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1 Introduction: Size Graphs and the Reduction Problem

Size Theory i1s a new approach to the problem of comparing “shapes” of topo-
logical spaces, based on a mathematical transform named size function. Such
a theory appears to be particularly useful in Computer Vision, when the topo-
logical spaces to be described and compared are images or parts of images. In
fact, size functions have interesting properties such as resistance to noise and
capability to be useful also in presence of occlusions (cf. [7]). Moreover, their
modularity allows us to make them invariant under the transformation group
we are interested in, e.g. the group of isometries or affine or projective transfor-
mations.

Size Theory has turned out to be useful for quite a lot of applications (see,
e.g., [1], [9], [10], [11], [12], [13] and [14]).

In previous papers ([2], [3], [4], [5] and [6]) the base of Size Theory was given.
For a survey of the subject we refer to [7].

Size functions are integer functions of two real variables, defined through
“measuring functions”. The idea underlying the concept of size function is that
of setting metric obstructions to the classical notion of homotopy. Thus size
functions convey information on both topological and metric properties of the
viewed shape. In this paper we shall confine ourselves to the discrete aspect of
the theory (cf. [3], [5] and [7]), since here we are interested in the algorithmic
computation of size functions.

* This work was partially supported by MURST (Italy), ELSAG Bailey (Italy) and
AST (Ttaly).



In computing discrete size functions, we have to count the components of
particular subgraphs of a graph labelled at its vertices, named size graph. Obvi-
ously, the smaller the graph, the faster is the computation. Moreover, size graphs
are often big, so the problem of simplifying their structures without changing the
associated discrete size functions is very important in order to use Size Theory
successfully. This paper introduces two methods of reducing size graphs with-
out changing the corresponding discrete size functions, that is £-reduction and
A-reduction. The main properties of these two methods are studied and some
useful theorems about those are proved. Finally a comparison of such methods
is given.

In this paper we only consider finite undirected graphs without loops or
multiple edges. We stress that, although all graphs displayed in the following
figures are planar and connected, the methods described in this paper can be
applied to every size graph, also in case it cannot be embedded in the real plane
or it is not connected.

2 Some basic definitions

In this section we recall the main definitions we need for dealing with discrete
size functions. For our terminology about graphs we refer to [8].

Definition1. Assume a finite graph G is given and call V(G) and E(G) the
set of vertices and edges of G, respectively. Assume a function ¢ : V(G) — TR is
fixed. Then the pair (G, ) will be called a size graph.

Remark. If (G, @) is a size graph and ¢ is injective, then G becomes an oriented

graph a in a natural way, by giving to each edge e the orientation going from
the vertex with higher value of ¢ to the other one.

In all figures we shall adopt the convention of representing ¢ as the height
function with respect to the lowest vertex, so that ¢(v,) > @(vs) if and only if
v, 18 higher than v in the picture.

For each size graph a discrete size function is defined:

Definition 2. For every z € IR we shall denote by G (¢ < z) the subgraph of
G obtained by erasing all vertices of G at which ¢ takes a value strictly greater
than z and all edges that connect those vertices to other vertices. If v,, vp are
two vertices belonging to the same connected component of G (¢ < z), then we
shall write vs Zg(p<z) Vb-

Definition 3. Call Tt the set of the ordered real pairs (z,y) with z < y. Con-
sider the function £ ) : Tt — IN defined by setting LG ,p) (z,y) equal to the
number of connected components of G (p < y) containing at least a vertex of
G (p < z). We shall call £ ) the discrete size function of the size graph (G, p).

FEzample 1. In Figure 1 we give two size graphs and their respective discrete size
functions. In each region of the half-plane {y > z} the value taken by the discrete
size function is displayed.
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Fig. 1. Two size graphs and their discrete size functions.

3 A global method for reducing (G, ¢): L-reduction

In the following we assume that a size graph (G, ¢) is given. We shall denote
by V = {v1,vs,...,v,} the (ordered) set of the vertices and by E the set of the
edges of G.

Definition4. We define a function L : V. — V the following way. For every
v; € V call 4; the set containing v; and all vertices of G that are adjacent to v;.
Define B; C A; as the set whose elements are the vertices w € A; for which the
number @(v;) — p(w) takes the largest value. Finally, choose the vertex v € B;

. . . .. d .
for which the index k& is minimum. Then we set L(v;) ef vy . For obvious reasons,
we shall call L the single step descent flow function.

Remark. Because of the definition of L and the finiteness of V', for every v € V
there must exist a minimum index m(v) < n such that L™®)(v) = L)+ (4)
(if L(v) = v we set m(v) = 0).

The previous Remark justifies the following definition.

Definition5. For every v € V we set L(v) o L™(®)(v). This defines a function

L :V — V: we shall call £ the descent flow operator.



Remark. In plain words, the descent flow operator takes each vertex v; to a local
minimum with respect to the measuring function . During the descent, indexes
are used to decide the path in case the set B; contains more than one vertex.

As an example about our definitions, in the size graph (G, ¢) displayed in
Figure 1 we have Big = {vs}, Bs = {va}, Ba = {v3,vs4} and By; = {vr,vs}.
Hence L(vis) = vs, L(vs) = va, L(va) = L(v16) = v3 and L(v11) = v7.

Definition 6. Each vertex v for which £(v) = v will be called a minimum vertex
of (G, p). Call M the set of the minimum vertices of (G, ).

Definition 7. Assume that vj,,v;, are two distinct minimum vertices of (G, ¢).
Suppose v;,,v;, € V are two adjacent vertices of G such that the following
statements hold:

Lo {L(vi, ), £(vi)} = {15 v, }

2. 1f v;,,v;, € V are two other adjacent vertices of G for which the equal-
ity {L(vi,), L(vi,)} = {vj,,v;,} holds then either max{e(v;, ), p(vi,)} <
max{@(vi, ), ¢(vi,) } or max{p(v;, ), p(vi,)} = max{p(v,), p(vi,)} with (41, 4,)
preceeding (i3, %4) in the lexicographic order.

We shall call the set {v;,,v;,} the main saddle adjacent to the minimum
vertices v;, and vj,. Call S the set of the main saddles of (G, ).

Figure 1 displays some examples of minimum vertices and main saddles. In
G the minimum vertices are v, v3, vs, v17 (We point out that ¢(vs) = ¢(v4)) and
the main saddles are {vi3,v14} (adjacent to v1 and vi7), {vis, v16} (adjacent to
v17 and vg), {vs, v12} (adjacent to vg and v3), {vs,v11} (adjacent to vg and v1).
In G’ the minimum vertices are v}, v4, vg and the main saddles are {v};,v}{5}
(adjacent to v and vg), {vl,, vi3} (adjacent to vs and v4), {v5, v5} (adjacent to
vy and vg).

The previous definitions allow us to define the concept of £-reduced graph:

Definition8. Call GX the graph whose vertices are the elements of the set

d . . .
Ve MU S and whose adiacency relations are so defined: two vertices u, w €
V£ are adjacent if and only if one of them is a minimum vertex and the other

one is a main saddle adjacent to it (in the sense of previous Definition 7). Then

we define ° : VX — IR this way: ¢*(u) = p(u) if u € M and ¢*(u) &

max{p(vi, ), p(vi,)} if w= {vi,,vi,} € S.
The size graph (G*, ¢*) will be called the L-reduction of (G, ).

In Figure 2 two examples of £-reduction are displayed.
The importance of the previous definition is shown by the following result:

Theorem 9. For every & <y the equality £ge ,0)(2,Y) = £ o) (2, y) holds.

Theorem 9 allows to compute the discrete size function of (G, ¢) by work-
ing on the L-reduced size graph (G*, %), which has usually a much simpler
structure.

In order to prove such a result we need the following lemma.
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Fig.2. Two examples of L-reduction.

Lemma 10. Consider two minimum vertices vq,vy € M. Then v, =G (p<y) Vb
if and only if va Zge(pe<y) Vo

Proof. We can confine ourselves to consider only the case v, # wvp, since the
case vg = v 18 trivial. Suppose v, =G(p<y) Vb- Then by definition there exists a
sequence (V;, = Vg, Viy,---,Vi,_,, ¥, = Up) of vertices of G (¢ < y) such that for
each index j < r the vertex v;; is adjacent to v;,,, in G (¢ < y). Now, consider
the sequence of minimum vertices (L£(v;,) = vq, L(viy),. -+, L(vi._,), L(v;,) =
vp). By substituting each subsequence of consecutive vertices by one represen-
tative in such a sequence, we obtain a new sequence (u; = Vg, Ug,...,Us = Up)
(Tn plain words we mean that the sequence (w1, w1, ..., w;,ws,ws...,Ws,...,
Wh, Wh, - - ., Wy ) becomes the sequence (w1, ws,...,wp)). For each index j < s
there exists (exactly) one main saddle o; adjacent to u; and w;41. Let us take
the sequence (u1 = v4,071, 3,09, ..., Us-1,05_1, Us = Up): such asequence proves
that v, EGL(wﬁsy) V.

On the other side, suppose that v, Zgz(,2<y) vi. Then by definition there
exists a sequence (U3 = Uq,01,U2,02,...,Us—1,0s_1,Us = Up) of vertices of
G* <<p£ < y> where each u; is a minimum vertex and each o; is a main saddle
adjacent to u; and u;41. Now, by modifying such a sequence we can construct
the following new sequence: for each index j < s, between u; and o; = {v;,, v, }
insert the sequence (Lm(v’i)_l(vij), Lm(u’j)_Q(vij), «ooy L*(vi;), L(v;;)) and be-

m(vkj)_Q(vk '):
7

Lm(vkj)_l(vkj)) (we are assuming L£(v;;) = u; and L(vg,;) = uj41). In plain
words, we insert the vertices we go through by following the descent flow opera-

tween ¢; and wjy1 insert the sequence (L(vg,),L*(vk,),..., L



tor during the path from a main saddle to an adjacent minimum vertex. Finally,
we substitute the two vertices v;;, vg, (taken in this order) for each main saddle
o;. The new sequence we obtain proves that va =g (,<y) vs- m]

Now we can give the proof of Theorem 9.

Proof. Consider two values z,y € IR with z < y. We have only to prove that
there exists a bijection F from G (¢ < z) / Zg(p<y) to G* <<p£ < :z:> [ Zae(pe<y)
For every equivalence class C € G (p < )/ =G(p<y) We choose a minimum ver-
tex v € C. Obviously v is a vertex of G* <<p£ < z>, too. Therefore in

G* <<p£ < z>/ Zae(pt<y) there is an equivalence class D containing v. We

define F(C) “ D. From previous Lemma 10 it follows that F is well de-

fined and injective. Surjectivity of F' is trivial, since each equivalence class in
G- (pt<z)/ =Ge(pe<y) contains at least a minimum vertex of G (p < z). O

4 A local method for reducing (G, ¢): A-reduction

L-reduction is a global method for reducing size graphs, since the construction
of main saddles requires the knowledge of all the size graph. Conversely, this
section 1s devoted to a local method, called A-reduction, that requires only the
knowledge of the local structure of the size graph. The basic idea is quite different
from the one used for £-reduction and is given by the following definition.

Definition11. Assume v; is adjacent to v; and ws is adjacent to vy in G (in
symbols: v; ~g vy and v3 ~g v3). Moreover, assume that p(vs) > o(v1) > p(v2).
Consider the new graph H obtained from G by erasing the edge connecting vs
to vy and inserting the edge connecting vz to v (unless it already exists in G).
See Figure 3. We shall say that the size graph (H, ¢) has been obtained from
(G, ¢) by a simple A-move. Every size graph obtained from (G, ¢) by applying
a finite sequence of simple A-moves will be called ¢ A-reduction of (G, ). Each
A-reduction of (G, ¢) for which no one A-move can be applied will be called «a
total A-reduction of (G, ).

Fig. 3. A simple A-move.



First of all we point out the following property:

Lemma 12. Assume that (H, @) is a A-reduction of the size graph (G, ). Then
Va EG(LpSy) Vb Zf and Only if’Ua EH(‘PS?J) Vb-

Proof. Tt is sufficient to point out that our thesis holds when (H, ¢) is obtained
from (G, p) by using only one simple A-move. m|

From Lemma 12 a useful theorem follows:

Theorem 13. Assume (H, ) is a A-reduction of (G, @). Then for everyz <y
the equality £ ,)(2,y) = £(a o) (2, y) holds.

Proof. 1t easily follows from the definitions and Lemma 12, much as Theorem 9
follows from Lemma 10. a

It is important to point out that a a fotal A-reduction of G always exists,
that is the procedure of applying simple A-moves cannot proceed indefinitely.

Proposition14. A total A-reduction of G exists.

Proof. Consider the complete graph G* (i.e. the graph containing the edge e =
{va,vp} if and only if v, v € V(G) and v, # v;). For every edge e € E(G*)
let us define p(e) as the minimum between the values taken by ¢ at the vertices
connected each other by e. Now, suppose that we can apply an infinite number
of simple A-moves starting from (G, ¢), and call (G1,¢), (G2, 9),...,(Gr, @)
the corresponding A-reductions. Since each A-move cannot make the number of
edges greater, a positive integer g exists such that every A-move after the g-th
one leaves the cardinality of the set E(G,) of edges of G, constant. Because of
its definition, each A-move after the g-th one increases the sum ZeEE(G’T) p(e) at

least of the positive value § =l min{|p(v) — p(w)| : v,w € V(G), p(v) # p(w)},
so that the previous sum can become arbitrarily large. This fact contradicts the
boundedness of ¢ and the finiteness of the set E. Therefore our initial assumption
is false and there must exist a total A-reduction of (G, ¢). a

In Figure 4 two examples of total A-reduction are displayed.

The most useful property of A-reduction is given by the following result,
showing that each total A-reduction of (G, ¢) has a very simple structure. We
recall that an arborescence is an oriented tree in which there do not exist pairs
of edges directed to the same vertex. If (G, ¢) is a size graph and G is an
arborescence whose edges are all directed downwards with respect to ¢, we shall
say that such an arborescence is decreasing.

Proposition15. If ¢ is injective and (H, ) is a total A-reduction of (G, @)

then H is a disjoint union of irees (i.e. a forest) and the oriented graph I_ji s a
disjoint union of decreasing arborescences.



Fig. 4. Two examples of total A-reduction.

Proof. Tt follows immediately from the definition of A-reduction, implying that
H cannot contain cycles. a

Obviously, the procedure of A-reduction is not unique, in the sense that at
each step we have to choose the simple A-move to be applied. Hence a problem
naturally arises about the relation between the total A-reductions of a size graph.
As an example we refer to following Figure 5, where we can see that in general
total A-reductions are neither equal nor isomorphic.

On the other hand, next Theorem 17 shows that under a reasonable hypoth-
esis, uniqueness of total A-reductions can be proved. Before showing that, we
need the following Definition 16.

Definition16. A sequence (wi,ws, ..., w,) of vertices of G will be said to be
an increasing path from w; to w, in (G, ) if and only if w; ~g w;41 and
o(w;) < p(wiqr) for 1 <i<r— 1.

Theorem 17. If ¢ is injective then all total A-reductions coincide.

Proof. Assume that (H, ) and (K, ¢) are two total A-reductions of the size
graph (G, ¢). We have to prove that H = K. Because of the definition of simple
A-move the graphs H and K have the same vertices. Hence we have only to
prove that two vertices are adjacent in H if and only if they are adjacent in K.
So, suppose vq ~pr vy, and assume @(vp) > p(v,). We shall prove that v, ~x .

First of all, we have vs =g (,<y(v,)) v» and hence Lemma 12 implies that

-
Vo ZK(p<yp(vy)) Vb- NOw, since each connected component of K is a decreasing
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Fig.5. Two non-isomorphic total A-reductions of the same size graph. We point out
that ¢ is not injective.

arborescence (see Proposition 15), it follows that an increasing path exists from
vg to v in (K, @) (w1 = vq,W2,...,Wr—1, W, = v3). We want to prove that
wy = wp. Since Vg Zp(p<p(uwy)) W2 (in fact v ~x wy and p(v,) < @(ws)),
by Lemma 12 we have that v =g (p<p(w,)) w2 But each connected component

of E is a decreasing arborescence and hence an increasing path exists from v,
to wy in (H,9): (41 = Vg, U2,y ..., Us_1,Us = Wa). By recalling that v, ~g v,
o(vg) < p(wz) < p(vp) and since each connected component of Hisa decreasing
arborescence, the equalities s = 2 and ws = vy must hold, and so v, ~g v
follows from v, ~x wo.

Analogously, v, ~x vy implies v, ~p v3. O

Remark. Tt 1s important to point out that the ways to obtain the same unique
total A-reduction can be quite different from each other (see example displayed
in Figure 6).

5 Comparison of L-reduction and A-reduction.
Examples.

In this section we shall compare L-reduction and A-reduction from a compu-
tational point of view. The natural question is the following one: which is the
best way to simplify a size graph? As regards the two methods we give, the
answer depends on the graph we are studying. As an example, consider the size
graph displayed on the left of Figure 7. Such a graph cannot be changed by A-
reduction, while £-reduction produces the simpler graph on the right (the same
phenomenon happens for every disjoint union of decreasing arborescences). On
the other side, the size graph displayed on the left of Figure 8 cannot be simpli-
fied by using a L-reduction, while A-reduction allows to obtain the simpler graph
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Fig. 6. Two different ways to obtain the same total A-reduction.
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Fig.7. A-reduction is useless for reducing the size graph on the left. £-reduction gives
the size graph on the right.

on the right. In general a combined use of both such techniques is suggested, but
a theoretical study of this problem is still to be addressed.

Remark. We point out that in some cases the use of £-reduction may make the
size graph we are studying worse (see Figure 9). On the other side, the main
lack of A-reduction is that in general we have to apply an unknown and large
number of A-moves before obtaining the total A-reduction.

A-reduction

Fig. 8. L-reduction is useless for reducing the size graph on the left. A-reduction gives
the size graph on the right.
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Fig.9. Sometimes L-reduction may make the size graph we are studying worse.

Finally, we give the next two useful results. With a slight abuse of notation,
we shall call M(G) the set of minimum vertices of (G, ).

Proposition18. Assume (G*, %) is the L-reduction of (G, ). Then we have
M(G%) = M(G), |B(G")| < |M(G)|-(|1M(G)|-1) and [V(G*)| < HLALIMOIEL,

Proof. Trivial.
Example in Figure 9 shows that previous statement is sharp.

Proposition19. Assume (H, @) is a total A-reduction of (G, ¢). Then we have
M(H) = M(G), V(H) = V(G) and |E(H)| < |E(G)|. Furthermore, if ¢ is
injective we have |E(H)| = |V(G)| — h, where h is the number of connected
components of G. In case G is a tree (or a forest) we have |E(H)| = |E(G)|.

Proof. The first three statements are trivial. The last two follow by observing
that |[E(K)| = |V(K)| — h for every graph K which is the disjoint union of
h trees, and that each A-move takes a tree into a tree without changing the
number of edges.
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