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Abstract. We study a dissimilarity measure between shapes, expressed by the natural pseudo-
distance between size pairs, where a shape is viewed as a topological space endowed with a real-valued
continuous function. Measuring dissimilarity amounts to minimizing the change in the functions due
to the application of homeomorphisms between topological spaces, with respect to the L®-norm. A
new class of shape descriptors, called reduced size functions, is introduced. They are compared by
solving an optimal matching problem between countable point sets. In this way we obtain a distance
between reduced size functions that is shown to be stable, and to furnish a lower bound for the
dissimilarity measure between shapes.
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1. Introduction. Shape comparison is a central problem in shape recognition,
shape classification and shape retrieval. The shape comparison problem is usually
dealt with by defining a suitable distance providing a measure of resemblance between
shapes (see, e.g. [20], and, for a review of the literature, [19]).

In the last ten years natural pseudo-distances and size functions have been stud-
ied as geometrical-topological tools for comparing shapes, each shape viewed as a
topological space M endowed with a real-valued continuous function ¢. Every pair
(M, o) is called a size pair, while p is said to be a measuring function [12]. The role
of the function ¢ is to take into account only the shape properties of M that are
relevant to the shape comparison problem at hand, while disregarding the irrelevant
ones, as well as to impose the desired invariance properties.

The main idea in the definition of natural pseudo-distance between size pairs is
to minimize the change in the measuring functions due to the application of homeo-
morphisms between topological spaces, with respect to the L*>-norm.

When a distance between shapes is defined by a minimization process (in energy
minimization methods, for example, as well as in our case), one naturally looks for the
optimal transformation. In the computation of natural pseudo-distance between size
pairs, this troublesome problem can be avoided by applying size functions. Indeed,
size functions can reduce the comparison of shapes to a finite dimensional problem,
i.e. the comparison of certain finite subsets of the real plane (cf. Fig. 2.2). This
reduction allows us to study the space of all homeomorphisms between the considered
topological spaces, without actually computing them (cf. [5]).

This line of research has led to a formal setting, which has turned out to be useful
both from a theoretical and an applicative point of view (see, e.g., [1], [2], [3], [4], [6],
[9], [11], [13], [14], [15], [17]), but it has also pointed out the usefulness of alternative
definitions, providing a more agile approach to the theory.

The first contribution of this paper is the introduction of the concept of reduced
size function. The new definition slightly changes that of size function in order to
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obtain both theoretical and computational advantages (see Rem. 2.9). However, the
main properties of size functions are maintained.

Our main contribution consists of showing that reduced size functions verify a
property of perturbation robustness, immediately implying a lower bound for the
change of measuring functions under the action of homeomorphisms between topo-
logical spaces. This new result is the motivation behind this paper, since it makes
available a new geometrical-topological tool for studying the existence of optimal
homeomorphisms between size pairs.

The organization of this paper is as follows. In Section 2 we introduce the con-
cept of reduced size function and its main properties. In Section 3 the definition of
matching distance between reduced size functions is given. In Section 4 the stabil-
ity theorem is proved, together with some other useful results. The connection with
natural pseudo-distances between size pairs is shown in Section 5, together with the
proof of the existence of an optimal matching between reduced size functions.

2. Reduced size functions. In this section we introduce reduced size functions,
that is, a notion derived from size functions ([12]) allowing a simplified treatment of
the theory.

In what follows, M denotes a compact connected and locally connected topo-
logical space. A denotes the diagonal {(z,y) € R? : z = y}; At denotes the open
half-plane {(z,y) € R? : £ < y} above the diagonal; A+ denotes the closed half-plane
{(z,y) € R? : z < y} above the diagonal.

We shall call any pair (M, @), where ¢ : M — R is a continuous function, a size
pair. The function ¢ is said to be a measuring function.

Assume a size pair (M, p) is given. For every z € R, let M(p < z) denote the
lower level set {P € M : o(P) < z}.

DEFINITION 2.1. For every real number y, we shall say that two points P,Q € M
are (¢ < y)-connected if and only if a connected subset C' of M(p < y) exists,
containing both P and Q.

DEFINITION 2.2. (Reduced size function) We shall call reduced size function
associated with the size pair (M, p) the function Z’(" M) - At = N, defined by setting
ZFM,KP) (z,y) equal to the number of equivalence classes into which the set M{p < z)
1s divided by the relation of (¢ < y)-connectedness, if y < maxy, and 0 otherwise.

In other words, if ¥ < max ¢, EE‘ M) (z,y) counts the number of connected com-
ponents in M{p < y) that contain at least one point of M{p < z). The finiteness
of this number is an easily obtainable consequence of the compactness and local-
connectedness of M.

An example of reduced size function is illustrated in Fig. 2.1. In this example we
consider the size pair (M, @), where M is the curve represented by a continuous line
in Fig. 2.1 (a), and ¢ is the function “distance from the point P”. The reduced size
function associated with (M, ) is shown in Fig. 2.1 (b). Here, the domain of the
reduced size function is divided by solid lines, representing the discontinuity points
of the reduced size function. These discontinuity points divide AT into regions on
which the reduced size function is constant. The value displayed in each region is the
value taken by the reduced size function in that region. As for the values taken on the
discontinuity lines, they are easily obtained by observing that reduced size functions
are right-continuous, both in the variable z and in the variable y.

Most properties of classical size functions continue to hold for reduced size func-
tions. Here we report a few of them which will be useful in the sequel. Proofs are
omitted, since they are completely analogous to those for classical size functions.
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F1c. 2.1. (b) Reduced size function of the size pair (M, @), where M is the curve represented
by a continuous line in (a), and ¢ is the function “distance from the point P”.

The following result, expressing a relation between two reduced size functions
corresponding to two spaces, M and W, that can be matched without changing the
measuring functions more that h, is analogous to Th. 3.2 in [11].

PROPOSITION 2.3. Let (M, ) and (W,) be two size pairs. If f : M =W is a
homeomorphism such that maxpem | (P) =1 (f(P))| < h, then for every (T,7) € AT
we have

i) (Z — h, G+ h) < Ly 4 (Z,7).

The next proposition, analogous to Prop. 6 in [13], gives some constraints on the
presence of discontinuity points for reduced size functions.

PROPOSITION 2.4. Let (M, ) be a size pair. For every point p = (Z,7) € AT, a
real number € > 0 exists such that the open set

WE(I_)) = {(f"',y) €R2 : |2_}—$| <€>lg—y] < 6,27#5’,:[/#@}

is contained in AY, and does not contain any discontinuity point for Z? Myp)*

For reduced size functions it is possible to define cornerpoints exactly in the same
way as for classical size functions ([13]):

DEFINITION 2.5. (Cornerpoint) For every point p = (z,y) € At, and for every
pair of real positive numbers a, 8 with z+a < y—f, let us define the number p4,5(p)
as

L@+ 0o,y —B) — (T +ay+h)
i) (@ — 0,y = B) + Lipg ) (@ — 0y + B).

The finite number p(p) := min{pyp(p) : @,f > 0,z +a < y — B} will be called
multiplicity of p for Ez‘ Myg)- Moreover, we shall call cornerpoint for 62‘ M,g) Y point
p € AT such that the number u(p) is strictly positive.

As an example, the cornerpoints for the reduced size function of Fig. 2.2 are the
points p (with multiplicity 3), ¢ and r (with multiplicity 1). The point s is not a
cornerpoint since its multiplicity is equal to 0.
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F1c. 2.2. Cornerpoints of a reduced size function: p, q and r are the only cornerpoints, and

have multiplicity equal to 3 (p), and 1 (g and r); s is not a cornerpoint since its multiplicity is equal
to 0.

An analog of Prop. 8 in [13], stating that cornerpoints create discontinuity points
spreading downwards and towards the right to A, also holds for reduced size functions.

PROPOSITION 2.6. If p = (Z,9) is a cornerpoint for Z?M,w)’ then the following
statements hold:

i) If <z <7, then § is a discontinuity point for ZfM,(p)(m, ;5

i) If £ <y < g, then Z is a discontinuity point for KZ‘M’lp)(-,y).

We shall make use of an analog of Prop. 10 in [13], which can be re-formulated
for reduced size functions as follows.

THEOREM 2.7. (Representation Theorem) For every (Z,7) € AT we have

Grp@D =Y, ()

z<Z,y>y

This can be checked in the example of Fig. 2.2. The points where the reduced
size function takes value 0 are exactly those for which there is no cornerpoint lying
to the left and above them. The points where the reduced size function takes value
3 are those for which only the cornerpoint p (with multiplicity 3) lies to the left and
above them. The points where the reduced size function takes value 5 are those for
which only the cornerpoints p,q,r (with multiplicity 3, 1 and 1, respectively) are to
the left and above them. Similar remarks hold for the points where the reduced size
function takes value 4.

As a consequence of Th. 2.7, we obtain that cornerpoints, together with their
multiplicities, uniquely determine reduced size functions.

The following result is the analog of Cor. 3 in [13].

PROPOSITION 2.8. For each strictly positive real number €, reduced size functions
have at most a finite number of cornerpoints in {(z,y) € B2 : z + € < y}.

Therefore, if the set of cornerpoints of a reduced size function has an accumulation
point, it necessarily belongs to the diagonal A. An example of reduced size function
with cornerpoints accumulating onto the diagonal is shown in Fig. 2.3.

REMARK 2.9. By comparing Th. 2.7 and the analogous result expressed by
Prop. 10 in [13], one can observe that the former is stated more straightforwardly.
As a consequence of this simplification, all the statements in this paper that follow
from Th. 2.7 are less cumbersome than they would be if we applied size functions in-
stead of reduced size functions. This is the main motivation for introducing the notion
of reduced size function.
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F1c. 2.3. A reduced size function with cornerpoints accumulating onto the diagonal: M is the
space depicted on the left and ¢ measures the height of the point.

3. Matching distance. In this section we define a matching distance between
reduced size functions. The idea is to compare reduced size functions by measuring
the cost of transporting the cornerpoints of one reduced size function to those of the
other one, with the property that the longest of the transportations should be as
short as possible. Since, in general, the number of cornerpoints of the two reduced
size function is different, we also enable the cornerpoints to be transported onto the
points of A. When the number of cornerpoints is finite, the matching distance may
be related to the bottleneck transportation problem (cf., e.g., [8], [16]). In our case,
however, the number of cornerpoints may be countably infinite. Nevertheless, we
prove the existence of an optimal matching.

Of course the matching distance is not the only metric between reduced size
functions that we could think of. Other metrics for size functions have been considered
in the past ([7], [10]). However, the matching distance seems to us to be of particular
interest since, as we shall see, it allows for a connection with the natural pseudo-
distance between size pairs. Moreover, it has already been experimentally tested
successfully in [1].

DEFINITION 3.1. (Representative sequence) Let £* be a reduced size function. We
shall call representative sequence for £* any sequence of points a : N — A%, (briefly
denoted by (a;)), with the following properties:

1. For each i € N, either a; is a cornerpoint for £*, or a; belongs to A.

2. If p is a cornerpoint for £* with multiplicity p(p), then there are ezactly p(p)
indezes 1,12, .. .,i,(p) such that a;, =p for 1 <k < p(p).

3. The set of indexes i with a; € A is countably infinite.

Throughout the rest of the paper, d will denote the following pseudo-distance on
AF;

(@), &',¥)) = min {max (o = o'y - o'} max { L5, L2

In other words, the pseudo-distance d between two points p and p’ compares the
cost of moving p to p’ and the cost of moving p and p' onto the diagonal and takes
the smaller. Costs are computed using the distance induced by the max-norm. In
particular, the pseudo-distance d between two points p and p' on the diagonal is always
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FI1G. 3.1. Disks induced by the metric d (shaded). Lefi: d(p, A) > r. Right: d(p,A) <r.

0; the pseudo-distance d between two points p and p’, with p above the diagonal and
P’ on the diagonal, is equal to the distance, induced by the max-norm, between p and
the diagonal.

Therefore, d(p,p’) can be considered a measure of the minimum of the costs of
moving p to p’ along two different paths (i.e. the path that takes p directly to p' and
the path that passes through A). This observation easily yields that d is actually a
pseudo-distance.

It is also useful to observe what disks induced by the pseudo-distance d look like.
For r > 0, the usual notation B(p, r) will denote the open disk {p’ € A : d(p,p') < r}.
Thus, if p has coordinates (z,y) with y —z > 2r (that is, d(p, A) > r), then B(p,r) is
the open square centered at p with sides of length 2r parallel to the axes. Whereas,
if p has coordinates (z,y) with y — z < 2r (that is, d(p, A) < r), then B(p,r) is the
union of the open square, centered at p, with sides of length 2r parallel to the axes,
with the stripe {(z,y) € R? : 0 < y — z < 2r}, intersected with A (see also Fig. 3.1).

In what follows, the notation B(p,r) will always refer to the open disk, centered
at p with radius r, induced by the distance d. Whereas, the notation Q(p,r) will refer
to the open square centered at p, with sides of length 2r parallel to the axes (that is,
the open disk centered at p with radius r, induced by the max-norm). Also, Q(p,r)
will refer to the closure of Q(p,r), when r > 0, while Q(p,0) := {p}.

DEFINITION 3.2. (Matching distance) Let £5 and €5 be two reduced size functions.
If (a;) and (b;) are two representative sequences for €5 and £5 respectively, then the
matching distance between €7 and £5 is the number

Denaten (s y45) =40t sup d(as, bo(i))s

where i varies in N and o varies among all the bijections from N to N.

It is easy to see that this definition is independent from the choice of the repre-
sentative sequences of points for £5 and £5. In fact, if (a;) and (@;) are representative
sequences for the same reduced size function £*, a bijection ¢ : N — N exists such
that d(Gs, az(;)) = 0 for every index i.



MATCHING SIZE FUNCTIONS 7

Recalling that reduced size functions are uniquely determined by their corner-
points with multiplicities, one can see that d,.sn verifies all the properties of a
distance.

We will show in Th. 5.1 that the inf and the sup in the definition of matching
distance are actually attained, that is to say dmatcn (47, £5) = ming max; d(a;, by(s))-
In other words, an optimal matching exists.

4. Stability of the matching distance. In this section we shall prove that
if ¢ and 9 are two measuring functions on M whose difference on the points of M
is controlled by € (namely maxpe |@(P) — ¥(P)| < €), then the matching distance
between E?M,tp and Z’(*M’d}) is a13f) control.led by € (namely dmatch(ﬁFM,w)ge?M,w) < e?.

For the sake of clarity, we will now give a sketch of the proof that will lead to this
result, stated in Th. 4.6. We begin by proving that each cornerpoint of E? M,p) With
multiplicity m admits a small neighborhood, where we find exactly m cornerpoints
(counted with multiplicities) for éz‘ M) provided that on M the functions ¢ and 9
take close enough values (Prop. 4.2). Next, this local result is extended to a global
result by considering the convex combination ®; = £ + <Ly of ¢ and 1. Following
the paths traced by the cornerpoints of £{,, 5, as t varies in [0,€], in Prop. 4.3 we
show that, along these paths, the displacement of the cornerpoints is not greater than
€ (displacements are measured using the distance d, and cornerpoints are counted
with their multiplicities). Thus we are able to construct an injection f from the set
of the cornerpoints of £7,, o) tO the set of the cornerpoints of ZZ‘ M) (extended to the
points of the diagonal), that moves points less than e (Prop. 4.4). Repeating the same
argument backwards, we construct an injection g from the set of the cornerpoints of
i,y to the set of the cornerpoints of £, (extended to the points of the diagonal)
that moves points less than e. By using an extension of the Cantor-Bernstein theorem
(see Prop. 4.5), we prove that there exists a bijection from the set of the cornerpoints
of Zz‘ Nid) (extended to the points of the diagonal) to the set of the cornerpoints of

(M,0) (extended to the points of the diagonal) that moves points less than e. This

will ﬁe sufficient to conclude the proof. Once again, we recall that in the proof we
have just outlined, cornerpoints are always counted with their multiplicities.

We first prove that the number of cornerpoints contained in a sufficiently small
square can be computed in terms of jumps of reduced size functions.

PROPOSITION 4.1. Let (M, ) be a size pair. Let p = (Z,7) € AT and letn > 0
be such that Z+n < g—n. Alsoleta = (Z+n,9—n), b= (Z—n,7-n), c = (Z+n,7+7),
e=(Z—n,75+mn). Then

Erm0)(@) = Eipt0) (0) = L) (©) + Eing ) ()

is equal to the number of cornerpoints for ZE‘ Myp)? counted with their multiplicities,

contained in the semi-open square Q, with vertexes at a, b, c,e, given by

Q:={zy) eAt:z-n<s<zF+n §-n<y<g+n}

Proof. It immediately follows from Th. 2.7. O

We now show that small changes in the measuring functions produce small dis-
placements of cornerpoints.

PROPOSITION 4.2. Let (M, ) be a size pair and let p be a point in AT, with
multiplicity p(p) for KFMM) (possibly u(p) = 0). Then, there is a real number 77 > 0
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a

F1G. 4.1. The sets We(p), Q and Q(p,7) used in the proof of Prop. /.2.

such that, for any real number n with 0 < n < 7, and for any measuring function
P : M = R with maxpe p [o(P)—9(P)| < n, the size function El i) has ezactly p(p)
cornerpoints (counted with their multiplicities) in the closed square Q(p,n), centered
at p with side 2n).

Proof. By Prop. 2.4, a sufficiently small real number € > 0 exists such that the
set

We@) ={(z,y) eR: |7 —a| <e|f -yl <er#T,y #7}

is contained in AT, and does not contain any discontinuity point for Ez‘ M)

Let usset a = (T +€¢/2,5—€/2), b= (T —€/2,§ — €/2),c = (T +€¢/2,5 +€/2),
and e = (T —€/2,7 +€/2) (see Fig. 4.1). By Prop. 2.6 and Prop. 4.1, the multiplicity
of p for £7y, ) is equal to £7,, (@) = £ pg,) (D) = Lpy,p(C) + Eipt,p) (©)-

By Prop. 2.3, if ¢ : M — R is a measuring function with A := maxpe |@(P) —
P(P)| < €/2, then

" _ € _ € " _ € _ € " _ € _ €

Since ZE‘ M,) 18 constant in each connected component of We(p), and h < ¢/2, we
have
€ _

2

€

€ . _ € _

* = €
5 h)ZZ(M,w)(m+§’y_

s - € —
limp@+5 —hy-
and hence E?M’w)(a) = £ipm,0) (a). Analogously it holds that EEM"”Z(b) = ZFM"p)(b),
Eipm,)(©) = Lipg,p(c), and Eipm,p)(€) = Lpg,p)(e). Thus, setting 7 = €/4, for any
n € R with 0 <7 <7, if maxpeam |@(P) — ¢ (P)| < n, then the multiplicity of p for
Z?M,w) is equal to Z?Mﬁb) (a) — E’("Mﬂp)(b).—. éZ‘M,@ (c) + fz‘Mﬂp‘)(e).

Therefore, by Prop. 4.1, the multiplicity of p for Z?‘ M,p) 18 equal to the number of
cornerpoints for EE‘ M) contained in the square Q with vertices at a,b,c,e. But this is
equal to the number of cornerpoints for Zz‘ M,y contained in the closed square Q(B,n),
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for any positive n < 7 and for any ¢ with maxpe m |p(P) — ¥(P)| < 7. Indeed, if
Z’(‘ M) had some cornerpoints in @\ Q(p,7), then, by Prop. 2.6, there would be either

vertical or horizontal discontinuity points for £{,, , in the set Qn{(z,y) € R :
|z — Z| > €/4, |y —y| > €/4} (striped in Fig. 4.1). Thus, by Prop. 2.3, £f,, ,, would
necessarily have discontinuity points in W,(p), giving a contradiction. O

The following result states that if two measuring functions ¢ and 7 differ less
than € in the L®-norm, then it is possible to match some finite sets of cornerpoints
of é( M,p) B0 cornerpoints of ZE‘ M) with a motion smaller than e.

PROPOSITION 4.3. Let € > 0 be a real number and let (M,p) and (M,4) be
two size pairs such that maxpepm |p(P) — ¢(P)| < e. Then, for each finite set K
of cornerpoints for £(, , with d(K,A) > €, there exist (a;) and (b;) representative
seque}réces for ZFM,v) and g?Mnﬁ) respectively, such that d(a;,b;) < € for each i with
a; € K.

Proof. Let ®&; = fv,b B 5—?(,0 with ¢ € [0,¢]. Then for every ¢,t' € [0,€] we have
maxpepm |2:(P) — @4 (P)| < |t —1¢/].

Let K = {po,..-pr}, let m; be the multiplicity of p;, for j = 0,...,%, and
m = Z?:o m;. Then we can easily construct a representative sequence of points (ai)
for ZZ‘ Myw) such that

ag = Po, ---5 Amo—1 = P05, Gmg = P15 --+y Gmo+mi—1 = P1y -+, Gm—-1 = Pk-
Now we will consider the set A defined as
{6 €[0,¢€] : 3(a?) representative sequence for E ey S d(a;,al) < 6, Va; € K}.

In other words, if we think of the variation of ¢ as the flow of time, A is the set of
instants § for which the cornerpoints in K move less than ¢ itself, when the homotopy
®,; is applied to the measuring function ¢.

A is non-empty, since 0 € A. Let us set § = sup A and show that § € A. Indeed,
let (6,) be a sequence of numbers of A converging to 6. Since 6, € 4, for each n there
is a representative sequence (a ‘Z") for E’(" M,®s,) such that d(a;, af") < &p, for each ¢
such that a; € K. Since 6, < ¢, d(ai,al”) < € for any i and any n. Thus, recalling
that d(K,A) > e, for each i such that a; € K, it holds that al* € Q(ai,€) for any
n. Hence, for each ¢ with a,z € K, possibly by extracting a convergent subsequence
we can deﬁne a‘s = lim, a . We have d(a;,al) < 6. Moreover, by Prop. 4.2, af is a
cornerpomt for Z(M ®;)" Also if r indexes ji,...,Jjr exist, such that a;,,...,a;, € K

and a =... = aJT =: ¢, then the multiplicity of ¢ for Z? M,35) is not smaller than

7, Indeed, since 4, — 5, for each arbitrarily small n > 0 and for any sufficiently
great m, the square (g, n) contains at least r cornerpoints for Z? M,®5,)? counted with

their multiplicities. But Prop. 4.2 implies that, for each sufficiently small , Q(g,7)
contains exactly as many cornerpoints for ZZ‘ M,®s,) 3 the multiplicity of ¢ with respect
to E?‘ M,5)" Therefore, the multiplicity of ¢ for E’(* M,®5) is greater than, or equal to, 7.

In order to conclude that § € 4, it is now sufficient to observe that (a3, ...,ad,_;)
is easily extensible to a representative sequence for E( M) simply by continuing the
sequence with the remaining cornerpoints of £; IM,25) and with a countable collection
of points of A. So we have proved that sup A is attained in A.

We end the proof by showing that max A = e. In fact, if § < ¢, by using Prop. 4.2,
it is not difficult to show that there exists 7 > 0, with § +7 < ¢, and a representative
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3 agH—n

sequence a‘-§+") for £7,, 5. , such that d(a$, < g for each ¢ < m — 1. Hence,
g (M»‘I>5+r,) _ LR

by the triangular inequality, d(ai,af+") < &+ n for each i < m — 1, implying that
6 +n € A. This would contradict the fact that § = max A. Therefore, ¢ = max A4,
and so € € A. 0

Now we prove that it is possible to injectively match all the cornerpoints of ZZ‘ i)
to those of Zz‘ M) with a maximum motion not greater than the L°°-norm between
o and 1.

PROPOSITION 4.4. Let € > 0 be a real number and let (M, ) and (M,) be
two size pairs such that maxpe |p(P) — (P)| < €. Then there ezist (a;) and (b;)
representative sequences for £{y, ,, and €7y, respectively, and an injection f:N=
N such that d(as,bs(;)) <e.

Proof. Let H be the set of all the cornerpoints for é? i) We can write H =
K1 UK>, where K1 = {p € H : d(p,A) > ¢} and Ko = {p € H : d(p,A) < €}. We
can write N as the disjoint union of I; and I», where i € I; if a; € K1, and ¢ € I if
a; € Ko UA.

The cardinality of K is finite, according to Prop. 2.8. Therefore, Prop. 4.3 implies
that there exist (a;) and (b;) representative sequences of points for £f,, y and €7,
respectively, such that d(a;, b;) < € for each a; € K (let us observe that necessarily
b; ¢ A). Thus, if I; # 0, a: I; = N, defined as the identity a(i) = i, is an injection
such that d(as,ba(;)) < € fori € I.

Now we observe that, by the definition of a representative sequence, there is a
countably infinite collection of indexes j with b; contained in A. Thus, there is an
injection B : I, — N such that bg(;y € A. By construction, d(a;, b)) < € for i € I,
and I'm(a) N Im(B) = 0. In conclusion, the function f: N — N that coincides with a
on I1, and with f on Iy, is the required injection. 0

The following result is a slight modification of the well-known Cantor-Bernstein
theorem (cf. [18]) and can be proved in a similar way.

PROPOSITION 4.5. Let A and B be two subsets of a set X endowed with a pseudo-
distance §. A real number € > 0 is given. If two injections f: A— B andg: B — A
exist, such that, for each p € A, §(p, f(p)) < €, and, for each q € B, §(¢,9(q)) <,
then there is a bijection h between A and B such that, for each p € A, §(p, h(p)) < €.

We are now ready to prove a key result of this paper.

THEOREM 4.6. (Matching stability theorem) Let (M, ) be a size pair. For
every real number € > 0 and for every measuring function ¥ : M — R such that
maxpepm |p(P) — (P)| < €, the matching distance between KFM,(/)) and E?M,zp) 18
smaller than or equal to €.

Proof. Prop. 4.4 implies that there exist (a;) and (b;) representative sequences for
i, ) and EZ‘M@) respectively, and an injection f : N — N such that d(as,bs(;)) < e
Analogously, there is an injection g : N — N, such that for each b; it holds that
d(bs,a4(;)) < €. Then the claim follows immediately from Prop. 4.5. 0

5. The connection between the matching distance and the natural
pseudo-distance. As a corollary of Th. 4.6 we obtain the following Th. 5.2, stating
that the matching distance between reduced size functions furnishes a lower bound for
the natural pseudo-distance between size pairs. We recall that, given two size pairs
(M, ) and (W, ) with M and W homeomorphic, their natural pseudo-distance is a
measure of their shape dissimilarity defined as inf, maxpenm |@(P) — 4 (h(P))|, where
h varies among all the homeomorphisms between M and W. For more details about
natural pseudo-distances between size pairs, the reader is referred to [6] and [5].
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Before stating this result, in Th. 5.1 we show that the inf and the sup in the
definition of matching distance are actually attained, that is to say dpmascn(£5,205) =
ming max; d(ai, by(i))-

THEOREM 5.1. Let (a;) and (b;) be two representative sequences of points for
the reduced size functions €5 and 05 respectively. Then the matching pseudo-distance
between 05 and 03 is equal to the number min, max; d(ai,ba(i)), where i varies in N
and o varies among all the bijections from N to N.

Proof. Let us first see that, for any bijection ¢ from N to N, sup;cy d(as, by(;)) =
max;en d(a;, bg(i)). This is true because the accumulation points for the set of cor-
nerpoints of a reduced size function (if any) cannot belong to A™, but only to A (see
Prop. 2.8). By definition, for any p and p’ in A, d(p,p') = 0, and hence the claim is
proved.

Let us now prove that inf, max; d(a;, by(;) = min, max; d(as, by(;)). Let us set
s := inf, max; d(a;, by(;)). According to Prop. 2.8, if s = 0, then the cornerpoints of
£¥ coincide with those of £3, and their multiplicities are the same, implying that the
claim is true. Let us consider the case when s > 0. Let J; := {i € N: d(a;, A) > s}
and Jp := {i € N : d(a;,A) < s}. By Prop. 2.8, J; contains only a finite number
of elements (possibly J; = @) and therefore there exists a real positive number € for
which d(a;, A) > s+ € for each i € Ji.

If J1 # 0, let us consider the set ¥ of all the injective functions ¢ : J; — N
such that max;ie s, d(as,by(s)) < s+ €/2. This set is non-empty by the definition of
s, and contains only a finite number of injections because J; is finite, and for each
i € Ji the set {j € N :d(a;,b;) < s+ ¢/2} is finite. Thus we can take an injection
o : Ji = N that realizes the minimum of max;e s, d(a;,bs(;)) as o varies in ¥. Thus,
max;e s, d(a;, ba(i)) < 5.

Moreover, we can take an injection ¢ : Jo — N such that max;e s, d(ai, bs(;)) < s,
because, for every i € J, we can choose a different index j such that b; € A.
Since Im(d) N Im(6) = @, we can construct an injection f : N — N such that
each displacement between a; and by(;) is not greater than s. Analogously, we can
construct an injection g : N — N such that each displacement between b; and ay(;) is
not greater than s. Therefore, by Prop. 4.5, there is a bijection A : N — N such that
d(as, by(i)) < s for every index i, and so the theorem is proved. O

THEOREM 5.2. Let € > 0 be a real number and let (M, ) and (W, ) be two size
pairs with M and W homeomorphic. Then

dmatch(eFM,w);Z?W,¢)) _<_ lr’iflglea/\‘}ft |(10(P) - ¢(h'(P))|7

where h varies among all the homeomorphisms from M to W.

Proof. We begin by observing that K*W,'dz) = E?Mﬂpoh), where h : M — W is
any homeomorphism between M and W. &\/Ioreover, for each homeomorphism A, by
applying Th. 4.6 with e = maxpe |@(P) — 9 (h(P))|, we have

dmatch(eFM,‘p)véfM,‘(poh)) < _g]éaA)/(t |SD(P) - ¢(h(P))|
Since this is true for any homeomorphism A between M and W, it immediately follows

that dmatch(Z?M)tp)yeFW’zp)) S infh maxpem |(p(P) - ’(/)(h(P))] a

6. Conclusion. We have introduced the new concept of reduced size function
and we have shown how a problem related to shape matching (that is, measuring the
dissimilarity between size pairs by the natural pseudo-distance) can be more easily
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dealt with using this new tool. In fact, we have proved that an appropriate distance
between reduced size functions, based on optimal matching, provides a stable and
easily computable lower bound for the natural pseudo-distance between size pairs.

We are currently carrying out research aiming to clarify whether or not the result

of Th. 5.2, giving a lower bound for the natural pseudo-distance between size pairs, can
be improved by using some other distance between reduced size functions. Moreover,
we are also studying the relationship between the estimate in Th 5.2 and another
known estimate which is given in [5].
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