψ̃( 1

3i±1
, y) to be the piecewise

linear functions in the variable y ∈ [minϕ, S] whose graph, constituted of two
segments, is represented in Fig. 12(right),

(iii’) ψ̃(0, y) and ψ̃(1, y), as functions in the variable y ∈ [minϕ, S], are both
defined as the function y 7→ S−minψ

S−minϕ
(y − minϕ) + minψ, that is to say, the

linear function that takes value minψ, when y = minϕ, and value S, when
y = S.
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(iv’) For any x ∈ [0, 1], where not already defined, ψ̃(x, y) is defined by linear
extension with respect to the variable x.

Again, one sees that ψ̃ : R → R is continuous and ℓ∗
(R,ψ̃)

= ℓ∗(N ,ψ).

Let us now show that dmatch(ℓ
∗
(R,ϕ̃), ℓ

∗
(R,ψ̃)

) = maxP∈R |ϕ̃(P ) − ψ̃(P )|. It may

be useful to recall that dmatch(ℓ
∗
(R,ϕ̃), ℓ

∗
(R,ψ̃)

) = maxi∈N d(ai, bi), where, if ai =

(xi, yi) and bi = (x′i, y
′
i),

if i = 0 d(ai, bi) = minψ − minϕ;

if i ∈ I ∩ J , d(ai, bi) = max{|y′i − yi|, |x
′
i − xi|};

if i ∈ I − J , d(ai, bi) = yi−xi

2
;

if i ∈ J − I, d(ai, bi) =
y′i−x

′
i

2
;

if i /∈ I ∪ J ∪ {0}, d(ai, bi) = 0.

As for maxP∈R |ϕ̃(P ) − ψ̃(P )|, notice that the maximum must be attained at
a point (x, y) ∈ R, where either x = 1

3i
or x = 1

3i±1
, with i > 0, or x = 0, or

x = 1. Indeed, ϕ̃ and ψ̃ are linearly defined in the variable x elsewhere. Let
us consider the various instances separately.

For x = 0 and x = 1, it holds that

max
y∈[minϕ,S]

|ϕ̃(x, y) − ψ̃(x, y)| = minψ − minϕ = d(a0, b0).

For x = 1
3i

or x = 1
3i±1

, different cases are possible.

Case i ∈ I ∩ J . By looking at the graphs of ϕ̃( 1
3i
, y) when i ∈ I and ψ̃( 1

3i
, y)

when i ∈ J , we immediately see that

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i
, y

)

− ψ̃
(

1

3i
, y

)
∣

∣

∣

∣

=

= max{|y′i − yi|, |x
′
i − xi|,minψ − minϕ} =

= max{d(ai, bi), d(a0, b0)}.

By looking at the graphs of ϕ̃( 1
3i±1

, y) when i ∈ I and ψ̃( 1
3i±1

, y) when i ∈ J ,
we see that

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i± 1
, y

)

− ψ̃
(

1

3i± 1
, y

)
∣

∣

∣

∣

=

= max{|y′i − yi|,minψ − minϕ} ≤
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≤ max{d(ai, bi), d(a0, b0)}.

Case i ∈ I − J . If xi+yi

2
> minψ, then

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i
, y

)

− ψ̃
(

1

3i
, y

)∣

∣

∣

∣

=

= max
{∣

∣

∣

∣

yi −
xi + yi

2

∣

∣

∣

∣

,
∣

∣

∣

∣

xi −
xi + yi

2

∣

∣

∣

∣

,minψ − minϕ
}

=

= max
{∣

∣

∣

∣

yi − xi
2

∣

∣

∣

∣

,minψ − minϕ
}

=

= max{d(ai, bi), d(a0, b0)}.

Or else, if xi+yi

2
≤ minψ, then

|yi − minψ| < |xi − minψ|,

because xi < yi ≤ 2 minψ−xi and hence xi−minψ < yi−minψ ≤ minψ−xi.
Moreover, |xi − minψ| = minψ − xi ≤ minψ − minϕ. Therefore,

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i
, y

)

− ψ̃
(

1

3i
, y

)∣

∣

∣

∣

=

= max{|yi − minψ|, |xi − minψ|,minψ − minϕ} =

= minψ − minϕ = d(a0, b0).

Analogously, if xi+yi

2
> minψ, then

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i± 1
, y

)

− ψ̃
(

1

3i± 1
, y

)∣

∣

∣

∣

= max{d(ai, bi), d(a0, b0)},

or, if xi+yi

2
≤ minψ, then

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i± 1
, y

)

− ψ̃
(

1

3i± 1
, y

)
∣

∣

∣

∣

= d(a0, b0).

Case i ∈ J − I . We have that

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i
, y

)

− ψ̃
(

1

3i
, y

)
∣

∣

∣

∣

=

= max

{∣

∣

∣

∣

∣

y′i −
x′i + y′i

2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

x′i −
x′i + y′i

2

∣

∣

∣

∣

∣

,minψ − minϕ

}

=

= max

{∣

∣

∣

∣

∣

y′i − x′i
2

∣

∣

∣

∣

∣

,minψ − minϕ

}

=

= max{d(ai, bi), d(a0, b0)},
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and

max
y∈[minϕ,S]

∣

∣

∣

∣

ϕ̃
(

1

3i± 1
, y

)

− ψ̃
(

1

3i± 1
, y

)
∣

∣

∣

∣

= max{d(ai, bi), d(a0, b0)}.

From all these facts we deduce that

max
P∈R

|ϕ̃(P ) − ψ̃(P )| = dmatch(ℓ
∗
(R,ϕ̃), ℓ

∗
(R,ψ̃)

).

To complete the proof, it is now sufficient to extend the above arguments to
a topological 2-sphere . To do this, let us take

M′ := ∂(R × [0, 1]) = ∂([0, 1] × [minϕ, S] × [0, 1]).

Obviously, M′ is homeomorphic to a 2-sphere.

Moreover, by identifying R × {0} with R, let us define ϕ′ : M′ → R as
follows: ϕ′

|R×{0} ≡ ϕ̃, ϕ′
|[0,1]×{minϕ}×[0,1] ≡ minϕ, ϕ′

|[0,1]×{S}×[0,1] ≡ S, and let
us define ϕ′ by linear extension in y ∈ [minϕ, S] elsewhere. Finally, let us
define ψ′ : M′ → R analogously: ψ′

|R×{0} ≡ ψ̃, ψ′
|[0,1]×{minϕ}×[0,1] ≡ minψ,

ϕ′
|[0,1]×{S}×[0,1] ≡ S, and let us define ψ′ by linear extension in y ∈ [minϕ, S]

elsewhere. This completes the proof. 2

Remark 31 It is worth noting that in our construction, starting from a 2-
manifold, the requirement ϕ′ and ψ′ of class C0 cannot be improved to C2.
Indeed, it is possible to construct examples of reduced size functions ℓ∗(M,ϕ)

such that each point of the set

X := {(x, x) ∈ ∆ : 0 ≤ x ≤ 1}

is the limit point for a sequence of cornerpoints of ℓ∗(M,ϕ). If it were possible

to construct ϕ′ of class C2 such that ℓ∗(M,ϕ) = ℓ∗(M′,ϕ′), the coordinates of each
point in X would be the limit point for a sequence of critical values of ϕ′

(cf. Cor. 2.3 in [12]). Since the set of critical values is closed, it would follow
that any point in [0, 1] is a critical value for ϕ′. This would contradict the
Morse-Sard Theorem stating that, for a Cr map f from an m-manifold to
an n-manifold, if r > max{0, m − n} then the set of critical values of f has
measure zero in the co-domain (cf. [22], p. 69). We do not know whether it
is possible to prove Lemma 30 with ϕ′ and ψ′ of class C1 on a 2-manifold.
Similarly, the Morse-Sard Theorem implies that it is not possible to construct
size pairs satisfying the properties of Lemma 30, with ϕ′ and ψ′ of class C1

on a 1-manifold, but we cannot exclude that this could be done by means of
C0 functions.
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7 Comparison with earlier results

This section aims to show that dmatch is the most suitable metric to compare
reduced size functions, mainly for two reasons. In the first place, we prove
that one cannot find a distance between reduced size functions giving a better
lower bound for the natural pseudo-distance than the matching distance. In
the second place, we show that the lower bound provided by the matching
distance improves an earlier estimate also based on size functions. The main
tool to obtain these results is Lemma 30.

Theorem 32 Let δ be a distance between reduced size functions, such that

δ(ℓ∗(M,ϕ), ℓ
∗
(N ,ψ)) ≤ inf

h∈H(M,N )
max
P∈M

|ϕ(P ) − ψ(h(P ))|,

for any two size pairs (M, ϕ) and (N , ψ) with M and N homeomorphic.
Then,

δ(ℓ∗(M,ϕ), ℓ
∗
(N ,ψ)) ≤ dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(N ,ψ)).

PROOF. We argue by contradiction. Let us assume that there exist two size
pairs (M, ϕ) and (N , ψ), with M and N homeomorphic, such that

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) < δ(ℓ∗(M,ϕ), ℓ

∗
(N ,ψ)).

By Lemma 30, there exist (M′, ϕ′) and (M′, ψ′) such that ℓ∗(M,ϕ) = ℓ∗(M′,ϕ′),
ℓ∗(N ,ψ) = ℓ∗(M′,ψ′), and

dmatch(ℓ
∗
(M′,ϕ′), ℓ

∗
(M′,ψ′)) = inf

h∈H(M′,M′)
max
P∈M′

|ϕ′(P ) − ψ′(h(P ))|.

Of course, δ(ℓ∗(M,ϕ), ℓ
∗
(N ,ψ)) = δ(ℓ∗(M′,ϕ′), ℓ

∗
(M′,ψ′)). Hence,

inf
h∈H(M′,M′)

max
P∈M′

|ϕ′(P ) − ψ′(h(P ))| = dmatch(ℓ
∗
(M′,ϕ′), ℓ

∗
(M′,ψ′)) =

= dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(M,ψ)) < δ(ℓ∗(M,ϕ), ℓ

∗
(M,ψ)) =

= δ(ℓ∗(M′,ϕ′), ℓ
∗
(M′,ψ′)) ≤ inf

h∈H(M′,M′)
max
P∈M′

|ϕ′(P ) − ψ′(h(P ))|,

giving a contradiction. 2

Analogously, we show that the inequality of Th. 29

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) ≤ inf

h∈H(M,N )
max
P∈M

|ϕ(P ) − ψ(h(P ))|

is a better bound than the one given in [7], that we restate here for reduced
size functions:
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Theorem 33 If there exist (x, y) and (ξ, η) in ∆+ such that ℓ∗(M,ϕ)(x, y) >
ℓ∗(N ,ψ)(ξ, η), then

inf
h∈H(M,N )

max
P∈M

|ϕ(P ) − ψ(h(P ))| ≥ min{ξ − x, y − η}.

Indeed, we have the following result.

Theorem 34 Assume that

A :=
{

((x, y), (ξ, η)) ∈ ∆+ × ∆+ : ξ ≥ x, η ≤ y, ℓ∗(M,ϕ)(x, y) > ℓ∗(N ,ψ)(ξ, η)
}

is non-empty, and let

s := sup
((x,y),(ξ,η))∈A

{min{ξ − x, y − η}}

(in other words, s is the best non-negative lower bound we can get for the
natural pseudo-distance infh maxP∈M |ϕ(P ) − ψ(h(P ))| by applying Th. 33).
Then

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) ≥ s.

PROOF. We argue, by contradiction, assuming dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) < s.

Since s is a sup, there is a pair
(

(x̄, ȳ), (ξ̄, η̄)
)

∈ A satisfying

dmatch(ℓ
∗
(M,ϕ), ℓ

∗
(N ,ψ)) < min{ξ̄ − x̄, ȳ − η̄} =: s′

with s′ ≤ s.

By Lemma 30 we can construct two size pairs (M′, ϕ′) and (M′, ψ′) such that
ℓ∗(M,ϕ) = ℓ∗(M′,ϕ′), ℓ

∗
(N ,ψ) = ℓ∗(M′,ψ′), and

dmatch(ℓ
∗
(M′,ϕ′), ℓ

∗
(M′,ψ′)) = inf

h∈H(M′,M′)
max
P∈M′

|ϕ′(P ) − ψ′(h(P ))|.

Clearly, the set A coincides with the set

B :=
{

((x, y), (ξ, η)) ∈ ∆+ × ∆+ : ξ ≥ x, η ≤ y, ℓ∗(M′,ϕ′)(x, y) > ℓ∗(M′,ψ′)(ξ, η)
}

.

Then
(

(x̄, ȳ), (ξ̄, η̄)
)

∈ B, implying s′ ≤ infh maxP∈M′ |ϕ′(P ) − ψ′(h(P ))|,
because of Th. 33. Finally, observing that

s′ ≤ inf
h∈H(M′,M′)

max
P∈M′

|ϕ′(P ) − ψ′(h(P ))| =

= dmatch(ℓ
∗
(M′,ϕ′), ℓ

∗
(M′,ψ′)) = dmatch(ℓ

∗
(M,ϕ), ℓ

∗
(N ,ψ)) < s′,

we obtain a contradiction. 2
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8 Conclusions

The main contribution of this paper is the proof that an appropriate distance
between reduced size functions, based on optimal matching, provides the best,
stable and easily computable lower bound for the natural pseudo-distance
between size pairs. Hence, the problem of estimating the dissimilarity between
size pairs by the natural pseudo-distance can be dealt with by matching the
points of the representative sequences of reduced size functions. The estimate
in Th. 29 improves an earlier one given in [7], also based on size functions but
without the use of cornerpoints.

The stability of the matching distance between reduced size functions with
respect to continuous functions is important by itself. Indeed, it allows us to
use reduced size functions as shape descriptors with the confidence that they
are robust against perturbations on the data, often arising in real applications
due to noise or errors.

A crucial result in our paper is the proof that it is always possible to construct
two suitable measuring functions on a topological 2-sphere with given reduced
size functions and a pseudo-distance equaling their matching distance (Lemma
30). This result has allowed us to prove that the matching distance is the best
tool to compare reduced size functions. Indeed, after Th. 32, we know that
it makes no sense to look for different metrics on size functions in order to
improve the lower bound for the natural pseudo-distance furnished by the
matching distance. However, it would be interesting to study whether the
inequality of Theorem 10 in [18], giving a lower bound for the natural pseudo-
distance via the size homotopy groups, can be improved using appropriate
analogs of the concepts of cornerpoint and matching distance, in the same
way that the estimate in Th. 29 improves the result given in [7].
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