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Assumptions in our model

We will recall the assumptions made in our previous talk:

1. No object can be studied in a direct and absolute way. Any object
is only knowable through acts of measurement made by an
observer.

2. Any act of measurement can be represented as a function defined
on a topological space.

3. The observer usually acquires measurement data by applying
operators to the functions describing these data. These operators
are frequently endowed with some invariances that are relevant for
the observer.

4. Only the observer is entitled to decide about data similarity.
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An important remark

Classical persistent homology is not a suitable model for our purpose,
because it is invariant with respect to ANY homeomorphism! In other
words, it does not allow the observer to choose the invariance he/she
wants. This fact justifies the introduction of G -invariant persistent
homology.

Figure: These real-valued functions share the same persistent homology.
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Couldn’t we maintain classical persistent homology?

One could think of using other filtering functions, possibly defined on
different topological spaces. For example, we could extract boundaries
of letters and consider the distance from the center of mass of each
boundary. This approach presents some drawbacks:

1. It “forgets” most of the information contained in the image
ϕ : R2→ R that we are considering, confining itself to examine the
boundary of the letter represented by ϕ.

2. It usually requires an extra computational cost (e.g., to extract the
boundaries of the letters).

3. It can produce a different topological space for each new filtering
function (e.g., this happens for letters).

4. ABOVE ALL: It is not clear how we can translate the invariance
that we need into the choice of new filtering functions defined on
new topological spaces.
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The role of the observer in our model

In our model the observer is seen as a collection of group invariant
non-expansive operators (GINOs). The observer cannot choose the
data that have to be analyzed, but he/she can often choose the
operators that will be applied to those functions.

Each operator transforms the data (i.e. the set Φ of the functions
defined on the space X ) into other data (i.e. the set Ψ of the
functions defined on another space Y ). This transformation usually
respects some kind of invariance, expressed by suitable groups G ,H of
homeomorphisms. (In our previous talk we have illustrated the
case Φ = Ψ, G = H.)

We recall that the homeomorphisms do not concern the “objects” but
the space where the measurements are made. This space is usually
unique for each kind of measurement.
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Natural pseudo-distance associated with a group G

Before proceeding, let us recall the definition of natural
pseudo-distance.

Definition

Let X be a compact space. Let G be a subgroup of the group
Homeo(X ) of all homeomorphisms f : X → X . The pseudo-distance
dG : C 0(X ,R)×C 0(X ,R)→ R defined by setting

dG (ϕ,ψ) = inf
g∈G

max
x∈X
|ϕ(x)−ψ(g(x))|

is called the natural pseudo-distance associated with the group G .
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Some work in progress

In this talk we will speak about some work in progress,
concerning these three lines of research:

• Change of the topologies used on X and G .

• Extension of our approach to operators taking the space Φ (where
a group G acts) to a different space of functions Ψ (where another
group H acts).

• Study of the metric space of GINOs both in the case
(Φ,G ) = (Ψ,H) and in the case (Φ,G ) 6= (Ψ,H).

(Joint work with Nicola Quercioli)
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Some work in progress: New topologies on X and G

Let X be a set. Let Φ be a non-empty subset of the set of all bounded
functions from X to R, endowed with the norm ‖ · ‖∞. We assume
that Φ is compact and contains at least the constant functions
taking every value c with |c| ≤ supϕ∈Φ ‖ϕ‖∞.We also consider a group
G ⊆ Homeo(X ), acting on Φ by composition on the right.

We endow X with the initial topology, i.e. the coarsest topology on
X such that every function in Φ is continuous. In other words, on X
we consider this pseudo-metric: dX (x1,x2) := supϕ∈Φ |ϕ(x1)−ϕ(x2)|.

We endow the group G with the pseudo-metric
DG (g1,g2) := supϕ∈Φ ‖ϕ ◦g1−ϕ ◦g2‖∞. G is a topological group that
acts continuously on Φ by composition on the right.

We will also assume that X and G are compact, and say that
(Φ,G ) is a perception pair.
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Some work in progress: New topologies on X and G

We have to justify our choice of using the initial topology on X ,
instead of another topology. The reason of this choice is twofold:

1. In several applications there is no information about the topology
that should be used on X . In this case, it is reasonable to rely only
on a topology induced by our measurements.

2. The theory is more symmetrical when the initial topology is chosen
on X . Indeed, in this case the functions in Φ are used to define
two “natural” pseudo-metrics on X and on G by setting
dX (x1,x2) := supϕ∈Φ |ϕ(x1)−ϕ(x2)| for x1,x2 ∈ X and
DG (g1,g2) := supϕ∈Φ ‖ϕ ◦g1−ϕ ◦g2‖∞ for g1,g2 ∈ G . In plain
words: Two points x1,x2 ∈ X are close to each other if every
function in Φ takes similar values at those points. Two
homeomorphisms g1,g2 ∈ G are close to each other if they
act similarly on every function in Φ.
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

We wish to extend our theoretical approach to the case of different
perception pairs. In order to do that, we consider each perception pair
(Φ,G ) as a category whose objects are the elements of the compact
space Φ and whose arrows are the elements of the topological groupG .

We have an arrow g ∈ G from ϕ1 ∈ Φ to ϕ2 ∈ Φ if ϕ2 = ϕ1 ◦g .
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

In our new context, each functor F : (Φ,G )→ (Ψ,H) is called a
Group Invariant Non-expansive Operator (GINO) if:

• F is group invariant: F (ϕ ◦g) = F (ϕ)◦F (g) for every
ϕ ∈ Φ,g ∈ G ;

• F is non-expansive on Φ: ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞ for
every ϕ1,ϕ2 ∈ Φ;

• F is non-expansive on G : DH(F (g1),F (g2))≤ DG (g1,g2) for every
g1,g2 ∈ G .

This definition extends the definition of GINO illustrated in my
previous talk. We observe that in the previous definition we had
F (g) = g for every g ∈ G .
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

We give an example of the use of the definition of GINO between two
different perception pairs (Φ,G ), (Ψ,H).
Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also imagine that only two opposite points N,S can be
localized on the sphere.
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

In this case we can set

• X = S2

• Φ = set of 1-Lischitzian functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

We can also consider the “equator” of our sphere, represented as the
space S1.

Therefore, we can also set

• Y = the equator S1 of S2

• Ψ = set of 1-Lischitzian functions from S1 to [a,b]

• H = group of rotations of S1
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

In this case we can build a simple example of GINO from (Φ,G ) to
(Ψ,H) by setting

• F (ϕ) equal to the function ψ that takes each point x belonging to
the equator S1 to the average of the temperatures along the
meridian containing x , for every ϕ ∈ Φ;

• F (g) equal to the rotation h ∈ H of the equator S1 that is induced
by the rotation of the sphere, for every g ∈ G .

We can easily check that F verifies the properties defining the
concept of group invariant non-expansive operator.
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Some work in progress: The metric space of GINOs
from (Φ,G ) to (Ψ,H)

We can endow the set of all GINOs from (Φ,G ) to (Ψ,H) with this
metric: dF (F1,F2) :=
max

{
supϕ∈Φ ‖F1(ϕ)−F2(ϕ)‖∞,supg∈G DG (F1(g),F2(g))

}
.

Theorem

The metric space of GINOs from (Φ,G ) to (Ψ,H) is compact.

Corollary

The metric space of GINOs from (Φ,G ) to (Ψ,H) can be
ε-approximated by a finite subset.

18 of 38



Some work in progress: Extending the definition of

DF
match to the case (Φ,G ) 6= (Ψ,H)

The previous corollary opens the way to the computational
approximation of the following pseudo-metric, which naturally extends
the one defined in our previous talk.
Let us consider a set F of GINOs from (Φ,G ) to (Ψ,H).

Fore every ϕ1,ϕ2 ∈ Φ we set

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(βk(F (ϕ1)),βk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ, where βk(ψ) denotes the persistent Betti
numbers function (i.e. the rank invariant) of ψ ∈Ψ in degree k , while
dmatch denotes the usual bottleneck distance that is used to compare
the persistence diagrams associated with βk(F (ϕ1)) and βk(F (ϕ2)).
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Some work in progress: Extending the definition of

DF
match to the case (Φ,G ) 6= (Ψ,H)

Proposition

DF
match is a G -invariant and stable pseudo-metric on Φ.

The G -invariance of DF
match means that for every ϕ1,ϕ2 ∈ Φ and every

g ∈ G the equality DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2) holds.

The stability of DF
match means that DF

match is upper-bounded by the
natural pseudo-distance dG :

DF
match(ϕ1,ϕ2)≤ dG (ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞.
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The metric space of GINOs

Our approach to G-invariant TDA is based on the availability of
GINOs.

How could we build new GINOs from other GINOs?

A simple method consists in using the properties of functors and
producing new GINOs by composition of other GINOs:

If F1 is a GINO from (Φ,G ) to (Ψ,H) and F2 is a GINO from
(Ψ,H) to (χ,K ), then F2 ◦F1 is a GINO from (Φ,G ) to (χ,K ).
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Building GINOs via 1-Lipschitzian functions

We can also produce new GINOs by means of a 1-Lipschitzian
function applied to other GINOs:

Proposition

Assume that two perception categories (Φ,G ), (Ψ,H) are given. Let
L be a 1-Lipschitzian map from Rn to R, where Rn is endowed with
the norm ‖(x1, . . . ,xn)‖∞ := max1≤i≤n |xi |. Assume also that F1, . . . ,Fn
are GINOs from (Φ,G ) to (Ψ,H) that coincide on the
homeomorphisms in G . Let us define L ∗(F1, . . . ,Fn) by setting
L ∗(F1, . . . ,Fn)(ϕ)(x) := L (F1(ϕ)(x), . . . ,Fn(ϕ)(x)). We also set
L ∗(F1, . . . ,Fn)(g) = F1(g) = . . . = Fn(g) for every g ∈ G . If
L ∗(F1, . . . ,Fn)(Φ)⊆Ψ, then L ∗(F1, . . . ,Fn) is a GINO from (Φ,G )
to (Ψ,H).

From this proposition the following three results follow.
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Building new GINOs via translations, weighted
averages and the maximum operator

Proposition (Translation)

Let F be a GINO from (Φ,G ) to (Ψ,H). Let us consider the operator
Fb that is defined as Fb(ϕ) = ϕ−b on Φ and as Fb(g) = F (g) on G .
If Fb(Φ)⊆Ψ, then Fb is a GINO from (Φ,G ) to (Ψ,H) for every
b ∈ R.

Proposition (Maximum)

Assume F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), and that they
coincide on the homeomorphisms in G . Then the operator F that is
defined as F (ϕ) = maxi Fi (ϕ) on Φ and as
F (g) = F1(g) = . . . = Fn(g) on G is a GINO from (Φ,G ) to (Ψ,H),
provided that F (Φ)⊆Ψ.
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Building new GINOs via translations, weighted
averages and the maximum operator

Proposition (Weighted average)

Assume that F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), that they
coincide on the homeomorphisms in G , and that (a1, . . . ,an) ∈ Rn

with ∑
n
i=1 |ai | ≤ 1. Then the operator F that is defined as

F (ϕ) = ∑
n
i=1 aiFi (ϕ) on Φ and as F (g) = F1(g) = . . . = Fn(g) on G is

a GINO from (Φ,G ) to (Ψ,H), provided that F (Φ)⊆Ψ.

AN IMPORTANT CONSEQUENCE OF THIS LAST PROPOSITION:
The topological space of all G -invariant non-expansive
operators from (Φ,G ) to (Ψ,H) that coincide on G with a given
homomorphism F̄ : G → H is not only COMPACT, but also
CONVEX.
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An interesting GINO in kD persistent homology

Previous propositions imply the following statement.

Proposition

Assume F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), and that they
coincide on the homeomorphisms in G . Assume also that (a1, . . . ,an),
(b1, . . . ,bn) ∈ Rn, with a1, . . . ,an > 0, ∑

n
i=1 ai = 1 and ∑

n
i=1 bi = 0.

Then the operator F that is defined as

F (ϕ) = max

{
minj aj
a1

· (F1(ϕ)−b1), . . . ,
minj aj
an

· (Fn(ϕ)−bn)

}
on Φ and as F (g) = F1(g) = . . . = Fn(g) on G is a GINO from

(Φ,G ) to (Ψ,H), provided that F (Φ)⊆Ψ.

This result can be easily generalized from the case Φ⊆ C 0(X ,Rm).
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An interesting GINO in kD persistent homology

Let us now take G = H and n = m in the previous proposition. By
considering the projection operators Fi (ϕ) := ϕi for every
ϕ = (ϕ1, . . . ,ϕn) ∈ Φ⊆ C 0(X ,Rn) and setting F (g) = g for every
g ∈ G , we obtain the operator

F (ϕ) = max

{
minj aj
a1

· (ϕ1−b1), . . . ,
minj aj
an

· (ϕn−bn)

}
.

THIS OPERATOR IS IMPORTANT IN kD PERSISTENT
HOMOLOGY.
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What is kD persistent homology?

kD persistent homology is the natural generalization of persistent
homology to functions taking values in Rk instead of R. In plain
words, in place of the sublevel sets associated with real numbers we
consider sublevel sets associated with real vectors. This approach
leads us to define k-dimensional persistent Betti number functions.
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What is kD persistent homology?

The collection of the 1D-filtrations associated with the lines
p(t) = (a,1−a)t + (b,−b) such that a,b ∈ R with 0 < a< 1 is
equivalent to the 2D-filtration associated with the filtering function
p 7→ (x(p),y(p)).

[A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in
multidimensional persistent homology are stable functions,
Mathematical Methods in the Applied Sciences, 36(2013),1543-1557.]
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An interesting GINO in kD persistent homology

In other words, each multidimensional persistent Betti number
function is equivalent to a family of 1-dimensional persistent Betti
number functions. This reduction is formally done by means of the
operator that takes each Rn-valued function ϕ = (ϕ1, . . . ,ϕn) to the
R-valued functions

ϕ(a,b) := max

{
minj aj
a1

· (ϕ1−b1), . . . ,
minj aj
an

· (ϕn−bn)

}
with a1, . . . ,an > 0, ∑

n
i=1 ai = 1 and ∑

n
i=1 bi = 0.

This is exactly the operator that we considered previously.
Therefore, the study of multidimensional persistent homology
naturally leads to study the topological space of GINOs and its
properties.
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Let us recap some good properties in our theory

We have seen that the space of all GINOs between two persistence
pairs (Φ,G ), (Ψ,H) is compact under suitable assumptions, so that
it can be ε-approximated by a finite set of GINOs.

This means that, in principle, the distance

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(βk(F (ϕ1)),βk(F (ϕ2)))

can be computationally approximated.

We have also seen that DF
match is G -invariant and stable, and that it

can be a proxy for the natural pseudo-distance dG .
The space of all GINOs that take (Φ,G ) to (Ψ,H) and coincide on G
with a given homomorphism F̄ : G → H is convex.
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Some final remarks about the use of duality

We recall that in general no finite subgroup H of G exists for which
the pseudo-distance dH is an arbitrarily good approximation of dG .
Therefore, differently from DF

match, dG cannot be approximated by
another distance of the same kind. In other words, DF

match has better
properties than dG with respect to approximation.

Furthermore, the results of the experiments show that the use of some
small family of simple operators may produce a pseudo-metric DF ∗

match

that is not far from dG and can be efficiently used for data retrieval,
even if F ∗ is not a good approximation of the set of all GINOs.

These observations justify the use of DF
match in place of dG , for

practical purposes.

33 of 38



Some final remarks about the use of duality

We wish to underline the dual nature of our approach in the case
(Φ,G ) = (Ψ,H). When G becomes “larger and larger” the associated
family F all(Φ,G ) of all G -invariant non-expansive operators becomes

“smaller and smaller”, so making the computation of D
F all (Φ,G)
match easier

and easier, contrarily to what happens for the direct computation of

dG . In other words, the approach based on D
F all (Φ,G)
match seems to be of

use exactly when dG is difficult to compute in a direct way.
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Some final remarks about the use of duality

Moreover, assuming that F ∗ is a finite subset of F and H is a finite
subgroup of G , the duality in the definitions of DF

match and dG causes
another important difference in the use of DF ∗

match and dH as
respective approximations. It consists in the fact that while DF ∗

match is
a lower bound for DF

match ≤ dG , dH is an upper bound for dG :

DF ∗
match ≤ DF

match ≤ dG ≤ dH .

As a consequence, if we take the pseudo-metric dG as the ground
truth, the retrieval errors associated with the use of DF ∗

match are just
false positive, while the ones associated with the use of dH are just
false negative.
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Open questions

After defining an observer as a collection of GINOs, our purpose
consists in looking for methods to approximate the observer by a
finite (and possible small) set of simple GINOs.
This leads us to the following open questions:

• How can we build a good library of GINOs?

• How can we find a method to choose a finite set F ∗ of GINOs
that allows for both a good approximation of the natural
pseudo-distance dG and a fast computation?

• How can we provide a suitable probability theory for group
invariant non-expansive operators?

Further research is needed.
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Conclusions

• Data comparison is based on acts of measurement made by an
observer. Each set of acts of measurement can be represented as a
function defined on a topological space X .

• The observer can be seen as a collection of GINOs, applied to the
functions describing the data. The operators are allowed to change
both the space of functions and the invariance group.

• The functions describing the data can be compared by means of
the natural pseudo-distance associated with any subgroup G of
Homeo(X ).

• Persistent homology can be used to approximate the natural
pseudo-metric dG . This can be done by means of a method that is
based on GINOs. This method is stable with respect to noise.

• The topological space of GINOs deserves further research.
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