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Abstract

According to a recent mathematical theory a shape
can be represented by functions, named size functions,
which convey information on both the topological and
metric properties of the viewed shape. In this paper
the relevance of the theory of size functions to com-
puter vision is investigated. An algorithm for the com-
putation of the size functions is presenied and many
theoretical properties of the theory are demonstrated
on real images. It is shown that the representation
of shape in terms of size functions (i) can be tai-
lored to suit the invariance of the problem et hand and
(ii) is stable against small qualitative and quantitative
changes of the viewed shape. A distance between size
functions is used as a similarily measure between the
representation of two different shapes. The obtained
results indicate that size functions are likely to be very
useful for object recognition. In particular, they seem
to be well sutted for the recognition of natural and ar-
ticulated objects.

1 Introduction

A__ intriguing property of the human visual system
is the capability of recognizing objects independent of
their apparent shape in images. The changes in the vi-
sual shape can be due to different factors. In the case
of rigid and manufactured objects, for example, these
changes are due to the object orientation and distance
from the viewer. In the case of natural objects, these
changes may also be due to the qualitative and quanti-
tative differences between objects which belong to the
same “category”. Most of the techniques which have
been proposed for shape analysis and object recogni-
tion appear to be appropriate for some particular and
interesting cases, like polyhedral rigid objects, planar
curves, or character recognition, but do not seem to be
sufficiently flexible to deal with the general problem.

In a recent series of mathematical papers, study-
ing shape through integer-valued functions, called size
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functions [1, 2, 3, 4, 5], has been proposed. The new
mathematical idea underlying the concept of a size
function is that of setting metric bounds to the clas-
sical notion of homotopy, i.e., of continuous deforma-
tion. Thus, size functions convey information about
both the qualitative and quantitative structure of the
viewed shape. The aim of this paper is to assess the
potential of the theory of size functions in computer
vision. An algorithm for the computation of size func-
tions is presented and the many theoretical properties
of the size functions are checked and illustrated on
real images. It is shown that the representation of
shape through size functions can be tailored to suit
the quantitative and qualitative invariant properties
of the shape to be studied. Therefore, size functions
seem to be suitable for the description and recogni-
tion of objects which have similar but not necessarily
identical shape (like natural, articulated, and nonrigid
objects).

The paper is organized as follow: In Section 2 the
approach to shape description through the theory of
size functions is introduced through a simple example.
An algorithm for the computation of a size function is
described in Section 3. Section 4 deals with the invari-
ant properties which may be incorporated in the the-
ory and illustrates the tolerance of the scheme against
changes of different sort on real images. Finally, Sec-
tion 5 summarizes the obtained results.

2 Overview of the approach

In this Section the concepts of the theory of the size
functions are illustrated over a simple example. Then,
the shape representation which can be obtained from a
size function is discussed. Finally, the main theoretical
properties of the theory are listed.

2.1 Topological and metric obstructions

Fig. la shows an example of shape, the letter “w”
in sign language performed by one of the authors. By
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Figure 1: Topological and metric obstructions. (a) An
image of the sign “w” performed by one of the authors.
(b) The outline « of the sign of (a) obtained by means
of standard edge detection and contour following tech-
niques. (¢) Computation of the measuring function L
at the points p, ¢, and 7. (d) The thick edges mark
the points with L < 4R. (e) The thin edges mark the
points with 4R < L < 6R. (f) Plot of the measuring
function L over the curve c.

using standard edge detection and contour following
techniques, the contour o of Fig. 1b, which corre-
sponds to the outline of the hand of Fig. 1la, can be
easily obtained. Let us introduce the key concepts of
measuring function and size function on the curve a.

As a preliminary step, let us define a transformation
H which brings a point of a onto some other point
of o without leaving the curve. The transformation
H induces an equivalence relation on the points of a,
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where two points v and w are said to be H-equivalent if
there exists a continuous trajectory on a which brings
v onto w, or if v and w belong to the same arcwise-
connected component of a. For example, the points
p,q, r, s, t, and u of Fig. 1b are all pairwise H-
equivalent. Since, independent of the shape of a, all
the points of « fall into one and the same equivalence
class, the purely topological concept of H-equivalence
is clearly not sufficient to characterize the shape of
«. Intuitively, this reflects the absence of “topological
obstructions” between the points of a.

In the theory of size functions, this problem is
overcome by means of the notion of measuring func-
tion [1]. The purpose of a measuring function is to
generate “metric obstructions” for the transformation
H. Let us illustrate the notion of measuring function
through a particular example. For each point v of a,
let L = L(v) be the length of the portion of @ which
lies within the circle ¢(v) of radius R and center v.
Fig. 1c shows how to compute L at the points p, g,
and r. Let R = D/5, where D is the diameter of a. It
is clear that L(p), L(q), and L(r) can be computed as
the sum of the length of the (possibly many) arcs of «
which lie within the circles ¢(p), ¢(¢), and ¢(r) of Fig.
1c respectively. The function L, which is defined on
the contour «, is an example of measuring function.

Let us now modify the definition of H by means of
L. Two points v and w of « are said to be H(L < y)-
equivalent if v = w or a trajectory exists on a from
v to w along which L never exceeds y. Let us call a
trajectory along which L never exceeds y an (L < y)-
trajectory. Intuitively, the points of & with L > y can
be thought of as metric obstructions for the (L < y)-
trajectories from v to w. This fact is illustrated in
Fig. 1d where the points with L > 4R (the metric
obstructions) have not been drawn. From the gaps
in Fig. 1d, it is easy to conclude that, between p, ¢,
r, s, and u, the points ¢ and r are the only pair of
H(L < 4R)-equivalent points.

The notion of H(L < y)-equivalence is essential for
the definition of size function [1]. The size function
lp{a;z,y), for z < y, and z and y € R2, is defined
as the number of equivalence classes in which the set
of points with L < z is divided by the H(L < y)-
equivalence relation. Let us compute the size function
Iz at the point (z,y) with £ = 4R and y = 6R. The set
of points of a with L < 4R are the thick edges of Fig.
le. Thus, the size function {;(a;4R,6R) is the num-
ber of equivalence classes in which the thick edges of
Fig. le are divided by the H(L < 6R)-equivalence re-
lation. This amounts to look for (L < 6R)-trajectories
between all the possible pairs of thick edges. The




thin edges of Fig. 1le, which are the points with
4R < L < 6R, represent the “extra” space which has
been made available to the (L < 6R)-trajectories.

It is easy to see that the size function l1(a;4R,6R)
equals the number of connected components of the
curve of Fig. le (ignoring the difference between thick
and thin edges) which contains at least one point with
L <4R,i.e., athick edge. Since of the three connected
components of the set of points with L < 6R, the one
which contains the point ¢ consists only of thin edges,
it follows that I, = 2. Note that the points p, ¢, r, and
u, which were not H(L < 4)-equivalent, now belong
to the same equivalence class.

An equivalent representation of the connected com-
ponents of the set of points with L < 4R under the
(L < 8R)-equivalence relation is shown in Fig. 1f, in
which L is plotted against the curve a = a(a) with
a € [0,1] and a(0) = «(1). The thick horizontal line
of Fig. 1f makes it clear that the set of points with
L < 4R consists of four connected components (the
leftmost and rightmost component belong to the same
component because «(0) = a(1)). The thin horizontal
line shows that these components reduce to two when
L < 6R.

Before discussing the main properties of the notion
of size function, let us show how shape information is
represented by means of a size function.

2.2 Shape representation

The size function I = Iy (e;z,y) is an integer-
valued function of the two real variables z and y. Let
us first show that all the relevant information is con-
tained in a region of finite area of the plane (z,y).
Let us divide the plane (z,y) in four regions, A, B, C,
and T. The region A consists of all the points at the
left of the vertical line z = L', B of all the points with
L' <z <yandy> L", C of all the points with z > L
and y < z, and T of all the points of the triangle with
LI'<y<L'and L' <z <y, where L’ and L” are the
minimum and the maximum of L over « respectively.
Let us now show that in A, B, and C the size func-
tion is independent of the shape of the curve a. First,
since the set of points with L < L’ is the empty set,
we have that, for all the points in 4, I, = 0. Then,
since for L > L there are no metric obstructions, we
have that, for all the points in B, I, = 1. Finally,
since for y < z each point of « identifies a different
equivalence class, for all the points in C, I} = +oc.

Thus, all the relevant information is contained in
the triangular region T enclosed by the regions A, B,
and C. Moreover, it is evident that a size function is
always piecewise constant, nondecreasing along the 2-
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axis, and nonincreasing along the y-axis. These prop-
erties follow easily from the definition of size function.

2.3 Basic properties

The notions of measuring function and size func-
tion have a number of interesting properties. Let us
briefly summarize these properties, some of which will
be illustrated in greater detail in Section 4. In what
follows o denotes a generic curve of the image plane.
First, there is a wide range of possible choices for a
measuring function. In principle, any continuous real
function defined on a curve o can serve as a measur-
ing function. For example, along with the function L
of the previous Section, the curvature, the distance of
a point of o from a certain point, like the center of
mass, or the y-coordinate of a point of & with respect
to some system of reference are equally good choices of
measuring functions. In addition, a measuring func-
tion need not be defined on single points of . For
example, a measuring function can be defined on the
pairs of points of a. The only difference is the fact
that the measuring function cannot be visualized any
longer through a one-dimensional plot and that the
notion of H(L < y)-equivalence must be redefined on
@ X a, the Cartesian product of the curve with itself.
Examples of measuring functions defined on « x « are
the Euclidean distance between a pair of points of e,
and the ratio between this distance and the length of
the shortest arc of a which joins the pair of points.

A fundamental property of the proposed scheme
is that the representation of shape through a size
function inherits the invariance properties (if any) of
the underlying measuring function. These properties
may include Euclidean invariance (like invariance for
scaling, and translation and rotation over the image
plane), or invariance for affine, projective, and per-
spective transformation. Clearly, the function L of
Section 2 is invariant for translation and rotation. The
scaling invariance can always be obtained by scaling
the maximum of the measuring function to a fixed
value. In general, the invariance properties of the
problem at hand may be used to constrain the search
for the appropriate measuring function.

A further property of the representation of shape
through size functions is robustness against quantita-
tive and qualitative changes. This property derives
from the facts that the proposed representation com-
bines topological (i.e., qualitative) aspects of shape
with metric (i.e., quantitative) aspects of shape in a re-
dundant fashion, since a size function is piecewise con-
stant. Intuitively, small qualitative and quantitative
changes give rise to differences in the size functions



over correspondingly small areas of the triangular re-
gion of interest. Consequently, the representation of
shape in terms of size functions is likely to be suitable
for the recognition of objects which are qualitatively
and quantitatively similar but not identical.

Let us conclude this Section with a theoretical re-
mark. The theory of size functions is not restricted to
the case of curves. In principle the shape of a surface
of arbitrary dimension can be represented through a
size function [1]. This paper and the present research
have been restricted to the analysis of curves on the
image plane. The extension to the two dimensional
case, in which the surface is simply the pattern of the
grey values, is currently under development.

3 An Algorithm for the computation
of size functions

This Section describes the implementation of an al-
gorithm for the discrete computation of a size function
of a curve of the image plane.

For the sake of simplicity, let us illustrate the im-
plementation in the particular case in which the mea-
suring function ¢ is defined on single points of a curve
a (that is, £ = 1) with ¢ > 0 (a more general descrip-
tion can be found in ref. [6]). In addition, let B(p)s be
the open circle of center p and radius 8, and I, and I,
the size function in the continuous and discrete cases
respectively. The algorithm consists of four steps.

1. Sample (or approximate) the curve a at a finite
number N of points p*, i = 1,..., N, so that (i)
a C U, B(p')s and (ii) the set B(p')s N is non-
empty and connected for i = 1,..., N (see Fig.
2a).

2. Define the graph G whose vertices are the points
p* and whose edges link vertices which correspond
to adjacent points on a. Compute p(p') at each
point p*, i = 1,..., N (see Fig. 2b).

3. Compute the maximum @™ of (p'), i =
1,..,N and fix a A > €,(6), where €,(8) is the
modulus of continuity of ¢ at é.

4. For y=0to y < pmax

(2) Define the subgraph G,<y of G induced by
the set of vertices of G for which ¢ < y (Fig.
2¢).

(b) Forz =0 tountil2 < y
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i. Let I,(a;z,y) be the number of con-
nected components of G, <, which con-
tain at least a vertex p* such that
p(p') < z (Fig. 2d).

. z—z+A.

() y—y+A.

!

Figure 2: The algorithm for the discrete computation
of a size function. (a) Curve sampling and covering.
(b) The graph associated with the sampled curve. The
numbers, which correspond to hypothetical values of
the measuring function ¢ at each sampled point, are
associated with the corresponding vertex. (c) Sub-
graph of the graph of (b) induced by the set of vertexes
with ¢ < 4.0. (d) The vertexes of the subgraph of (¢)
with ¢ < 3.6 are shown as open circles. Therefore, the
value of the size function of the sampled curve of (a)
at the point (3.6, 4) equals 2.

The conditions (7) and (#%) of the first step ensure
that the curve « is covered in such a way that each
open circle contains exactly one connected arc of a.
It is evident that the size function which can be com-
puted in the discrete will be the same for all the contin-
uous curves for which the open circles of the first step
satisfy (i) and (i7). The graph G, in the second step,
is a discrete representation of ¢ such that a path on
G between the vertices p* and p’ is the discrete coun-
terpart of a trajectory between points of the two arcs
B(p')s Na and B(p’)s Na. The third step determines
the minimal resolution at which I, is worth computing
and the thickness of the “white” stripes, or the regions




of uncertainty in the value of the size function in the
continuous case. In the final step l_‘p is computed over
a grid of equally spaced points within the triangular
region Ty(a) = {(z,y) : 0 Sy < p™*,0< z < y}.

The computational load of the algorithm depends
on the choice of the measuring function. If the mea-
suring function is defined on single points of the con-
tour, the computation takes less than a second on a
SPARC workstation. The computational time may go
up to several seconds for a measuring function which
is defined on pairs of points of the contour.

4 Invariant properties

In this Section the invariance properties of the size
functions mentioned in Section 2 are demonstrated
on real images. In order to quantitatively determine
whether, or not, similar shapes are given a similar
representation and different shapes are actually dis-
tinguishable, a distance between size functions needs
to be defined.

4.1 A distance between size functions

There are many ways in which a distance between
size functions can be defined. Probably the only com-
mon requirement to the possible definitions is that the
scale-invariant property must be preserved (i.e., the
distance between the size functions of the same shape
at different scales must always vanish). Let us intro-
duce the simple distance function which will be used
throughout the rest of the paper.

Let ¢ be a measuring function, a; and as two
curves, and ¢™**(q;) the maximum of ¢ on «;, for
¢ = 1,2. Without loss of generality it can be assumed
that ¢ > 0. Let us scale ¢ by defining ¢ = ¢/p™**(a;)
on ¢, for i = 1,2. Then, a scale-invariant distance D
between the size functions [y(a;) and {y(a2) can be
defined as [7]

1 Y
D= 2/ dy/ dzlly(ay; 2, y) — lplan 2, )|
4] 0

The distance D is simply the L! norm of the dif-
ference over the triangular region with 0 < z < y and
0 < y < 1. Similarly, in the discrete case, if [5(a;)
and lp(az) are computed at the same fixed resolution
R and regarded as triangular matrices

i¢(a1)i,j and l_v»,(ag);yj with ¢ = 1,...,R—1 and
j=1,..,R—1, then the distance D can be redefined
as
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9 R-1R-i _
D= RE=1) ; ; Ho(aa)ij —lp(az)ii | (1)

where the normalization factor is chosen so that D =
1 if, on average, the triangular matrices Ip(c;) and
lp(@z) differ by 1 at each entry. The entries on the
diagonal of the triangular matrices do not appear in
the sum in the right hand side of Eq. 1 because they
may be severely affected by noise.

4.2 Euclidean invariance

Let us now make some quantitative estimates of the
invariance of the representation of shape which can be
obtained through a size function. Fig. 3a shows the
image of an ivy leaf. The size function induced by
the measuring function D,, that is, “the distance of a
point of the outline from the center of mass of the out-
line”, is shown in Fig. 3b. In principle, the function
D, is clearly invariant for translation and rotation of
the shape over the image plane. Fig. 3¢ shows an im-
age of the same leaf translated and rotated while the
camera was kept in a fixed position. The size function
associated with the outline of the image of Fig. 3c is
shown in Fig. 3d. It can easily be seen that the size
functions of Fig. 3a and ¢ are very similar. Corre-
spondingly, the distance D between the size functions
of Fig. 3b and d, computed by means of Eq. 1, is equal
to .06.

The property of scale invariance is illustrated in
Fig. 3e and f. In the image of Fig. 3e, the camera was
viewing at the same ivy leaf from a further viewpoint.
It is evident that the size function of Fig. 3f, which
was obtained from the outline of the image of Fig. 3e,
is very similar to the size function of Fig. 3b. In this
case, the distance between the size functions of Fig.
3b and f, computed by means of Eq. 1, is .04.

4.3 “Ad hoc” invariance

Articulated objects modify their shape according
to the changes of some internal parameter. Figs. 4a
and b show the same pair of scissors with different
opening. For recognition purposes, it would be desir-
able to be able to represent the shape of articulated
objects independently from their internal parameters.
In the present framework, this problem can be solved
by looking for an appropriate measuring function. For
example, the measuring function D,, that is, “the dis-
tance of a point of the outline from the pivot” is in-
variant for different openings (actually, due to self-
occlusions, D, can only be approximately invariant).




(b)

(c) (d)

(e) (f)

Figure 3: Invariance for Euclidean transformations.
(a) An image of an ivy leaf. (b) The size function of
the outline of the leaf of (a) induced by the measur-
ing function D.. (c) An image of the same ivy leaf
translated and rotated over the supporting plane. (d)
The size function of the outline of (¢). (e) An image
of the same ivy leaf from a further viewpoint. (f) The
size function of the outline of (e). The color coding
is light grey for 1, grey for 2, darker grey for 3, and
black for 4 and the diagrams are scaled between 0 and
the maximum of D, over each outline.

The size functions induced by D, and associated
with the contours of Fig. 4c and d are shown in Fig.
4e and f respectively. By using Eq. 1, the distance
between the size functions of Fig. 4e and f is found
to be equal to .15. Notice that the difference between
the two representations is mainly due to the different
amount of self-occlusion of a portion of the contours
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of Fig. 4c and d in the neighborhood of the pivot.
4.4 Qualitative invariance

Let us conclude this Section by showing that a suit-
able choice of the measuring function can detect a par-
ticular aspect of shape. Fig. 5a and b show the images
of two oak leaves which, qualitatively, can be thought
of as having the same shape. Fig. 5¢ and d

(a) (b)

(c) (d)

(e)

Figure 4: Invariance “ad hoc”. (a) and (b) Two images
of the same pair of scissors with different opening. ()
and (d) Outlines of the shapes of () and (b) obtained
by means of the same procedures of Fig. 1. (e) and
(f) Color coded representations of the size functions
of (¢) and (d) induced by the measuring function Dy,
“distance of a point of the outline from the pivot”. In
both (c) and (d), the pivot was located as the midpoint
of the segment whose endpoints are the intersections of
the principal inertial axis with the outline. The color
coding is as in Fig. 3 and the diagrams are scaled
between 0 and the maximum of D, over each outline.



(a)

(b)

(c) (d)

(e) (f)

Figure 5: Choosing the appropriate measuring func-
tion. (a) and (b) Images of two oak leaves. (c) and
(d) Color coded representations of the size functions of
the outlines of the leaves of (@) and (b) respectively in-
duced by the measuring function D.. (e) and (f) Color
coded representations of the size functions of the out-
lines of the leaves of (a) and (b) respectively induced
by the measuring function R.. “ratio between the Eu-
clidean distance of a pair of points and the length of
the shortest arc of the contour which joins a pair of
points”. The color coding is as in Fig. 3 and the dia-
grams are scaled between 0 and the maximum of R..
over each outline.

show the size functions associated with the outline of
the leaves of Fig. ba and b respectively and induced
by the measuring function D,, the “distance of a point
from the center of mass”. The distance between the
size functions of Fig. 5¢ and d computed by means of

95

Eq. 1is .15. Even if the distance between the two size
functions is fairly small, it is clear that the two size
functions are qualitatively different. A different choice
of measuring function can lead to a rather different
result. Fig. 5e and f show the size function associated
with the outline of the leaves of Fig. 5a and b but
induced by the measuring function “ratio between the
Euclidean distance of a pair of points and the length
of the shortest arc of the contour which joins a pair of
points”. While the quantitative distance between the
size functions of Fig. 5e and f is still .15, it is clear
that the diagrams of Fig. 5e and f are qualitatively
more similar than the diagrams of Fig. 5¢ and d.

5 Conclusions

In this paper the potential of the theory of size func-
tions to computer vision has been assessed. An algo-
rithm for the computation of size functions from real
images has been implemented and used to illustrate a
number of theoretical properties of the theory which
are likely to be useful for object recognition. Based on
the presented experimental results it can be concluded
that the representation of shape in terms of size func-
tions (i) can be tailored to suit the invariance of the
problem at hand and (i) is stable against small qual-
itative and quantitative changes of the viewed shape.
In addition a size function can be designed to highlight
a particular aspect of the shape of an object, aspect
which can be useful to build similar representations of
shape which are similar but quantitatively or qualita-
tively different. A distance between size functions has
been introduced to measure the similarity between the
representation of two different shapes. The obtained
results indicate that size functions are likely to be very
useful for the recognition of objects which have similar
but not identical shape.
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